I The Knapsack Problem A\‘("

15
20 W

= Il

a n items with weight w; € N and profit p; € N
a Choose a subset x of items

m Capacity constraint > ;. w; <W
wlog assume >, w; > W, Vi:w; <W
m Maximize profit) ;. p;

u]
]
I
w
it

— 28. April 2010 1/44

I Optimization problem A\‘("

m Set of instances |

a Function F that gives for all w € | the set of feasible
solutions F (w)

m Goal function g that gives for each s € F(w) the value g(s)

Optimization goal: Given input w, maximize or minimize the
value g(s) among all s € F(w)

— 28. April 2010 2/44

Optimization problem A\‘("

m Set of instances |

a Function F that gives for all w € | the set of feasible
solutions F (w)

m Goal function g that gives for each s € F(w) the value g(s)
Optimization goal: Given input w, maximize or minimize the

value g(s) among all s € F(w)
Decision problem: Givenw € | and k € N, decide whether

a OPT (w) < k (minimization)

a OPT(w) > k (maximization)
where OPT (w) is the optimal function value among alll
s € F(w).

28. April 2010 2/44

I Quality of approximation algorithms AIT

Recall: An approximation algorithm A producing a solution of
value A(w) on a given input w € | has approximation ratio r iff

A(w)
—— <
OPT (W) <r Vwel
(for maximization problems) or
OPT (w)
A(w)

(for minimization problems)
How good your approximation algorithm is depends on the
value of r and its running time.

<r VYwel

— 28. April 2010 3/44

I Negative result AT

We cannot find a result with bounded difference to the optimal
solution in polynomial time.

Interestingly, the problem remains NP-hard if all items have the
same weight to size ratio!

— 28. April 2010 4/44

Reminder?: Linear Programming &‘("

A linear program with n variables and m constraints is specified
by the following minimization problem

m Cost function f(x) = ¢ - x
c is called the cost vector

m m constraints of the form a; - x o< b; where e {<, >, =},
a; € R" We have

L‘,:{XERnSVISiﬁmZXi20/\ai~Xl><]ibi} .

Let a; denote the j-th component of vector a;.

u]
]
I
w
it
<
A

28. April 2010 5/44

Reminder?: Linear Programming &‘("

A linear program with n variables and m constraints is specified
by the following minimization problem

m Cost function f(x) = ¢ - x
c is called the cost vector

m m constraints of the form a; - x o< b; where e {<, >, =},
a; € R" We have

L‘,:{XERnSVISiﬁmZXi20/\ai~Xl><]ibi} .

Let a; denote the j-th component of vector a;.

u]
]
I
w
it
<
A

28. April 2010 6/44

I Complexity

Theorem
A linear program can be solved in polynomial time.

a Worst case bounds are rather high
a The algorithm used in practice (simplex algorithm) might
take exponential worst case time

m Reuse is not only possible but almost necessary

DA
28. April 2010

7144

I Integer Linear Programming A\‘("

ILP: Integer Linear Program, A linear program with the
additional constraint that all the x; € Z

Linear Relaxation: Remove the integrality constraints from an
ILP

— 28. April 2010 8/44

I Example: The Knapsack Problem AIT

maximize p - X

subject to
w-X<W,x €{0,1}forl<i<n.

xj = 1 iff itemi is put into the knapsack.
0/1 variables are typical for ILPs

— 28. April 2010 9/44

Linear relaxation for the knapsack R
p r O b | e m Karlstuhe Insttute of Technology

maximize p - X

subject to
W-X<W, 0<x<l1lforl<i<n.

We allow items to be picked “fractionally”
X3 = 1/3 means that 1/3 of item 1 is put into the knapsack
This makes the problem much easier. How would you solve it?

28. April 2010 10/44

I The Knapsack Problem A\‘("

15
20 W

= Il

a n items with weight w; € N and profit p; € N
a Choose a subset x of items

m Capacity constraint > ;. w; <W
wlog assume >, w; > W, Vi:w; <W
m Maximize profit) ;. p;

u]
]
I
w
it

— 28. April 2010 11/44

I How to Cope with ILPs A\‘("

— Solving ILPs is NP-hard

Powerful modeling language

There are generic methods that sometimes work well
Many ways to get approximate solutions.

The solution of the integer relaxation helps. For example
sometimes we can simply round.

— 28. April 2010 12/44

Linear Time Algorithm for A
Linear Relaxation of Knapsack A(IT

Classify elements by profit denS|ty mto B, {k}, S such that
Pi o IO > Pi

W; Wy WJ

> ow <Wbutw + > wi>W

VieB,jeS: , and,

ieB icB B 10
N 15 ||
1 ifi eB .
Sety = ¢ Moxee™ it =k
0 ifieS
SqI 20

28. April 2010 13/44

1

ifi €B
Xi = WiZiEBWi

Wi

ifi =k
0 ifieS
X is the optimal solution of the linear relaxation.
Let x* denote the optimal solution
® w - x* =W otherwise increase some x;

10
B9 15

28. April 2010

14/44

1

ifieB
W*Ei W e -
T ifi =k
0
Lemma

X =

ifieS

Proof.

| T

X is the optimal solution of the linear relaxation.

Let x* denote the optimal solution

@ W - Xx* =W otherwise increase some x;
m Vi € B : x" = 1 otherwise

10
B4 15

increase x;* and decrease some X forj € {k}k

28. April 2010

14/44

1

ifi B
w EIEBW|

o ifi =k
0
Lemma

X =

ifiecS

Proof

I
| T

X is the optimal solution of the linear relaxation

% * i
*
|
T %

Let x* denote the optimal solution

® w - x* =W otherwise increase some x;
mvVieB:x

= 1 otherwise

increase x;* and decrease some X forj € {k}
aVvjeS: xJ

10
B4l 15

= 0 otherwise
decrease xJ and increase Xx;

28. April 2010

14/44

1 ifieB
X = Mol if =
0 ifi €S
Lemma

X is the optimal solution of the linear relaxation.

Proof

Let x* denote the optimal solution

® w - x* =W otherwise increase some x; 10
m Vi € B:x" = 1 otherwise B 15
W
increase X" and decrease some x forj e {k}
m Vj € S:x" =0 otherwise
decrease x* and increase x,

j
. WS :
m This only leaves x, = %

it D

28. April 2010 14/44

DA

1
Xj = W_%ieBWi

0

ifieS

opt< > xip; < 20pt

ifieB
ifi =k

Proof.

We have), gz pi < opt Furthermore,
since wy < W, px < opt We get

10
BUL5 || w
opt<) " xipi <) pi+ P k
i i€B
< —
< opt+ opt 20ptS 20

it D

28. April 2010 15/44

I Two-approximation of Knapsack &‘("

1 ifieB
X = § St =k 10
0 ifics B\ 15 ||w
Exercise: Prove that either B or {k} is a K
2-approximation of the (nonrelaxed)
knapsack problem. S 20

28. April 2010 16/44

Dynamic Programming
— Building it Piece By Piece

Principle of Optimality
a An optimal solution can be viewed as constructed of

optimal solutions for subproblems

m Solutions with the same objective values are
interchangeable

Example: Shortest Paths
m Any subpath of a shortest path is a shortest path

m Shortest subpaths are interchangeable

S

PR\

u

S

\'

Yt

28. April 2010

17/44

Dynamic Programming by Capacity
for the Knapsack Problem

Define

P(i,C) = optimal profit from items 1,...,i using capacity < C.
Vi<i<n:P(i,C)=max(P(i—1,C),
P(i—1,C—w)+p)

Of course this only holds for C large enough: we must have
C>w;.

DA
28. April 2010

18/44

V1<i<n:P(i,C)=max(P(i —1,C),P(i —1,C —w;) +pj)

Proof.

To prove: P(i,C) < max(P(i —1,C),P(i —1,C —w;) + p;)
Assume the contrary =

-x that is optimal for the subproblem such that

Pi—-1,C)<p-x A Pi—-1,C—w)+p <p-X

Case x; = 0: x is also feasible for P(i — 1, C). Hence,
P(i —1,C) > p - x. Contradiction

Case x; = 1: Setting x; = 0 we get a feasible solution x’ for
P(i —1,C — w;) with profitp - x’ = p - x — p;. Add
Pi...

it D

DA

28. April 2010 19/44

Computing P(i, C) bottom up:

Procedure knapsack(p, ¢, n, W)
array P[0...W]=[0,...,0]

bitarray decision[1...n,0...W] =[(0,...,0),...,(0,...

fori:=1tondo
linvariant:vC € {1,...,W}: P[C] =P(i — 1,C)
for C := W downto w; do
if P[C —w;] + p; > P[C] then
PIC] := P[C —wi] + p;
decision[i,C] := 1

28. April 2010

,0)]

20/44

I Recovering a Solution A\‘("

C=wW
array X[1...n]
for i := ndownto 1do
x[i] := decisionli, C]
if x[i] = 1then C :=C — w;
endfor
return x

Analysis:
Time: O(nW) pseudo-polynomial
Space: W + O(n) words plus Wn bits.

- 28. April 2010 21/44

I Example: A Knapsack Instance AIT

maximize (10, 20, 15, 20) - x
subjectto (1,3,2,4)-x <5

w
N
(61

i\C|0 1 2
0 0 0 0

o
o

A WNPEFE O~

28. April 2010 22/44

I Example: A Knapsack Instance AIT

maximize (10, 20, 15, 20) - x
subjectto (1,3,2,4)-x <5
Entries in table are P (i, C), (decisiorji, C])

i\C |0 1 2 3 4 5
0 0 0 0 0 0 0

1 10, (1)
2

3

4

We check each time whether P[C — w;] + p; > P[C]

28. April 2010 23/44

I Example: A Knapsack Instance AIT

maximize (10, 20, 15, 20) - x
subjectto (1,3,2,4)-x <5

Entries in table are P (i, C), (decisiorji, C])
i\C |0 1 2 3 4 5
0 0 0 0 0 0
0, (0) | 10, (1) | 10, (1) | 10, (1) | 10,(1) | 10, (1)

A WNPEFO

We check each time whether P[C — w;] + p; > P[C]

28. April 2010 24/44

I Example: A Knapsack Instance AT
maximize (10, 20, 15, 20) - x
subjectto (1,3,2,4)-x <5
Entries in table are P (i, C), (decisiorji, C])
i\C |0 1 2 3 4 5
0 0 0 0 0 0 0
1 0,(0) | 10, (1) | 10,(2) | 10,(1) | 10, (1) | 10, (1)
2 0, (0) | 10, (0) | 10, (0) | 20, (1) | 30, (1) | 30, (1)
3
4

We check each time whether P[C — w;] + p; > P[C]

28. April 2010

25/44

I Example: A Knapsack Instance AT
maximize (10, 20, 15, 20) - x
subjectto (1,3,2,4)-x <5
Entries in table are P (i, C), (decisiorji, C])
i\C |0 1 2 3 4 5
0 0 0 0 0 0 0
1 0, (0) | 10, (1) | 10, (1) | 10, (1) | 10, (1) | 10, (1)
2 0, (0) | 10, (0) | 10, (0) | 20, (1) | 30, (1) | 30, (1)
3 0,(0) | 10,(0) | 15,(1) | 25,(1) | 30, (0) | 35, (1)
4

We check each time whether P[C — w;] + p; > P[C]

28. April 2010

26/44

I Example: A Knapsack Instance AT
maximize (10, 20, 15, 20) - x
subjectto (1,3,2,4)-x <5
Entries in table are P (i, C), (decisiorji, C])
i\C |0 1 2 3 4 5
0 0 0 0 0 0 0
1 0,(0) | 10, (1) | 10, (1) | 10, (1) | 10, (1) | 10, (1)
2 0, (0) | 10, (0) | 10, (0) | 20, (1) | 30, (1) | 30, (1)
3 0, (0) | 10, (0) | 15, (1) | 25, (1) | 30, (0) | 35, (1)
4 0, (0) | 10, (0) | 15, (0) | 25, (0) | 30, (0) | 35, (0)

We check each time whether P[C — w;] + p; > P[C]

28. April 2010

27/44

Dynamic Programming by Profit
for the Knapsack Problem

AIT
De_fine

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

C(i,P) = smallest capacity from items 1,...,i giving profit > P.
V1<i<n:C(i,P)=min(C(i — 1,P),

C(i—1,P—p)+w)

DA
28. April 2010

28/44

I Dynamic Programming by Profit AIT

Let P:= |p - x*| where x* is the optimal solution of the linear
relaxation.
Thus P is the value (profit) of this solution.

Time: O(nﬁ) pseudo-polynomial
Space: P + O(n) words plus Pn bits.

- 28. April 2010 29/44

I A Faster Algorithm A\‘("

Dynamic programs are only pseudo-polynomial-time

A polynomial-time solution is not possible (unless P=NP...),
because this problem is NP-hard

However, it would be possible if the numbers in the input were
small (i.e. polynomial in n)

To get a good approximation in polynomial time, we are going
to ignore the least significant bits in the input

28. April 2010 30/44

Fully Polynomial Time Approximation QAT
Scheme

Algorithm A is a
(Fully) Polynomial Time Approximation Scheme
or minimization
maximization
Input: Instance I, error parameter
<, 1+e
)
Time: Polynomial in [l (and 1/¢)

problem 11 if:

Output Quality: f(x) opt

28. April 2010 31/44

I Example Bounds

PTAS FPTAS
n 4 21/¢ n? 4 =
e
log 1 1
n°9: n+ —
1 + 64
n: n/e
r]42/53

28. April 2010

32/44

Problem classes A\‘("

We can classify problems according to the approximation ratios
which they allow.

m APX: constant approximation ratio achievable in time
polynomial in n (Metric TSP, Vertex Cover)

@ PTAS: 1 + ¢ achievable in time polynomial in n for any
¢ > 0 (Euclidean TSP)

m FPTAS: 1+ achievable in time polynomial in n and 1/¢ for
any > 0 (Knapsack)

28. April 2010 33/44

I FPTAS — optimal solution A\‘("

By choosing e small enough, you can guarantee that the
solution you find is in fact optimal. The running time will depend
on the size of the optimal solution, and will thus again not be
strictly polynomial-time (for all inputs).

28. April 2010 34/44

I FPTAS for Knapsack

Recall that p; € N for all i!

P:= max; p;

K:= %

o=]

x’:= dynamicProgrammingByProfit(p’, c, C)
output x’

/[maximum profit

/I scaling factor
/I scale profits

28. April 2010 35/44

I FPTAS for Knapsack g\(IT

16
20 W

Recall that p; € N for all i! 7] -

P:= max; pj /[maximum profit
K:= % /I scaling factor
pi= | I scale profits
x’:= dynamicProgrammingByProfit(p’, c, C)

output x’

Example:

e=1/3n=4P=20—-K =5/3

28. April 2010 36/44

Lemma

p-x">(1-¢)opt

Consider the optimal solution x*.

oo = (k2]

iex*

<> (p-K (% —1)) = [x*|K < nK,

iex*

i.e,, Kp’-x*>p-x*—nK.

DA

28. April 2010 37/44

Lemma

p-x">(1-¢)opt

Consider the optimal solution x*.

oo = 5 2

iex*

<> (p-K (% —1)) = [x*|K < nK,

iex*
i.e.,, Kp’-x* > p - x* — nK. Furthermore,
I ox* < Loyl — &< &:‘/'
Kp'-x* <Kp'-x %;K[KJ_%;KK p-X

We use that x’ is an optimal solution for the modified problem.

DA

28. April 2010 37/44

Lemma

p-x">(1-¢)opt

Consider the optimal solution x*.

p-x*—Kp’ - x* <Z:<pI (——1)):]x*\K§nK,
iex*
i.e., Kp’-x* > p - x* —nK. Furthermore,
Kp'-x*<Kp'- X—ZK[J ZKp'— X',

iex’ iex’

Hence,

p-x >Kp'-x*>p-x*—nK =opt—eP > (1 — ¢)opt

DA

28. April 2010 38/44

Lemma

Running time O(n?/¢).

Proof.

The running time of dynamic programming dominates.
Recall that this is o(nﬁf) where P’ = [p’ - x*].

We have

5 P Pn 3
nP’ <n - (n-maxp;) = n? {EJ =n? L_PJ < n?

28. April 2010 39/44

I A Faster FPTAS for Knapsack AIT

Simplifying assumptions:
1/e € N: Otherwise e:=1/[1/¢].
Upper bound P is known: Use linear relaxation to get a quick
2-approximation.

min; pj > eP: Treat small profits separately. For these items
greedy works well. (Costs a factor O(log(1/¢))
time.)

— 28. April 2010 40/44

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

pl:= L%J Ihple{iM}
value of optimal solution was at most P, is now M

Define buckets Cj:= {i e 1.n:p/ =j}

keep only the [JMJ lightest (smallest) items from each C;

do dynamic programming on the remaining items

Lemma
px’ > (1 — ¢)opt

Similar as before, note that |x| < 1/e for any solution.

(=1 =

28. April 2010 41/44

Lemma

Running time O(n + Poly(1/¢)).
preprocessing time: O(n)
values: M = 1/¢?

M M
pieces: 3 {MJ M3 Lominm :(,)(Iog(l/e))
i=1/e J i:1/eJ

7
time dynamic programming: (9('092#)

28. April 2010

42/44

| The Best known FPTAS AT

[Kellerer, Pferschy 04]

log® 2
O(min{nloglJr 0935,...}>
9 3

m Less buckets C; (nonuniform)

m Sophisticated dynamic programming

- 28. April 2010 43/44

Optimal Algorithm for the Knapsack QAT
P ro b I em it et S achcioy

The best work in near linear time for almost all inputs! Both in a
probabilistic and in a practical sense.

[Beier, Vocking, An Experimental Study of Random Knapsack
Problems, European Symposium on Algorithms, 2004.]

[Kellerer, Pferschy, Pisinger, Knapsack Problems, Springer
2004.]

Main additional tricks:

m reduce to core items with good profit density,
m Horowitz-Sahni decomposition for dynamic programming

28. April 2010 44/44

