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Multidimensional bin packing January 31, 2008

Epstein and van Stee, SODA 2004

� Extending bin packing to more dimensions

� The problem of packing the small items

� Analysis

� Lower bounds
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The HARMONIC algorithm

This algorithm classifies items into types according to their size

� Size∈ (1
2,1]: type 1, pack 1 per bin

� Size∈ (1
3,

1
2]: type 2, pack 2 per bin

� . . .

� Size∈ (1
k ,

1
k−1]: typek−1, packk−1 per bin

� Size∈ (0, 1
k ]: use Next Fit
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Analysis of HARMONIC

� Analysis is done withweighting function

� Weight of item = amount of bin space that it occupies

� Asymptotic performance ratio

= maximum weight per offline bin

� For HARMONIC, we find an upper bound ofΠ∞ = 1.691
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Bounded space algorithms

� keep only a constant number of binsopen at any time

� gives a constant stream of output (closed bins)

� Idea: pack similar items together

� NF and HARMONIC are bounded space, but First Fit etc.

are not
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Previous results

� An algorithm with asymptotic performance ratio

Πd
∞ = 1.691d was given by Csirik and van Vliet (1993)

� No betteroffline algorithm is known!

� Only improvement is ford = 2: approximation ratio of

1+ lnΠ∞ = 1.52 (FOCS 2006)

� No APTAS is possible even ford = 2 (APX-hard)
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Multidimensional packing

� In one dimension, packing small items is trivial (use NEXT

FIT)

� In more dimensions, doing thiswith bounded space is the

main problem

� Csirik and van Vliet use unbounded space

� Hard to pack all small items without wasting much space

� Other problem: how to deal with different dimensions?
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Possible approaches

� Packing items in rows

� Shelf packing: classify items by height

– what about dimensionsd ≥ 3?

� Cut bins into sub-bins

– squares:i2 items of typei per bin

– how to pack small squares. . . ?
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Rectangle packing

� Consider a rectangle of 0.01 by 0.5: is it large or small?

� Csirik & van Vliet:

arbitrarily large set of sub-bins available for items of

similar size

� This can never be bounded space
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Our algorithm

� We show how to pack items and when to close bins,

without wasting too much space

� We use some ideas from Csirik and Raghavan(1989), Csirik

and van Vliet (1993)

� C&vV give a lower bound of 1.691d

� Our algorithm has this ratio

� For squares, ratio is optimal but we do not know what it is!
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Algorithm for square packing (1)

� Parameters:

– a small constantε > 0

smallε ⇒ large additive constant in performance ratio

largeε ⇒ large performance ratio

– a large integerM that depends onε

� A square is small if width is at most 1/M, else large

We actually define agroupof algorithms which differ only in

their choice ofε
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Algorithm for square packing (2)

� We divide the squares into types based on their width

� For the large items, this is done just like HARMONIC

� Large squares:i2 of type i per bin

� There areM−1 large types

� Small squares:M types, each type is packed separately

� Example:M = 3. Intervals for large squares are(1/3,1/2]

and(1/2,1].



Rob van Stee: Approximations- und Online-Algorithmen 12

Intervals for small squares (M = 3)

Type

3. (1
4,

1
3]∪ (1

8,
1
6]∪ ( 1

16,
1
12]∪ ·· ·= ∪i≥0

(

1
4·2i ,

1
3·2i

]

4. (1
5,

1
4]∪ ( 1

10,
1
8]∪ ( 1

20,
1
16]∪ ·· ·= ∪i≥0

(

1
5·2i ,

1
4·2i

]

5. (1
6,

1
5]∪ ( 1

12,
1
10]∪ ( 1

24,
1
20]∪ ·· ·= ∪i≥0

(

1
6·2i ,

1
5·2i

]

The types keep alternating as items get smaller

There is no single smallest type!
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Packing small squares

� Type 5 items: when a new bin is opened, it is partitioned in

25 sub-bins of 1/5 by 1/5

� Item arrives: cut sub-bin repeatedly into 4 squares until

correct size is reached
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Packing small squares

� Never cut a large square if a smaller square exists

� If no free sub-bin larger than the item exists, close the bin

and open a new one

Claim 1. There are at most 3 open sub-bins of any size but the

largest

Proof: A sub-bin of a certain size is only created when all other

sub-bins of this size are closed

We create four at a time, but one is immediately used: it is cut

into smaller sub-bins or filled with an item
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Claim 2. Each closed bin with small items contains items of

total area at least 1− ε

Proof: We havei ≥ M, we chooseM large enough

� a non-empty sub-bin is full by at least a fraction of
i2/(i+1)2

� There are relatively fewemptysub-bins: 3 per size, none of
size 1/i

� Total area of empty sub-bins is at most
3∑k≥1(2

ki)−2 = 1/i2.

� Occupied area is

(1−1/i2) · (i2/(i+1)2) =
i2−1
(i+1)2 .
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Asymptotic performance ratio

� Use weighting functionwε

� weight of item = fraction of bin that it occupies (items pay

for bins they use)

� Large squares: weight of typei is 1/i2

� small square of widths has weights2/(1− ε)

� Performance ratio = maximum amount of weight that can

be packed in one bin
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Patterns

� Consider vectorsq = (q1, . . . ,qM−1)

� q is apatternif there exists a feasible packing into asingle

bin which containsqi items of typei (i = 1, . . . ,M−1)

� Let A(q) = 1−∑M−1
i=1

qi
(i+1)2

� A(q) is anupper boundfor the amount of space that is left

in a bin with patternq

� We define

wε(q) =
M−1

∑
i=1

qi

i2
+

A(q)
1− ε

.
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Optimality of our algorithm

� Let

α = lim inf
ε→0

max
q

wε(q),

where the maximum is taken over all patternsq which are

feasible for parameterε

� (We use the liminf so that we do not have to prove that the

limit exists)

� We show that no algorithm can have an asymptotic

performance ratiostrictly belowα

In this sense, our algorithm (group of algorithms) is optimal
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Proof of optimality

Suppose there is an algorithm with asymptotic performance

ratio (1− ε′)α for someε′ > 0

� We chooseε < ε′ such that our algorithm with parameterε
has ratioat most(1+ ε′)α

� This is possible since the lim inf of the ratio isα for ε → 0

� Let q be the pattern for whichwε(q) is maximal

� We writewε(q) = (1+ ε′′)α ≤ (1+ ε′)α

Note:q specifiestypes, not specific items



Rob van Stee: Approximations- und Online-Algorithmen 20

Constructing an input set for a givenq

� For each item of typei in q, we take a square of size

1/(i+1)+δ for some very smallδ > 0

� Let Aδ = 1−∑M−1
i=1 qi(1/(i+1)+δ)2 be the free space

� Sinceq is a pattern,Aδ > 0 for δ small enough

� We add a large amount ofvery small squaresof total size

Aδ such that they can all be packed together with the other

items

Each item appearsN times for some very largeN
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The lower bound

A bounded space algorithm must pack almost all items of a

specific size together

� Phasei containsNqi items of size 1/(i+1)+δ, so

algorithm needsNqi/i2−O(1) bins for them

� PhaseM contains small squares of total areaNAδ, so

algorithm needsNAδ −O(1) bins for them

Total amount of bins needed is∑M−1
i=1 Nqi/i2+NAδ −O(M)
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A lower bound

� Total amount of bins needed is∑M−1
i=1 Nqi/i2+NAδ −O(M)

� The input can be packed intoN bins

� Takingδ = 1/N andN → ∞, this gives a lower bound of

∑M−1
i=1 qi/i2+Aδ on the asymptotic performance ratio

� By our assumption, this isat most(1− ε′)α
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The weight of this set

What is theweightof this set? Recall

� Item of typei has weight 1/i2 for i = 1, . . . ,M

� Small item of sides has weights2/(1− ε)
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Contradiction

� Theweightof this set of items tends to

M−1

∑
i=1

qi

i2
+

A0

1− ε
= wε(q) = (1+ ε′′)α

asδ → 0.

� This implies
M−1

∑
i=1

qi

i2
+A0 ≥ (1− ε)(1+ ε′′)α

= (1− ε+ ε′′− εε′′)α > (1− ε′)α

which is a contradiction.
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Rectangle packing

� We now classify both the height and the width of an item

� There are 2M−1 types for both

� In total there are(2M−1)2 types

� A rectangle can be

– large, large: treated similarly to squares

– large, small / small, large

– small, small
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Example (M = 3)

� Rectangle of width 0.4 and height 0.06

� Type is(2,4) since 0.06∈ ( 1
20,

1
16)

� A bin for type(2,4) is initially cut into sub-bins of width
1/2 and height 1/4

� A sub-bin is then cut further for items of small height (or
width)

� We have onlyonesub-bin open for each size

1/4

1/2
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Results

� This algorithm is also optimal among bounded space

algorithms

� It can be extended to larger dimensions

� The asymptotic performance ratio is

1.691d

� This is optimal

� For hypercube packing, we have better bounds
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Packing squares into a square

� Given a set of squares, can they be packed together in a

single square?

� This problem is NP-hard! (Leung et al., 1990)

� We (probably. . . ) cannot determine what is the maximum

amount of weight packed in a bin

� Our algorithm is optimal but we do not know its ratio

� However, we can derive bounds on it
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Square packing: lower bound

� As in one dimension, look for bin with maximal weight

� Use this to create a lower boundfor bounded space

algorithms

� How much weight can be packed in a square?

� Ad hoc packing, no algorithmic construction
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1/2

1/3

1/3

1/3

ffffffffffffffffffffffffffffff ffffffffffffffffffff f ffffffff ffff



Rob van Stee: Approximations- und Online-Algorithmen 31

1/2

1/41/51/5

1/3

1/3

1/4

1/3

ffffffffffffffffffffffffffffff ffffffffffffffffffff f ffffffff fffff



Rob van Stee: Approximations- und Online-Algorithmen 32

1/2

1/41/51/5

1/3

1/71/7

1/3

1/8

1/4

1/8

1/3
1/7

1/7

1/7
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1/2

1/41/51/5

1/3

1/71/7

1/3

1/8

1/13

1/4

1/8

1/3
1/7

1/7

1/7
1/13

1/21
1/14

1/18

1/21

LB = 2.3638
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Square packing: upper bound

� To give a lower bound, it is sufficient to give a set of items

and a packing for them in a square

� To prove an upper bound, you have toprovethat some sets

can be packed and some cannot

� This is much more difficult (NP-hard)
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Square packing: upper bound

� We used a computer program to checkall possible packings

of crucial sets

� For instance, it is not possible to add an item of size more

than 1/8 to the given example

� We can prove an upper bound of 2.3692 (lower bound:

2.3638)
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Hypercube packing: upper bound (1)

� TakeM = 2d/ logd (number of big types)

� Then forsmall items, an area of at least

id −1
(i+1)d ≥ Md −1

(M+1)d ≥
(

M
M+1

)d+1

is occupied, which is greater than

(

M+1
M

)−d

=

(

1+
1
M

)−d

=

(

1+
logd
2d

)−d

� This tends to

e−(logd)/2 = (elogd)−1/2 = 1/
√

d
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Hypercube packing: upper bound (2)

� Denote the input byI

� Denote byIi the subsequence of items of typei for

i = 1. . . ,M

� Note that our algorithm uses separate bins for all these

types

� ThenALG(Ii) = OPT(Ii)≤ OPT(I) for i = 1, . . . ,M−1

� Also ALG(IM) = O(
√

d) ·OPT(IM) = O(
√

d) ·OPT(I)

� ThereforeALG(I)≤ (M−1)OPT(I)+O(
√

d) ·OPT(I) =

O(d/ logd) ·OPT(I)
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Hypercube packing: lower bound (1)

� To show a lower bound, we need to design an input on

which a bounded space algorithm performs badly

� We use items of size(1+δ)/2i for i = 1, . . . ,dlogde

� In phasei, N · ((2i −1)d − (2i −2)d items of size(1+δ)/2i

arrive

� These items can be placed intoN bins

� Along each coordinate axis, we reserve the space between

(1+δ)(1−21−i) and(1+δ)(1−2−i) for items of phasei
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Hypercube packing: lower bound (2)

� How does a bounded space algorithm handle this input?

� For items of phasei, it needs

N · ((2i −1)d − (2i −2)d

(2i −1)d = N ·
(

1−
(

2i −2
2i −1

)d
)

bins

� This number isdecreasing ini

� How many bins are needed for phasedlogde?

� This is a lower bound for the amount of bins needed ineach

phase 1, . . . ,dlogde.
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Hypercube packing: lower bound (3)

� In phasei = dlogde, we need at least

N ·
(

1−
(

2i −2
2i −1

)d
)

= N ·
(

1−
(

2d −2
2d −1

)d
)

= N ·
(

1−
(

1− 1
2d −1

)d
)

≥ N
(

1− e−1/2
)

> 0.39N

bins

� Thus in total, we need at least 0.39N logd bins

� This proves a lower bound of logd
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Summary

� We give abounded spaceonline algorithm with ratio 1.691d

� This matches the performance of the best knownoffline

algorithm

� Compare this to results for one-dimensional bin packing

� For hypercube packing, the performance ratio of our

algorithm is sublinear ind

Note: the bestlower bound for hypercube packing (unbounded

space!) is 4/3. . .


