
Rob van Stee: Approximations- und Online-Algorithmen 1

The k-server problem 9 June 2010

� Problem definition

� Examples

� An offline algorithm

� A lower bound and the k-server conjecture

� Several online algorithms

Rob van Stee: Approximations- und Online-Algorithmen 2

Problem definition

� k > 1 servers

� M is a metric space with metric d

� Servers are located at points of M

� Request sequence σ consists of points of M

� A request is served by moving a server there

� Cost is total distance traveled by servers

� Goal: minimize the total cost

Rob van Stee: Approximations- und Online-Algorithmen 3

Examples (1)

� Paging

– Uniform space (all distances are 1)

– Servers are slots in the cache

– Fault (moving a server) costs 1

� Weighted paging

– As above, but cost of moving a page into the cache depends on

the page

– E.g. a distributed file system

– Asymmetric k-server problem

– This space is not metric!

Rob van Stee: Approximations- und Online-Algorithmen 4

Examples (2)

� k-headed disk

– A disk with multiple read/write heads

– Each head can access all locations on the disk

– Which head should be moved for a particular request?

– Possible performance measure: total distance moved by all

heads

Rob van Stee: Approximations- und Online-Algorithmen 5

The offline problem

� Can be solved using dynamic programming

� This is not the most efficient solution

� Better: reduce to mincost / maxflow problem

� We will construct a graph with maximum flow k

� Minimum cost for this flow will correspond to k-server solution

Rob van Stee: Approximations- und Online-Algorithmen 6

Construction of the graph

� Servers are s1, . . . , sk

� Request sequence is r1, . . . , rn

� Nodes are s, t, s1, . . . , sk, r1, r
′

1
, . . . , rn, r

′

n

� All arcs have capacity 1

� Costs depend on arcs

� We assume all servers start in the same point, the origin O

Rob van Stee: Approximations- und Online-Algorithmen 7

The graph for 3 servers and 2 requests

1r

r 1́

2r

0

−K

d

r 2́

s t

s1

s2

s3

Rob van Stee: Approximations- und Online-Algorithmen 8

The graph for 3 servers and 2 requests

1r

r 1́

2rd(O,r)1

d(O,r)1

0

−K

d

r 2́

d(O,r)2

d(O,r)2s t

s1

s2

s3

d(r ,r)1 2

Rob van Stee: Approximations- und Online-Algorithmen 9

The graph for 3 servers and 2 requests

1r

r 1́

2r

0

−K

d

r 2́

s t

s1

s2

s3

−K −K

Rob van Stee: Approximations- und Online-Algorithmen 10

The maximum flow

� Since all capacities are one, maxflow = k (consider the servers)

� Since all capacities are integer, we can find an integral min-cost

flow of value k in time O(kn2)

� This flow basically consists of k disjoint paths

� All edges (ri, r
′

i) will be used in a min-cost solution

� Each path corresponds to a server visiting the requests on its path

� This gives an optimal schedule for the servers

Rob van Stee: Approximations- und Online-Algorithmen 11

Lower bound

� We show a lower bound of k for an arbitrary online algorithm ALG

� We use an arbitrary space with k + 1 points

� We compare to k different other algorithms A1, . . . , Ak that the

adversary controls

� An algorithm is determined by the uncovered point (hole)

� Invariant: holes of ALG and k other algorithms cover the space

Rob van Stee: Approximations- und Online-Algorithmen 12

Cruel request sequence

� Before first request, each Ai moves one server to hole of ALG to

ensure invariant holds

� At each step, we request the hole of ALG

� Denote request by r, then ALG moves to r from, say, s

� Other algorithms: all have a server at r, exactly one (say Ai) has

no server at s

� Now, Ai moves from s to r

� The other k − 1 algorithms do nothing

Rob van Stee: Approximations- und Online-Algorithmen 13

Cruel request sequence

The stupidity of LaTeX continues to annoy me. I wish I didn’t have to

type this nonsense in order to get slides the right way up.

r

s

r

s

r

s

r

s

A 1 A2 Ai

ALG

Rob van Stee: Approximations- und Online-Algorithmen 14

Relative costs

� In each step j, ALG pays some cost cj

� Only one of the other algorithms A1, . . . , Ak pays cj

� Summing over all algorithms and the entire sequence, we get

k∑

i=1

Ai(σ) = ALG(σ) +

k∑

i=1

d(xi, x0)

� There must be one algorithm which has a cost of at most

ALG(σ)/k (plus an additive constant)

� This proves the lower bound

Rob van Stee: Approximations- und Online-Algorithmen 15

The k-server conjecture

Any metric space allows for a deterministic, k-competitive algorithm.

� The work function algorithm is (2k − 1)-competitive in any metric

space

� For certain metric spaces, k-competitive algorithms are known

Fundamental open question in online algorithms

Rob van Stee: Approximations- und Online-Algorithmen 16

The k-server conjecture

Any metric space allows for a deterministic, k-competitive algorithm.

Note: other generalizations of paging results fail!

� There is no k/(k − h+ 1)-competitive k-server algorithm for the

(h, k)-server problem

� Not every metric space allows a randomized Hk-competitive

algorithm

Rob van Stee: Approximations- und Online-Algorithmen 17

The greedy algorithm

Definition: serve each request by the closest server

Rob van Stee: Approximations- und Online-Algorithmen 18

The greedy algorithm

Definition: serve each request by the closest server

This algorithm is not competitive
a b c

Request sequence: c, b, a, b, a, b, a, . . .

Greedy leaves one server at c forever

The other one moves between a and b

OPT moves servers to a and b and has constant cost

Rob van Stee: Approximations- und Online-Algorithmen 19

k servers on the line

Algorithm Double Cover

Two cases: request is between two servers, or at one side

new request servers

move closest server

move 2 closest servers at equal speed

1

2

If two servers are at same point, choose one to move

Rob van Stee: Approximations- und Online-Algorithmen 20

Double Cover on first example
Request

a
a b c

b

c

a b c

a

b

a b c

a b c

b

a b c

Eventually, servers are at a and b and stop moving

Rob van Stee: Approximations- und Online-Algorithmen 21

Analysis of Double Cover

� We show that DC is k-competitive

� We use a potential function as in the List Update problem

� Let min be the cost of the minimum cost matching between the

servers of DC and OPT

� Let si be the ith server of DC

� Define sum =
∑

i<j d(si, sj)

� Potential function:

Φ = k ·min+ sum

Rob van Stee: Approximations- und Online-Algorithmen 22

The potential function

� Φ = k ·min+ sum, so it is bounded from below

� We show:

1. If OPT moves a distance d, Φ increases by at most kd

2. If DC moves a distance d, Φ decreases by at least d

� Since Φ ≥ 0 at all times, this shows DC is k-competitive

� Property 1 holds since

– sum is unchanged by move of adversary

– min cannot increase by more than d

Rob van Stee: Approximations- und Online-Algorithmen 23

Change of Φ when DC moves

DC moves only 1 server over a distance d:

� it moves away from all other servers

� sum increases by (k − 1)d

� there exists a minimum cost matching where this server is

matched to this request (one OPT server is there)

� Therefore, min decreases by at least d

Overall decrease of Φ is at least k · d− (k − 1)d = d

move closest server

1

Rob van Stee: Approximations- und Online-Algorithmen 24

Change of Φ when DC moves

DC moves two servers, s1 and s2, by a distance d:

� one of them is matched to the request in some minimum cost

matching

� min is decreased by at least d by this move

� other server moves at most d away from its match

� min does not increase overall

2
d

OPT servers

d

Rob van Stee: Approximations- und Online-Algorithmen 25

Change of Φ when DC moves

DC moves two servers, s1 and s2, by a distance d:

what is the change of sum?

� total distance from s1 and s2 to any other online server is

unchanged

� distance between s1 and s2 decreases by 2d

Overall decrease of sum (and therefore Φ) is at least 2d

2
d

OPT servers

d

Rob van Stee: Approximations- und Online-Algorithmen 26

k servers on trees

� Algorithm Double Cover can be extended for trees

� It still has a competitive ratio of k

� Definition of DC-TREE:

At all times, all the servers neighboring the request are moving in a

constant speed towards the request

� On a line, DC-TREE is identical to DC
new request servers

move closest server

move 2 closest servers at equal speed

1

2

Rob van Stee: Approximations- und Online-Algorithmen 27

DC-TREE

� DC-TREE may move all k servers simultaneously and this text is

here so that it fits with the next slide

r

Rob van Stee: Approximations- und Online-Algorithmen 28

DC-TREE

� While moving towards a request, some servers may get “cut off”

and stop moving

r

Rob van Stee: Approximations- und Online-Algorithmen 29

Upper bound for DC-TREE

� We use the same potential function Φ = k ·min+ sum

� A move by OPT still increases Φ by at most kd

� We break the action of DC-TREE to serve a single request into

phases

� In each phase, the subset of servers that moves is fixed

� Need to show: Φ decreases at least by total distance traveled by

DC-TREE

� We consider separately the change of min and sum in a phase

Rob van Stee: Approximations- und Online-Algorithmen 30

The change of min

� Denote the number of neighbours in a phase by m

� One of these is matched to the request in a minimum cost

matching

� Moving that server by d decreases min by d

� Moving the m− 1 other servers by d increases min by at most

(m− 1)d

� min increases by at most (m− 2)d

Rob van Stee: Approximations- und Online-Algorithmen 31

The change of sum: non-moving servers

� Consider a server s which is not

moving (no neighbour of the re-

quest)

� Exactly one server is moving away

from s, m − 1 others are moving

towards s

� Change in sum caused by this ser-

ver is (m− 2)d

r

s

Rob van Stee: Approximations- und Online-Algorithmen 32

The change of sum: non-moving servers

� We need to sum over the k −m non-moving servers

� sum decreases by

(k −m)(m− 2)d

Rob van Stee: Approximations- und Online-Algorithmen 33

The change of sum: moving servers

� Each pair of moving servers gets closer together by 2d

� Summing over m(m− 1)/2 pairs, this gives a decrease in sum

of

dm(m− 1)

Rob van Stee: Approximations- und Online-Algorithmen 34

The change of Φ

� min increases by at most (m− 2)d

� Due to non-moving servers, sum decreases by

(k −m)(m− 2)d

� Due to moving servers, sum decreases by

dm(m− 1)

� In total, Φ = k ·min+ sum decreases by at least

(k −m)(m− 2)d+ dm(m− 1)−k(m− 2)d = dm

� This is exactly the total distance that DC-TREE moves

Rob van Stee: Approximations- und Online-Algorithmen 35

Application: arbitrary graph G

� take a spanning tree T , apply DC-TREE on it

� Let n be the number of nodes of G

� An edge of length d in G has a detour on T of length at most

(n− 1)d

� Thus

OPT-TREE(σ) ≤ (n− 1)OPT(σ)

� Since DC-TREE is k-competitive on trees, we have

DC-TREE(σ) ≤ k · OPT-TREE(σ)

� We have a (n− 1)k-competitive algorithm

Rob van Stee: Approximations- und Online-Algorithmen 36

Application: paging

� Suppose there are N slow memory pages

� Create a star graph with N edges of length 1/2

� The central node is labeled v

� The other nodes are the “page nodes”

Rob van Stee: Approximations- und Online-Algorithmen 37

DC-TREE for paging (1)

� Servers start on k page nodes

� On first request, all servers move to v

� One server continues to requested page

� On subsequent requests, other servers move away from v

� Once all servers have left, next request causes all servers to return

to v

� One server continues to request, etc.

Rob van Stee: Approximations- und Online-Algorithmen 38

DC-TREE for paging (2)

� This algorithm is equivalent to FLUSH-WHEN-FULL

� Moving to v is equivalent to clearing the cache

� This gives an alternative proof that FWF is k-competitive

Rob van Stee: Approximations- und Online-Algorithmen 39

Euclidean spaces

� DC is k-competitive for the line

� This is the one-dimensional Euclidean space

� Can we extend this to the higher dimensions?

� Even for the plane, no efficient algorithm with good competitive

ratio is known

� Efficient = computational cost per request does not depend on

length of input sequence

Rob van Stee: Approximations- und Online-Algorithmen 40

The Work Function Algorithm

� Tries to mimic OPT

� Keeps track of optimal offline cost so far

� Tries to have a configuration similar to OPT

� Is (2k − 1)-competitive for any metric space

Rob van Stee: Approximations- und Online-Algorithmen 41

Attempt 1

� For each request, calculate an optimal way to serve the entire input

seen so far

� Move all the servers so that they are at the locations of the optimal

servers

Problems with this approach:

� Optimal configuration may change a lot from one step to the next

� Very expensive to keep chasing OPT with all the servers

Better idea: move just one server, try to get close to optimal

configuration, don’t travel too far

Rob van Stee: Approximations- und Online-Algorithmen 42

Work functions

� Configuration = set of locations of servers

� This is a multiset (two servers may be at same location)

� For a configuration C and input sequence σ, the work function

wσ(C) is the minimum cost to reach C while serving σ (from the

starting configuration)

� Suppose sequence so far is σ, new request is r

� How do we compute wσr(C), given wσ(C)?

Rob van Stee: Approximations- und Online-Algorithmen 43

Calculation of work function

� If r ∈ C , then wσr(C) = wσ(C)

� Otherwise, we need to move one server from some other

configuration B

� The difference between B and C is one point (server)

� We need to minimize the cost to get to B while serving σ, and

then move to r

� Thus,

wσr(C) = min
x∈C

(wσ(C − x+ r) + d(x, r))

Rob van Stee: Approximations- und Online-Algorithmen 44

Definition of WFA

� Let C be the current configuration

� Let r be the new request

� We serve r with server s ∈ C which satisfies

s = argmin
x∈C

(w(C − x+ r) + d(x, r))

Notes:

� Minimizing only d(x, r) is what the greedy algorithm does

� Minimizing w(C − x+ r) mimics OPT so far (retrospective

greedy)

Rob van Stee: Approximations- und Online-Algorithmen 45

Idea behind WFA

� From C , we can move to k different configurations to serve r (we

can move any of k servers)

� We move to the “best” one that is not too far away

� In effect, the algorithm is trying to find the optimal servers, without

paying too much

� We do not use any properties of the metric space

� To apply this algorithm, we need to store the work function for all

relevant configurations (with points where requests already

occurred or where the servers started)→very inefficient

Rob van Stee: Approximations- und Online-Algorithmen 46

Performance of WFA

� WFA is (2k − 1)-competitive

� The proof uses a (complicated) potential function

� For some special metric spaces, WFA is known to be k-competitive

� E.g., the line, any metric space with at most k + 2 points

� The popular conjecture is that WFA is k-competitive in any metric

space

