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Multidimensional bin packing January 31, 2008

Epstein and van Stee, SODA 2004
[1 Extending bin packing to more dimensions
[1 The problem of packing the small items
[1 Analysis

[1 Lower bounds
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The HARMONIC algorithm

This algorithm classifies items into types according tortbzie

[1 Sizee (3,1]: type 1, pack 1 per bin

CAJlH I\JII—‘

[1 Sizee (3,5]: type 2, pack 2 per bin
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0 Sizee (§, 25]: typek— 1, packk — 1 per bin
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[J Sizee (0, i]: use Next Fit
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Analysis of HARMONIC

[1 Analysis is done witlweighting function
[1 Weight of item = amount of bin space that it occupies

[1 Asymptotic performance ratio
= maximum weight per offline bin

[1 For HARMONIC, we find an upper bound 6f, = 1.691
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Bounded space algorithms

[1 keep only a constant number of biygen at any time
[1 gives a constant stream of output (closed bins)
[1 Idea: pack similar items together

[1 NF and HARMONIC are bounded space, but First Fit etc.
are not
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Previous results

[1 An algorithm with asymptotic performance ratio
Mg = 1.6919 was given by Csirik and van Vliet (1993)

[1 No betteroffline algorithm is known!

[1 Only improvement is fod = 2: approximation ratio of
1+InMe, =152 (FOCS 2006)

[1 No APTAS is possible even fal = 2 (APX-hard)
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Multidimensional packing

[1 In one dimension, packing small items is trivial (use NEXT
FIT)

[1 In more dimensions, doing thvgith bounded space Is the
main problem

[1 Csirik and van Vliet use unbounded space
[1 Hard to pack all small items without wasting much space

[1 Other problem: how to deal with different dimensions?
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Possible approaches
[1 Packing items in rows

[1 Shelf packing: classify items by height

— what about dimensiong > 37
[ 1 Cut bins into sub-bins
— squaresi? items of type per bin

— how to pack small squares...?
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Rectangle packing

[1 Consider a rectangle of 0.01 by 0.5: is it large or small?

[1 Csirik & van Vliet:
arbitrarily large set of sub-bins available for items of
similar size

[1 This can never be bounded space
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Our algorithm

[1 We show how to pack items and when to close bins,
without wasting too much space

[1 We use some ideas from Csirik and Raghavan(1989), Csirik
and van Vliet (1993)

] C&vV give a lower bound of 919
[1 Our algorithm has this ratio

[1 For squares, ratio is optimal but we do not know what it is!
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Algorithm for square packing (1)

[ ] Parameters:

— asmall constarg > 0
smalle = large additive constant in performance ratio
largee = large performance ratio

— alarge integeM that depends oa
(1 A square is small if width is at most/M, else large

We actually define groupof algorithms which differ only in
their choice of
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Algorithm for square packing (2)

[1 We divide the squares into types based on their width
[1 For the large items, this is done just like HARMONIC
(] Large squares? of typei per bin

[1 There areM — 1 large types

[1 Small squaredyl types, each type is packed separately

[ Example:M = 3. Intervals for large squares ark/3,1/2
and(1/2,1].
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Intervals for small square$A = 3)

Type

3. G HUG UG AU =Uso (5]

4. (33U (4 HU(h &)U = Uizo (5 55
5. (5,5)U (1510 U (520 20) U+ - = Uix0 (6-12' ) 5-12'}

The types keep alternating as items get smaller

There is no single smallest type!

0 1716 1/10 1/8 1/6 115 1/4 113

L AN HES
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Packing small squares

[1 Type 5 items: when a new bin Is opened, it is partitioned In
25 sub-bins of 1/5 by 1/5

[1 Item arrives: cut sub-bin repeatedly into 4 squares until
correct size iIs reached
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Packing small squares

[1 Never cut a large square if a smaller square exists

[1 If no free sub-bin larger than the item exists, close the bin
and open a new one

Claim 1. There are at most 3 open sub-bins of any size but the
largest

Proof: A sub-bin of a certain size is only created when all other
sub-bins of this size are closed

We create four at a time, but one is immediately used: it is cut
Into smaller sub-bins or filled with an item
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Claim 2. Each closed bin with small items contains items
total area at least 1 — €

Proof: We hava > M, we chooséV large enough
[1 a non-empty sub-bin is full by at least a fraction of
i2/(i +1)?
[1 There are relatively fewmptysub-bins: 3 per size, none of
size Vi

[1 Total area of empty sub-bins is at most
3y k=-1(29) 72 = 1/i%.
[1 Occupied area is
ic—1
(i+1)2

(1-1/i%)-(%/(i+1)%) =
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Asymptotic performance ratio

[1 Use weighting functionv

[1 weight of item = fraction of bin that it occupies (items pay
for bins they use)

[ Large squares: weight of typés 1/i°
] small square of widtls has weight?/(1 —€)

[1 Performance ratio = maximum amount of weight that can
be packed in one bin
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Patterns

[1 Consider vectorg = (q1,...,qm-1)

[1 gis apatternif there exists a feasible packing intsegle
bin which containg) items of typa (i=1,....M —1)

T LetAQ) = 15!

(1 A(q) is anupper boundor the amount of space that is left
In a bin with patterrg

1 We define
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Optimality of our algorithm

L] Let

a = liminf maxwg(Qq),
e—~0 (¢

where the maximum is taken over all patteghshich are
feasible for parameter

[1 (We use the liminf so that we do not have to prove that the
limit exists)

[1 We show that no algorithm can have an asymptotic
performance ratiatrictly belowa

In this sense, our algorithm (group of algorithms) is optima
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Proof of optimality

Suppose there is an algorithm with asymptotic performance
ratio (1—€¢')a for somee’ > 0

[0 We choose < €' such that our algorithm with parameter
has ratioat most(1+¢')a

[1 This is possible since the lim inf of the ratioasfor € — 0
[1 Let g be the pattern for whictvg(q) is maximal
[0 We writewg(q) = (1+€")a < (1+¢€)a

Note: g specifiedypes not specific items



Rob van Stee: Approximations- und Online-Algorithmen D 20
Constructing an input set for a given

[1 For each item of typein q, we take a square of size
1/(i+ 1)+ & for some very smaid > 0

0 LetAs=1— M 1qi(1/(i+ 1) +8)? be the free space
[1 Sinceqis a patternAs > 0 for 0 small enough

[1 We add a large amount @try small squaresf total size
A5 such that they can all be packed together with the other
items

Each item appeaid times for some very largs
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The lower bound

A bounded space algorithm must pack almost all items of a
specific size together

[0 Phase containsNg; items of size Y(i+1)+ 9, so
algorithm need#q; /i — O(1) bins for them

[1 PhasaVl contains small squares of total afdags, so
algorithm need®lA; — O(1) bins for them

Total amount of bins needed 38", Ng; /i2 + NA5 — O(M)
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A lower bound

] Total amount of bins needed 38" ;* Ng; /i® + NA; — O(M)
[1 The input can be packed intd bins

[J Takingd = 1/N andN — oo, this gives a lower bound of
Zi'\i11Qi/i2 + A5 on the asymptotic performance ratio

[0 By our assumption, this ist most(1—¢')a
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The weight of this set

What is theweightof this set? Recall
O Item of typei has weight fi°fori=1,...,M
] Small item of sides has weights?/(1—€)
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Contradiction

[1 Theweightof this set of items tends to

I\I/:lﬁz' + 1A;O£ =we(q) = (1+€")a
aso — 0.
[1 This implies
Vta;

> 5 TA 2 (1-¢)(1+¢€")a
=1

Dz4

= (l-e+€&" —eg"a>(1-€¢)a

which I1s a contradiction.
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Rectangle packing

[1 We now classify both the height and the width of an item
[1 There are M — 1 types for both
O In total there ar¢2M — 1)? types

[1 Arectangle can be
— large, large: treated similarly to squares
— large, small / small, large

— small, small
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Example M = 3)

[1 Rectangle of width 0.4 and height 0.06

O Type is(2,4) since 006 € (=, 1%)

O%

[J A bin for type (2,4) is initially cut into sub-bins of width

1/2 and height 14

[1 A sub-bin is then cut further for items of small height (or

width)

[1 We have onlyone sub-bin open for each size
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Results

[1 This algorithm is also optimal among bounded space
algorithms

[1 It can be extended to larger dimensions

[1 The asymptotic performance ratio is

1.6919

[1 This is optimal

[1 For hypercube packing, we have better bounds
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Packing squares into a square

[1 Given a set of squares, can they be packed together in a
single square?

[1 This problem is NP-hard! (Leung et al., 1990)

[1 We (probably. . .) cannot determine what is the maximum
amount of weight packed in a bin

[1 Our algorithm is optimal but we do not know its ratio

[ 1 However, we can derive bounds on it
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Square packing: lower bound

[1 As in one dimension, look for bin with maximal weight

[1 Use this to create a lower boufm bounded space
algorithms

[1 How much weight can be packed in a square?

[1 Ad hoc packing, no algorithmic construction
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LB =2.3638
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Square packing: upper bound

[1 To give a lower bound, it is sufficient to give a set of items
and a packing for them in a square

[1 To prove an upper bound, you haveaimvethat some sets
can be packed and some cannot

[1 This is much more difficult (NP-hard)
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Square packing: upper bound

[1 We used a computer program to checkpossible packings
of crucial sets

[1 For instance, it is not possible to add an item of size more
than 1/8 to the given example

[1 We can prove an upper bound of 2.3692 (lower bound:
2.3638)
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Hypercube packing: upper bound (1)

[1 TakeM = 2d/logd (number of big types)

[1 Then forsmall items an area of at least

id_1 Md —1 M\ 9+t
. > > | =
(i+21)9 = (M+1)d M+1

IS occupied, which is greater than

M+1) ¢ 1\ logd —d
() =(vw) -(+5)
(] This tends to
e—(logd)/Z _ (elogd)—l/Z _ 1/\/6
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Hypercube packing: upper bound (2)

[1 Denote the input by

[1 Denote byl; the subseguence of items of typkr
i=1....M

[1 Note that our algorithm uses separate bins for all these
types

(1 ThenALG(l;) = OPT(l;) <OPT(l)fori=1,... M—1

vd)-OPT(ly) = O(+/d)-OPT(l)

O
[ ThereforeALG(1) < (M —1)OPT(l) +O(+/d) - OPT(l) =
O(d/logd) - OPT(I)

[J AlsoALG(ly) =
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Hypercube packing: lower bound (1)

[1 To show a lower bound, we need to design an input on
which a bounded space algorithm performs badly

] We use items of siz&l +8)/2 fori=1,...,[logd]

O In phasé, N-((2' —1)9 — (2" — 2)% items of size(1+ ) /2!
arrive

[1 These items can be placed irtidoins

[1 Along each coordinate axis, we reserve the space between
(14 8)(1—2") and(1+ 8)(1—27") for items of phase
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Hypercube packing: lower bound (2)

[1 How does a bounded space algorithm handle this input?

[1 For items of phase it needs

N-((2—1)d— (20 —2)d 2 _2\°
P A (1—(21) )

bins

[1 This number iglecreasing im

[J How many bins are needed for phdsegd|?

[1 This is a lower bound for the amount of bins neededanh
phase 1...,[logd].
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Hypercube packing: lower bound (3)

[J In phasa = [logd|, we need at least
2 —2\° 2d — 2\
N'(l(zi—1>> N N'(1<2d—1)>
1 \d
N <1<12dl) )

N (1— e—l/z)
> 0.39N

Vv

bins
[1 Thus in total, we need at leasB9N logd bins

[1 This proves a lower bound of lah
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Summary

] We give abounded spacenline algorithm with ratio 5919

[1 This matches the performance of the best knoime
algorithm

[1 Compare this to results for one-dimensional bin packing

[1 For hypercube packing, the performance ratio of our
algorithm is sublinear il

Note: the besktower bound for hypercube packing (unbounded
space!) is 43...



