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Online bin packing 24.Januar 2008

� Problem definition

� First Fit and other algorithms

� The asymptotic performance ratio

� Weighting functions

� Lower bounds
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Bin packing: problem definition (repeat)

� Input: n items with sizesa1, . . . ,an ∈ (0,1]

� Goal: pack these items into aminimal number of bins

� Each bin has size 1
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Next Fit (repeat)

� Keep a single open bin

� When an item does not fit, close this bin and open a new bin

� Closed bins are never used again

� Approximation ratio is 2

– each pair of successive bins contains more than 1

– matching lower bound
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First Fit, Best Fit, Worst Fit

� Keep all bins open

� An item is assigned to the first / best / worst bin in which it

fits

best(worst) bin = bin in which the item fits and where it

leaves thesmallest(largest) empty space

� If item does not fit in any open bin, open a new bin

First Fit and Best Fit are better than Next Fit

Disadvantage:no bin is ever closed
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Asymptotic performance ratio

� A performance measure for bin packing algorithms

� Similar to competitive ratio

� Idea: compare number of bins used to optimal number of

bins,for large inputs

� Definition:

R∞
A = limsup

n→∞
sup

σ
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A(σ)
OPT (σ)
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.
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Asymptotic performance ratio

� It is the infimum R for which

A(σ)≤ R ·OPT(σ)+ c

for every input sequenceσ

� Herec is a non-negative constant which does not depend on

the input

� We still calculate the ratio between the costs of ALG and

the costs of OPT

� However, we give ALGseveral bins for free
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Performance ratio of FF and BF

� These algorithms have a ratio of 1.7

� We show a simple lower bound

� Asymptotic ratio⇒ we need an input sequence of arbitrary

lengthn

� Sequence: 6n items of size0.15, 6n items of size0.34, 6n

items of size0.51

� These items can be packed into 6n bins by OPT
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How do FF and BF pack this input?

� 6n items of size 0.15⇒ packed inn bins

All these bins are 0.9 full

� 6n items of size 0.34⇒ packed in 3n bins

All these bins are 0.68 full

� 6n items of size 0.51⇒ packed in 6n bins

� Total 10n bins used

� Lower bound of 10n/6n = 5/3



Rob van Stee: Approximations- und Online-Algorithmen 10

Bounded space algorithms

� keep only a constant number of binsopenat any time

� gives a constant stream of output (closed bins)

� Idea: pack similar items together

� NF is bounded space, but FF, BF and WF are not
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TheHARMONIC algorithm

This algorithm classifies items into types according to their size

� Size∈ (1
2,1]: type 1, pack 1 per bin

� Size∈ (1
3,

1
2]: type 2, pack 2 per bin

� . . .

� Size∈ (1
k ,

1
k−1]: typek−1, packk−1 per bin

� Size∈ (0, 1
k ]: use Next Fit
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TheHARMONIC algorithm

� Items of typei are packedi per bin fori = 1, . . . ,k−1

� Items of typek are packed using Next Fit: use one bin until

next item does not fit, then start a new bin

� How do we analyze such an algorithm?

Notes:

� Items of different types are packed independently

� Size of an item isirrelevant, only its typematters

Of course this is not true for the optimal solution.
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Weighting functions

� Idea: give aweightto every type

� The weight represents theamount of bin spacethat this

type occupies

� For a given input, thetotal weightW is then the total

number of bins used

� OPT needs to pack this same amount of weight (W )

� OPT seeks to minimize the number of bins⇔ maximize

theweight per offline bin
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Weights for HARMONIC

� Items of typei are packedi per binfor i = 1, . . . ,k−1⇒

weight is 1/i

� Items of typek are packed usingNext Fit. When an item

does not fit in a bin, the bin is at leastk−1
k full (size of each

item≤
1
k ) ⇒ weight of item of sizex is k

k−1x

� For any input sequenceσ, the number of bins that

HARMONIC uses is at most the total weight of all the

items+k
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Weighting functions (ctd.)

� Denote the total weight of a given input byW

� HARMONIC uses at mostW + k bins

� Denote the optimal number of bins byb

� We have
HARMONIC(σ)

OPT(σ)
=

W + k
b

� Asymptotic performance ratio

= maximum weight per offline bin

� How much weight can there be in anoffline bin?
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A bin with maximal weight

� We are looking for a set of items such that

– their total size is at most 1

– their weight is maximized

� We should use “smallest possible” size for each type:

e.g. 1
2 + ε for type 1, forε → 0

� Consider theratio of weight to sizefor each type
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The ratio of weight to size

� For typei, this is(1
i )/(

1
i+1) = (i+1)/i for i = 1, . . . ,k−1

� For typek, this ratio is k
k−1 (item of sizex has weight k

k−1x)

� These ratios arestrictly decreasingfrom type 1 until typek

Ratios are 2,3/2,4/3, . . . ,k/(k−1),k/(k−1)

� We can find a maximum-weight set as follows:

– start with an item of type 1 (i.e. size12 + ε)

– repeatedly add thelargestitem which will fit
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A set of maximum weight

Type size weight

1 1/2 1

2 1/3 1/2

3 1/4 – (does not fit)

4 1/5 –

5 1/6 –

6 1/7 1/6

. . .

sum 1.691

type 1

1/2+eps

1/7+eps

1/3+eps

type 2
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Lower bound for bounded space algorithms

� We have found the bin with maximum weight

� We can turn this into alower bound for BS algorithms

� Each item in the bin occursn times (n → ∞)

� A bounded space algorithm must packalmost allitems in

bins that haveone typeof item – i.e., like HARMONIC!

� Thus, the number of bins needed for eachn-tuple isn times

theweightof this item

� Total amount of bins needed isn times total weight of input

� OPT can pack these items inn bins
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Weighting functions: summary

A weighting function can be used:

� to find an upper bound for a bin packing algorithm

� to find a lower bound forbounded spacealgorithms

Notes:

� Finding the right weighting function can be hard

� For some problems, we can give an optimal bounded space

algorithm, butwe do not know its performance ratio!
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A general lower bound

What aboutnon-bounded space algorithms?

The previous lower bound construction does not work!

We will show a lower bound of 3/2.
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A general lower bound

Consider the following input:

� n items of size1/7+ ε (small)

� n items of size1/3+ ε (medium-sized)

� n items of size1/2+ ε (large)

Depending on what the algorithm does, the input may already

end after the first or second phase.

The small items can be packed inn/6 bins.

ALG is better than 3/2-competitive? Then it uses at mostn/4

bins for these items
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General lower bound (2)

� We consider how ALG packs thesmall items

� It can use bins with 1,2, . . . ,6 small items

� It wants to leave space for future items

� E.g. no bin will have 5 small items. . .

� The small and medium items (1/3+ ε) together can be

packed inn/2 bins

� Each bin contains two small and two medium items

� ALG may not use more than3n/4 bins for these items
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General lower bound (3)

� Let a set of items oftotal size at most 1be aconfiguration

� We can determine bounds on how often ALG uses each

configuration

� E.g. it cannot use only bins with 1 small item in the first

phase (then it needsn bins for them and the input stops)

� This gives us a system of equations

� Working it out, we find that ALG cannot be better than

3/2-competitive
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Improving on Harmonic

� The upper bound for Harmonic is given by a bin with

maximum weight

� This weight is1+ 1
2 +

1
6 +

1
42+ · · ·= 1.691

� The highest contribution is from type 1, items in(1/2,1]

� A bin with an item of size 1/2+ ε is half empty

� We would like to avoid this situation and use the wasted

space for other items

� Idea:subdividethe interval(1/2,1] in two types
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RefinedHarmonic

� Use a parameter∆ ∈ (1/3,1/2)

� Define extra types:

0. size> 1−∆

1. size∈ (1/2,1−∆]

2. size∈ (∆,1/2]

3. size∈ (1/3,∆]

4. size∈ (1/4,1/3], etc.

� The idea is to combine type 3 with type 1

� However, we don’t know how many items of any type will

arrive

0 1
4 3

11 2 1− 1....
04 3 12

type 1 type 3
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Refined Harmonic (2)

� We need an additionalparameterα

� This parameter indicates whichfraction of the type 3 items

are placed alone in bins (red items)

� The remaining items are paired into bins (blue items)

� Whenever a type 3 item arrives, we determine its color by

considering the current ratio of red to blue items

(≥ α/≤ α)

� Red: place item in a bin with a type 1 item, or in a new bin

� Blue: place item in a bin with a blue item, or in a new bin
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Refined Harmonic (3)

� Whenever a type 1 item arrives, we check if a bin with a red

item is available

� If not, we pack it in a new bin (and keep it open for a

possible red item)

� If we pick α too large, no items of type 1 will arrive

� If we pick α too small, many items of type 1 arrive

� We need to find good values forα and∆

� How can we show an upper bound?
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Weighting functions for RH

� Idea: definetwo weighting functions

� Let

– x be the number of bins withreditems

– y be the number of type 1 items

– z be the number of bins with other items

� Refined Harmonic uses

max(x,y)+ z = max(x+ z,y+ z)

bins in total

� We define one weighting function for each argument
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Weighting functions for RH

� Suppose there are many type 1 items

� Then we can ignore thereditems

� If there areN type 3 items,αN of them are red

� The rest are packed 2 per bin

� There are(1−α)N blueitems each of weight 1/2

� There areαN reditems each of weight 0

� Average weightper item of type 3is (1−α)/2
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Weighting functions for RH

Type Interval W V

0 (1−∆,1] 1 1

1 (1/2,1−∆] 1 0

2 (∆,1/2] 1/2 1/2

3 (1/3,∆] (1−α)/2 (1+α)/2

3 (1/4,1/3] 1/3 1/3
...

18 (1/19,1/18] 1/18 1/18

19 (0,1/19] 19
18x 19

18x
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Upper bound for RH

� For bothweighting functions, we need to find a maximum

weight bin

� The overall maximum weight will be an upper bound for

RH

� We can chooseα and∆ such that the maximum is

minimized

� This gives an upper bound of 1.639

� With bounded space, better than 1.691 is impossible
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Current state of research

� Using a longer lower bound structure, it is possible to show

a lower bound of 1.5401 (van Vliet, 1992)

� Using a MUCH more complicated structure than RH, an

upper bound of 1.58889 can be shown (Seiden, 2001:

HARMONIC++)

� Improving either of these bounds is an open problem
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Randomization

� Does not help!

� The lower bounds work in phases

� In each phase, only one type of item arrives

� The algorithm distributes them in some way

� Deterministic: fractions (1/3 of the items is packed in this

way, . . . )

� Randomized: expectations (The expected fraction of items

packed in this way is 1/3,. . . )

� Final result is the same


