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Online load balancing February 7, 2008

� Problem definition Offline results

� Identical machines PTAS [HS87]

– R(Greedy)=2−1/m

– Improvements (best= 1.92)

� Related machines PTAS [HS88]

– R(Greedy)=Θ(logm)

– 8-competitive algorithm

� Restricted machines PTAS for fixedm [HS76];

– R(Greedy)=Θ(logm) 2-approximation;

– This is best possible nothing better than 3/2
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The Problem

� m identical machines

� n nonpreemptable jobs

� jobs arrive one by one

� goal: minimize themakespan, the time at which the last job

finishes

� load balancing
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List Scheduling (LS)

LS assigns each job to the least loaded machine

Also known as the Greedy algorithm

It achieves a competitive ratio of

2− 1
m

This bound is tight for LS

Does there exist a better algorithm?
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Lower bound for LS

Input: m(m−1) jobs of size 1 and one job of sizem.

List Scheduling: 2m−1 OPT: m

This shows the competitive ratio is not better than 2−1/m.
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Lower bound form = 2

Denote the optimal competitive ratio form by C(m). Let the job

sequenceσ = {1,1,2}.

First two jobs on the same machine⇒ CA = 2.

OtherwiseA(σ) = 3 andOPT (σ) = 2. We have

C(2)≥ 3/2.

For m = 2, the competitive ratio of LS is 2− 1
m = 3/2.

Thus

C(2) = 3/2.
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The casem = 3

Let σ = {1,1,1,3,3,3,6}.

Case 1: First three jobsnoton three different machines:

sequence ends, competitive ratio is 2 (OPT (σ) = 1,A(σ) = 2)

Case 2: Second three jobsnot on three different machines:

sequence ends, competitive ratio is 7/4 (OPT (σ) = 4,A(σ) = 7)

Case 3: Else, after final job, load is 10 andOPT (σ) = 6.

This proves

C(3)≥ 5
3
.

Competitive ratio of LS is 5/3 for m = 3, so LS is optimal
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The casem ≥ 4

Use as input sequence

σ = {1, m. . .,1,1+
√

2, m. . .,1+
√

2,2+2
√

2}

to prove

C(m)≥ 1+
1
2

√
2 m = 4,5, . . .

Again, all jobs of same size must be placed on different

machines.

Why does this not work for smallerm?
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More on the casem ≥ 4

� Modified List Scheduling

� A better lower bound

� Open questions
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Modified List Scheduling: definitions

Let 1≤ β ≤ 3/2 and define thesymmetricrelation

x ∼ y ⇐⇒ y
β
≤ x ≤ βy

and say that in this casex is similar toy.

∼ (S), whereS is a set, means all elements inS are similar.

Idea of MLS: maintain someimbalance, try to preventthe

machines from becoming similar.

Let

R =
2m−2+β
m−1+β

.
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Modified List Scheduling (MLS)

Read_job (x); while x 6= End do{

if 6∼ (L1+ x,L2, . . . ,Lm) then

Assign (x, 1)

else

if L2+ x ≤ R ∑i Li+x
m then

Assign (x, 2)

else

Assign (x, 1);

Order the machines such that L1 ≤ L2 ≤ ·· · ≤ Lm;

Read_job (x);

};
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Competitive ratio of MLS

� MLS improves upon LS for allm ≥ 4

� limm→∞CMLS = 2

For m = 4 we findCMLS = 1.7333 (andCLS = 1.75)

Proofs are omitted.

Later algorithms are better than 2-competitive also in the limit

(best known result is 1.92)
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A betterlower boundfor m = 4

Idea is similar to the lower bound form = 2,3, but the job sizes

are not straightforward.

Job sequence uses parametersx andy

σ = {1x+1y+1,1x+11+1,1x+1y+1,1,

σ = {xx+1y+1,xx+1y+1,xx+1y+1,x,

σ = {yx+1y+1,yx+1y+1,yx+1y+1,y,

σ = {3x+2y+2,3x+2y+2,3x+2y+2,5x+2y+2,

σ = {6x+5y+4}

Choosingx andy, we can get a lower bound of 1.731.
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Better lower bounds

Similar sequences can be used to show good lower bounds for

m = 5,6, . . . ,10.

For m = 4, a MUCH longer sequence shows a lower bound of
√

3≈ 1.732

(SIAM Journal on Computing, 2003)

Note that the current upper bound form = 4 is 1.733.
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Open questions

� What is the exact value ofC(4)? We know that
√

(3)≤C(4)≤ 1.7333.

The lower bound is 5 years old, the upper bound 10 years

Conjecture C(4) =
√

3= 1.7320508. . . .

� Is C(m)≤C(m+1) for all m?

� What is the value oflimm→∞C(m)? At most 1.920.
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Related machines

� So far we only consideredidentical machines

� All machines have the same speed

� We now turn torelatedmachines

� Each machine has a speed

� The greedy algorithm isΘ(logm)-competitive

� We present a constant-competitive algorithm
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Lower bound for the greedy algorithm

� We show a lower bound for11 machines

� It can be extended to larger numbers

� The set of machines is as follows

2 12 1 1 14 1 1 11

The set of jobs has sizes which match these speeds

Thus, OPT = 1

The smallest jobs (size 1) arrive first
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Lower bound for the greedy algorithm

The first job goes on the fastest machine

2 12 1 1 14 1 1 11
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Lower bound for the greedy algorithm

We may assume the speed “2” is actually 2− ε

Then the second job also goes on the fastest machine

2 12 1 1 14 1 1 11
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Lower bound for the greedy algorithm

The next job goes on a machine of speed 2

2 12 1 1 14 1 1 11
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Lower bound for the greedy algorithm

. . . and the next job as well

2 12 1 1 14 1 1 11
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Lower bound for the greedy algorithm

The next four jobs are placed similarly

The slow machines do not get used for these jobs

2 12 1 1 14 1 1 11
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Lower bound for the greedy algorithm

Now jobs of size 2 start to arrive

All jobs are placed on the machine where they complete the

earliest

2 12 1 1 14 1 1 11

1
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Lower bound for the greedy algorithm

Both jobs of size 2 are placed on the fastest machine

2 12 1 1 14 1 1 11

2

1
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Lower bound for the greedy algorithm

Final load is 3 = number of classes of machines

For generalm, final load isΩ(logm)

2 12 1 1 14 1 1 11

1

2

3
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The algorithm SLOWFIT

� We first present an algorithm thatknowsthe optimal load

� We then show how to extend this to the general case

� Essentially, we simplyguess OPT

� We doubleour guess when it it clear that it is too small

� This gives a constant competitive algorithm
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An algorithm thatknows OPT

� Suppose OPT≤ Λ

� Order the machines by speed (M1 is the slowest)

� Let new job request ber

� Put job onslowestmachine where load remains below 2Λ

� If there is no such machine, output “failure”
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This algorithm does not fail

� Suppose it fails on some inputσ = {r1, . . . ,rn}

� Jobrn cannot be assigned

� Let f be the fastest machine with loadbelowOPT(σ)

� If f = m, rn can be assigned to machinem

� Thus f < m
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This algorithm does not fail

� The machinesf +1, . . . ,m are “overloaded”

� Let Si be set of jobs assigned to machinei by this algorithm

� Let S∗i be set of jobs assigned to machinei by OPT

mf f+11

OPT

slow fast
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An overloaded machinei

∑
j∈Si

p j = si ∑
j∈Si

p j

si
algebra

> si ·OPT(σ) assumption

≥ si ∑
j∈S∗i

p j

si
definitionS∗i

= ∑
j∈S∗i

p j algebra

We have strict inequality foreveryoverloaded machine

Thus,not all machines can be overloaded
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An overloaded machinei (2)

� We have∑ j∈Si
p j > ∑ j∈S∗i

p j

� There must be some jobx onsomeoverloaded machinei

that OPT assigns to aslowermachinei′ ≤ f

� Theload ofx on f would be less than OPT(σ)
(OPT hasx on a machine which is not faster thanf )

� Theload of machinef is still less than OPT(σ) at the end

� Our algorithm would assignx to f !

� Contradiction
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The algorithm SLOWFIT (2)

� At start, setΛ0 = p1/sm (cost of OPT)

� Run previous algorithmuntil it fails

� Then, doubleΛ and continue

� In phasej, Λ j = 2jΛ0

� In each phase, all previous assignments are ignored

(machines are assumed to be empty)

If there is only one phase, this algorithm is 2-competitive
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Analysis of SLOWFIT

� Suppose SLOWFIT terminates in phaseh > 0

� Then the subroutine failed in phases 1, . . . ,h−1

� Let σ j be the request sequence in phasej

� This implies OPT(σh−1r)> Λh−1 (r is first request of

phaseh)

� Therefore OPT(σ)> 2h−1Λ0

� The makespan of SLOWFIT is at most

h

∑
j=0

ALG(σ j)≤
h

∑
j=0

2·2jΛ0 = 2· (2h+1−1)Λ0 < 8·OPT(σ)
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Restricted machines

� This is a special case ofunrelated machines

� Machines do not have speeds

� Instead, the load of a job depends on the machine that it is

assigned to

� Each job is represented as a vector of loads

� For restricted machines, the load of jobk is eitherwk or

infinite
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The greedy algorithm on restricted machines

� For jobk, we call the machines where the load iswk

“allowed”

� The greedy algorithm places each job on the least loaded

allowedmachine

� It has a competitive ratio ofdlogme+1

� No algorithm can do much better
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Analysis of Greedy

� We partition the assignment of Greedy into layers

� Each layer has height OPT(σ)

� Some jobs are split over two layers (not more!)

� There aren jobs

� We have

OPT(σ)≥
n

∑
k=1

wk/m
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The layers of the greedy schedule (1)

� Let Wi be the load assigned in layeri

� Let W be the total load

� What remains afteri layers have been assigned?

� Define

Ri =W −
i

∑̀
=1

W`
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The layers of the greedy schedule (2)

� We will showWi ≥ Ri for each layeri

� Thus, in each layer Greedy assigns more than it leaves over

� If this holds, thenRi ≤ Ri−1/2

� Therefore

Rdlogme ≤ R0/m =W/m ≤ OPT(σ)

� So any load remaining after leveldlogme will be assigned

in the next level

� This shows that the maximum load is at most

(dlogme+1) ·OPT(σ)
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Proof of the claim (Wi ≥ Ri)

� For layeri, let Ai be the set of machines that areallowedfor

one or more unfinished jobs after this layer

� The unfinished jobs contribute toRi

� Let Ni = |Ai|

� We haveRi ≤ Ni ·OPT(σ)

� Let FULLi−1 ⊂ Ai−1 be the set of machines inAi−1 that are

full in level i−1 (get load at least OPT(σ))

� We haveWi ≥ |FULLi−1| ·OPT(σ)

� But we can showNi ≤ |FULLi−1|
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Ni ≤ |FULLi−1|
� Consider anon-full machinej in Ai−1

� Suppose it is allowed for some jobk assigned after layeri

� Then machinej would have a load less than any machine in

Ai

� So it would be assigned this jobk

� Then either machinej would become full or jobk would

not contribute toRi

� This shows that

Ri ≤ Ni ·OPT(σ)≤ |FULLi−1|OPT(σ)≤Wi


