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Thek-center problem February 14, 2007

[1 Input is set of cities with intercity distances
(G=(V,V xV))

[1 Selectk cities to place warehouses
[1 Goal: minimizemaximum distancef a city to a warehouse

Other application: placement of ATMs in a city
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Results

[1 NP-hardness

[1 Greedy algorithm, approximation ratio 2

[1 Technigue: parametric pruning

[1 Second algorithm with approximation ratio 2

[1 Generalization of Algorithm 2 to weighted problem
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Theorem 1. It isNP-hard to approximate the general
Kk-center problem within any factor a.

Proof. Reduction from Dominating Set ... []
Dominating set = subs&of vertices such that every vertex
which isnot in Sis adjacento a vertexn S

Finding a dominant set of minimal size is NP-hard

For a graphG, dom(G) is the size of the smallest possible
dominating set

Dominating set is similar to but not the same as vertex cover!
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Dominating set and vertex cover

Vertex cover = subset of vertices such that evesdgehas at
least one endpoint i8

O— @

A

The black vertices form a dominating set but not a vertex cove

Also, not every vertex cover is a dominating 3.
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Proof We want to find a Dominating Set @ = (V,E).

ConsiderG’' = (V,V x V) and the weight function

d(u,v) =«

y

\

1 if(uv)eE

20 €lse

L)
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Proof We want to find a Dominating Set @ = (V,E).
ConsiderG' = (V,V x V) and the weight function

y

1 if(uv)eE

d(u,v) = «
20 €lse

\
Supposés has a dominating set of siz¢ mosik.

Then there is &-center of cost 1 i’
— ana-approx. algorithm delivers one witheight < a
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Proof We want to find a Dominating Set @ = (V,E).
ConsiderG' = (V,V x V) and the weight function

y

1 if (uv)€eE

d(u,v) = «
20 €lse

\
Supposés has a dominating set of siz¢ mosik.

Then there is &-center of cost 1 i’
— ana-approx. algorithm delivers one witheight < a

If there iIsno such dominating sat G, everyk-center has
weight> 2a > a.
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Proof (continued)

Assume that there exists anapproximation algorithnfior the
k-center problem

Decision algorithm: Ruim-approx algorithm or’

Solution has weigh a — dominating seof size at mosk
exists

Else there is no such dominating set. []
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Metric k-center

G is undirectecand obeys thé&iangle inequality
vu,vyw eV :d(u,w) < d(u,v)+d(v,w)

We show two2-approximation algorithmfor this problem.
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The Greedy algorithm

[1 Choose the first center arbitrarily

Dlo

[1 At every step, choose the vertex that is furthest from the

current centers to become a center

[1 Continue untilk centers are chosen

O 0
O 0
O
o C o
O 1

®> O
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Analysis

[1 The sequence of distances from a new chosen center to the
closest center to it (among previously chosen centers) is
non-increasing

[1 Consider the point that is furthest from the k chosen centers

[1 We need to show that the distance from this point to the
closest center is at most QPT

[1 Assume by negation thatitis 2- OPT
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Analysis

[1 We assumed that the distance from the furthest point to all
centersis> 2-OPT

[1 This means that distancestweerall centers are also
> 2-0OPT

[1 We havek+ 1 pointswith distances> 2- OPT between
every pair
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Analysis

[1 For each point in the input, a center of thigtimal solution
within distance< OPT must exist

[1 There exists a pair of points with the same center X in the

optimal solution (pigeonhole principl&:optimal centers,
K+ 1 points)

[1 The distance between them is at mosOPT (triangle
iInequality)

[1 Contradiction!
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Technigue: parametric pruning

ldea: removaerrelevantparts of the input
[1 Suppose OPEt
[1 We want to show a 2-approximation

[1 Any edges of costore than Rare useless: if two vertices
are connected by such an edge, and one of them gets a
warehouse, the other one is still too far away

[1 We canremove edges that are too expensive

Of course, we do not know OPT. But we camess.
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Technigue: parametric pruning

[ We can order the edges by cost: ¢es)t < ... < cos{en)
O LetG; = (V,E) whereE; = {ey,....q)

[1 Thek-center problem is equivalent to finding thenimal i
such that
G; has adominating seof sizek
(we only need to cover all the points, not all the edges!)

(1 Leti1* be this minimal

[J Then, OPT = co%g+)
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Graph squaring

For a graptG, thesquareG? = (V,E’) where(u,v) € E’ if there
IS a path of lengtlat most Zbetweeru andv in G (andu # V)

O— @ O— @



Rob van Stee: Approximations- und Online-Algorithmen D 17

Lemma 2. For any independent set | in G?, we have
1| < dom(G).

Proof. Let D be a minimum dominating set (8.

(The size oD is dom(G).)
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Lemma 2. For any independent set | in G?, we have
1| < dom(G).

Proof. Let D be a minimum dominating set (8.
ThenG containgD| starsspanning all vertices (the nodes[of
are the centers of the stars).
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Lemma 2. For any independent set | in G?, we have
1| < dom(G).

Proof. Let D be a minimum dominating set (8.
ThenG containgD| starsspanning all vertices (the nodes[of

are the centers of the stars).
A star inG becomes a clique i6?; every two endpoints of the

star become connected
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Lemma 2. For any independent set | in G?, we have
1| < dom(G).

Proof. Let D be a minimum dominating set (8.

ThenG containgD| starsspanning all vertices (the nodes[of
are the centers of the stars).

A star inG becomes a clique i62.

SoG? containgD| = dom(G) cliquesspanning all vertices.
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Lemma 2. For any independent set | in G?, we have
1| < dom(G).

Proof. Let D be a minimum dominating set (8.

ThenG containgD| starsspanning all vertices (the nodes[of
are the centers of the stars).

A star inG becomes a clique i62.

SoG? containgD| = dom(G) cliquesspanning all vertices.
There can only bene vertex of each cliqua |. []
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Algorithm

We use thamaximal independent sets can be found in
polynomial time.

] ConstructG?,Gs, ..., G2,
[J Find amaximal independent sM; in each graplG?
[1 Determine thesmallesi such thatM;| <Kk, call it j

L] ReturnM;.
Lemma 3. For this |, cost(ej) < OPT.
Lemma 4. Thisalgorithm gives a 2-approximation.
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Lemma 3. For this |, cost(ej) < OPT.
Proof. For everyi < |...

(I [M;| > k by the definition of our algorithm

[J dom(G;j) > |M;| > kby Lemma 2

[1 Theni* >1 (1" is minimali such thaiG; has a dominating
set of siz&k)

Sincei* > i foralli < j, we findi* > |. []
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Lemma 4. Thisalgorithm gives a 2-approximation.

Proof.

[1 Any maximal independerget! in GJ2 IS also adominating
set (if some vertex were not dominated,Uv were also
iIndependent)
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Lemma 4. Thisalgorithm gives a 2-approximation.

Proof.

[1 Any maximal independerget! in GJ2 IS also adominating

set (if some vertex were not dominated,Uv were also
iIndependent)

L] In GJZ, we have/M;| stars centered on the verticesvh
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Lemma 4. Thisalgorithm gives a 2-approximation.

Proof.

[1 Any maximal independerget! in GJ2 IS also adominating

set (if some vertex were not dominated,Uv were also
iIndependent)

L] In GJZ, we have/M;| stars centered on the verticesvh

[1 These starsover all the vertices
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Lemma 4. Thisalgorithm gives a 2-approximation.

Proof.

[1 Any maximal independerget! in GJ2 IS also adominating

set (if some vertex were not dominated,Uv were also
iIndependent)

L] In GJZ, we have/M;| stars centered on the verticesvh

[1 These starsover all the vertices

[1 Each edge used in constructing these stafsjzihas cost at
most 2. cos{ej) < 2-OPT

The last inequality follows from Lemma 3. []
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Lemmab5. If P £ NP, no approximation algorithm gives
(2 — €)-approximation for any € > 0.

[1 We again use a reduction from Dominating Set
[1 This time, the graph must satisfy the triangle inequality
[0 We defineG’ as follows:

1 if (uv)eE

) = 2 €ese

This graph satisfies the triangle inequality (proof?)
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Supposés has a dominating set of siz¢ mostk.
Then there is &-center of cost 1 i’
— a(2—¢)-approx. algorithm delivers one witheight < 2

If there isno such dominating sa&t G, everyk-center has
weight> 2 > 2 —¢.

Thus, a(2 — €)-approximation algorithm for thie-center
problem can be used to determine whether or not there is a
dominating sebf sizek.

This is an NP-hard problem.
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Welghted k-center problem
[1 Input is set of cities with intercity distances
(G=(V,V xV))
[1 Each city has aost
[1 Select cities ofost at most W to place warehouses

[1 Goal: minimizemaximum distancef a city to a warehouse
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ldeas

[1 We use the same grapfs,...,Gny as before

[1 Let wdom(G) be the weight of aninimum weight
dominating set IrG

[J We look for the smallest indeixsuch that wdontG;) <W

[1 We also use graph squaring again
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The set of light neighbors

] Let| be an independent set G
[1 For any noday, let s(u) be thelightestneighbor ofu
[1 Here, we also considerto be a neighbor of itself
O Let§ ={s(u)luel}

We claimw(S) < wdom(G)

(Compare the unweighted problem, where we had

1] < dom(G))
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Lemma 6. w(§) < wdom(G)

Proof. Let D be a minimumweightdominating set IrG.
ThenG contains|D| starsspanning all vertices (the nodes[of
are the centers of the stars).

A star inG becomes a clique iG°.

SoG? containg/D| cliguesspanning all vertices.

There can only bene vertex of each clique |.

For each vertex i, the center of the corresponding star is
avalilable as a neighbor @ (this might not be the lightest
neighbor).

Thereforew(S) < w(D) = wdom(G). ]
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Algorithm for weighted k-center

Let s (u) denote a lightest neighbor afin G;.
[J ConstructGs,..., Gz
[J Compute anaximal independent sif; in each graptG?
0 ComputeS = {s(u)|lue M;}
(1 Find theminimum indexi such thawv(§) <W, say|
[ ReturnS;
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Lemma 7. Thisalgorithm achieves a 3-approximation.

[J As before we have OPZ® cos(e;)
For everyi < |...
0 w(S) > W by the definition of our algorithm
0 wdom(G;) >W by Lemma 6
L Theni® > |

Thereforej* > .
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Lemma 7. Thisalgorithm achieves a 3-approximation.

[J As before we have OPZ® costej)
1 M is a dominating set i

It is a maximal independent set
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Lemma 7. Thisalgorithm achieves a 3-approximation.

[J As before we have OPZ® costej)
1 M is a dominating set i

[J We can coveW with stars ofGJ2 centered in vertices oV ;
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Lemma 7. Thisalgorithm achieves a 3-approximation.

[J As before we have OPZ® cos(e;)
] Mj is a dominating set i
[J We can coveW with stars ofGJ2 centered in vertices oV ;

[] These stars as before use edges of cost at masiste;)
(triangle inequality)
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Lemma 7. Thisalgorithm achieves a 3-approximation.

[J As before we have OPZ® cos(e;)
] Mj is a dominating set i
[J We can coveW with stars ofGJ2 centered in vertices oV ;

[] These stars as before use edges of cost at masiste;)
(triangle inequality)

[] Each stacenters adjacent to a vertex i§;, using an edge
of cost at most coég;)
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O

< 2cost(e)) O

< COS[(GM \

S (u)

A star in GJ2



Rob van Stee: Approximations- und Online-Algorithmen D 41

O
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A star in GJ2 with redefined centers

Thus every node i can be reached at cost at most8s{e;)
from some vertex irb. This completes the proof.



Rob van Stee: Approximations- und Online-Algorithmen D 42
Lower bound for this algorithm

1.001
O
M\a1blc1d
O O O O
1 2 2

There aren nodes of weighM. The boundV = 3.

All edges not shown have weight equal to the length of the
shortest path in the graph that is shown

Fori < n+ 3, Gj Is missing at least one edge of weight 1.001.

One vertex will be isolated (also &%) so it will be in S
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Lower bound for this algorithm
MO

1.001

O

M\a1 by ¢y @
| O O O QZ

| 1 2 2
- /1.001

MO

There aren nodes of weighM. The boundV = 3.

All edges not shown have weight equal to the length of the
shortest path in the graph that is shown

Fori = n-+ 3, {b} is a maximal independent subset

If our algorithm choosegb}, it outputsS,, 3 = {a}. Cost is 3.



