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Online load balancing February 7, 2003
[1 Problem definition Offline results
[1 Identical machines PTAS [HS87]

— R(Greedy)=2-1/m
— Improvements (best 1.92)

[1 Related machines PTAS [HS88]
— R(Greedy)®(logm)
— 8-competitive algorithm

[1 Restricted machines PTAS for fixedm[HS76];
— R(Greedy)®(logm) 2-approximation;

— This Is best possible nothing better than 3/2
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The Problem

[1 midentical machines
[1 nnonpreemptable jobs
[1 jobs arrive one by one

[1 goal: minimize thanakespan, the time at which the last job
finishes

[1 load balancing
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List Scheduling (LS)

LS assigns each job to the least loaded machine
Also known as the Greedy algorithm

It achieves a competitive ratio of

1
2_ =
m

This bound is tight for LS

Does there exist a better algorithm?
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Lower bound for LS

Input: m(m— 1) jobs of size 1 and one job of sire

List Scheduling: 2m-1 OPT: m

This shows the competitive ratio is not better than 2/m.
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Lower bound form =2

Denote the optimal competitive ratio farby C(m). Let the job
sequence = {1,1,2}.

First two jobs on the same machiaeCp = 2.

OtherwiseA(o) = 3 andOPT (o) = 2. We have

C(2) > 3/2.

Form= 2, the competitive ratio of LS is 2 % = 3/2.

Thus
C(2) =3/2.
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The casen=3

Leto = {1,1,1,3,3,3,6}.

Case 1: First three jobsiot on three different machines:
sequence engsompetitive ratio is 2QPT (o) = 1,A(0) = 2)

Case 2: Second three jobsot on three different machines:
sequence engsompetitive ratio is 7/4QPT (o) = 4,A(0) = 7)

Case 3: Else, after final job, load is 10 ardPT (o) = 6.
This proves

C3) =

Wl Ol

Competitive ratio of LS is 53 form= 3, so LS is optimal
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The casem> 4

Use as input sequence
o={1,.M 11+v2 .M 1+22+2/2}
to prove
C(m) > 1+%f2 m=4.5,...

Again, all jobs of same size must be placed on different
machines.

Why does this not work for smallen?
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More on the casen> 4

[1 Modified List Scheduling
[1 A better lower bound

[1 Open questions
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Modified List Scheduling: definitions

Let 1 < < 3/2 and define theymmetricrelation

X~y <= XSXSBY

B

and say that in this casas similar toy.
~ (S), whereSis a set, means all elementsSmare similar.

ldea of MLS: maintain somenbalancetry to preventthe
machines from becoming similar.
Let
R_2m—2+[3
- m-1+B°




Rob van Stee: Approximations- und Online-Algorithmen D 10
Modified List Scheduling (MLS)
Read job (x); while x #End dof
I f L (L1+XLo,...,Lm) then
Assign (x, 1)
el se
| f L2+X§;RZ%$ﬁ t hen
Assign (x, 2)
el se
Assign (x, 1);
Order the machines such that L1 <L,<:--- <Ly
Read job (X);
};
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Competitive ratio of MLS

[1 MLS improves upon LS foralin> 4
[] |imm%ooC|\/||_S: 2
Form=4 we findCy.s=1.7333 (andC s = 1.75)

Proofs are omitted.

Later algorithms are better than 2-competitive also in iiing |
(best known result is.92)
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A betterlower boundfor m=14

ldea is similar to the lower bound fon= 2, 3, but the job sizes
are not straightforward.

Job segquence uses paramexeaady

o={1 1 1 1,
X 7X 7X 7X7
y Y Y Y,

X+ 2y + 2,3X+ 2y + 2,3X+ 2y + 2, 5X + 2y + 2,
6X+ 5y + 4}

Choosingx andy, we can get a lower bound of 1.731.
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Better lower bounds

Similar sequences can be used to show good lower bounds for
m=>5,6,...,10.

Form=4, a MUCH longer sequence shows a lower bound of
V3~ 1.732

(SIAM Journal on Computing, 2003)
Note that the current upper bound for= 4 is 1.733.
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Open questions

(1 What is the exact value &(4)? We know that
v/ (3) <C(4) < 1.7333

The lower bound is 5 years old, the upper bound 10 years
Conjecture C(4) = /3= 1.7320508...
[ IsC(m) <C(m+1) for all m?

[J What is the value ofimp, . C(m)? At most 1.920.
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Related machines
[1 So far we only consideredentical machines
[1 All machines have the same speed
[1 We now turn torelatedmachines
[1 Each machine has a speed
[J The greedy algorithm i®(logm)-competitive

[1 We present a constant-competitive algorithm
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Lower bound for the greedy algorithm

[1 We show a lower bound fdrl machines
[1 It can be extended to larger numbers

[1 The set of machines is as follows

The set of jobs has sizes which match these speeds
Thus, OPT =1

The smallest jobs (size 1) arrive first
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Lower bound for the greedy algorithm

The first job goes on the fastest machine

________

————————
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Lower bound for the greedy algorithm

We may assume the speed “2” is actually 2

Then the second job also goes on the fastest machine
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Lower bound for the greedy algorithm

The next job goes on a machine of speed 2
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Lower bound for the greedy algorithm

...and the next job as well
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Lower bound for the greedy algorithm

The next four jobs are placed similarly

The slow machines do not get used for these jobs

________
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Lower bound for the greedy algorithm

Now jobs of size 2 start to arrive

All jobs are placed on the machine where they complete the
earliest

———————————————
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Lower bound for the greedy algorithm

Both jobs of size 2 are placed on the fastest machine
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Lower bound for the greedy algorithm
Final load is 3 = number of classes of machines

For generam, final load isQ(logm)
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The algorithm SOwWFIT

[1 We first present an algorithm thatowsthe optimal load
[1 We then show how to extend this to the general case

[1 Essentially, we simplguess OPT

[1 We doubleour guess when it it clear that it is too small

[1 This gives a constant competitive algorithm



Rob van Stee: Approximations- und Online-Algorithmen D 26
An algorithm thatkknows OPT

[] Suppose OPK A

[1 Order the machines by spedd+(is the slowest)

[1 Let new job request be

[1 Put job onslowestmachine where load remains below 2

[1 If there is no such machine, output “failure”
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This algorithm does not fall

[J Suppose it fails on some inpat= {ry,...,rM}

[1 Jobr, cannot be assigned

[1 Let f be the fastest machine with loaélow OPT(0)
(1 If f =m, r,can be assigned to machine

(1 Thusf <m
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This algorithm does not fall

[1 The machinesg +1,...,mare “overloaded”
[1 Let S be set of jobs assigned to machin®y this algorithm
[J Let S be set of jobs assigned to machirgy OPT

slow fast
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An overloaded machine

Es Pj
JE€S

S zs algebra

> §-OPT(g) assumption

> S Z & definition §
&g

= Z o algebra
J€S

We have strict inequality forveryoverloaded machine

Thus,not all machines can be overloaded
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An overloaded machine(2)

L) We have} jcg pj > Y jes Pj

[1 There must be some jobon someoverloaded machine
that OPT assigns toslowermachina’ < f

[1 Theload ofx on f would be less than OR®)
(OPT has< on a machine which is not faster than

[1 Theload of machin€f is still less than OP{lo) at the end
[1 Our algorithm would assigrto f!

[1 Contradiction
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The algorithm SOowWFIT (2)

(1 At start, set\g = p1/Sm (cost of OPT)
[1 Run previous algorithmantil it fails

[1 Then, double\ and continue

[ In phasej, Aj = 21 Ao

[1 In each phase, all previous assignments are ignored
(machines are assumed to be empty)

If there Is only one phase, this algorithm is 2-competitive
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Analysis of SOWFIT

[1 Suppose SOWFIT terminates in phade> 0

[1 Then the subroutine failed in phases.1,h—1
[] Letoj be the request sequence in phase
[]

This implies OPTon_1r) > An_1 (r is first request of
haseh)

P
[ Therefore OPTo) > 2" 1A
T

ne makespan of KOWFIT Is at most

h h |
%ALG(GJ-) < %2- 2INg=2- (2" —1)Ag < 8-OPT(0)
= =
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Restricted machines

[1 This is a special case ofrelated machines
[1 Machines do not have speeds

[1 Instead, the load of a job depends on the machine that it is
assigned to

[1 Each job is represented as a vector of loads

[1 Forrestricted machingshe load of jolk is eitherwy or
Infinite
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The greedy algorithm on restricted machine

[1 For jobk, we call the machines where the loadus
“allowed”

[1 The greedy algorithm places each job on the least loaded
allowedmachine

[0 It has a competitive ratio dfiogm] + 1

[1 No algorithm can do much better
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Analysis of Greedy

[1 We partition the assignment of Greedy into layers
[1 Each layer has height OFPG)

[1 Some jobs are split over two layers (not more!)

[1 There aren jobs

[1 We have

>

OPT(0) > ) wx/m

il
=
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The layers of the greedy schedule (1)

[1 LetW be the load assigned in layer
[1 LetW Dbe the total load
[1 What remains afterlayers have been assigned?

(1 Define

g
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The layers of the greedy schedule (2)

[1 We will showW > R, for each layer
[1 Thus, in each layer Greedy assigns more than it leaves over
[ If this holds, therR <R_1/2
[1 Therefore
Rriogm) < Ro/m=W/m < OPT(0)
[1 So any load remaining after levdbgm| will be assigned
In the next level

[1 This shows that the maximum load is at most

([logm|+1)-OPT(0O)
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Proof of the claim\(j > R;)

[1 For layeri, let A; be the set of machines that axkowedfor
one or more unfinished jobs after this layer

The unfinished jobs contribute £
LetN; = A
We haveR; < N; - OPT(0)

1 O o 0O

Let FULL;_1 C Ai_1 be the set of machines l_4 that are
full in leveli — 1 (get load at least OR®))

[]

We havel > |[FULL;_4|- OPT(o)

[1 But we can shown; < [FULL;_1
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N; < [FULL;_]

[1 Consider anon-full machinej in Aj_1
[1 Suppose it is allowed for some jiassigned after layer

[1 Then maching would have a load less than any machine in
A
[1 So it would be assigned this jdb

[1 Then either maching would become full or jolk would
not contribute tdx

1 This shows that

R < N;-OPT(0) < |FULL;_1|OPT(0) <W



