Rob van Stee: Approximations- und Online-Algorithmen D 1
Overview

[1 The paging problem

[1 Several algorithms

[1 Resource augmentation analysis
[1 Randomization

[1 Types of adversaries

Rob van Stee: Approximations- und Online-Algorithmen D 2
(Absolute) competitive ratio

[1 Definition for minimizationproblems:

ALG(0)
Cal o —
ALG = SUPOPT o)

(we look for the input that results in wonstlative
performance)

[1 Formaximizationproblems:

OPT(0)
Calg =
ALG Sgp ALG (0)

[1 Goal:

find ALG with minimalCpa g

Rob van Stee: Approximations- und Online-Algorithmen D 3
Paging

[1 Computers usually have a small amount of fast memory
(cache)

[1 This can be used to store data (pages) that are often used
[1 Problem when the cache is full and a new page is requested

[1 Which page should be thrown out (evicted)?

Rob van Stee: Approximations- und Online-Algorithmen D 4
Definitions

[1 k =size of cache (number of pages)

[1 We assume that access to the cachieeig since accessing
main memory costs much more

[1 Thus, a cache hit costs 0 and a miss (fault) costs 1

[1 The goal is taninimize the number of page faults

Rob van Stee: Approximations- und Online-Algorithmen D 5
Paging algorithms

L]
[]
[]

Last In First Out (LIFO): evichewesipage
First In First Out (FIFO): evicbldestpage

Least Frequently used (LFU): evict page that was requested
least often

Least Recently Used (LRU): evict page that was requested
least recently

[1 Flush When Full (FWF): on a fault, eviell pages

[1 Longest Forward Distance (LFD): evict page thait be

requested the latest

Rob van Stee: Approximations- und Online-Algorithmen D 6
Longest Forward Distance is optimal

We show: any optimal offline algorithm can be changeddb
like LFD without increasing the number of page faults.

Inductive claim given an algorithm ALG, we can create ALG
such that

[1 ALG and ALG areidenticalon the firstt — 1 requests

[1 If request causes a fault, AL{zevicts page withongest
forward distance

[ALGj(0) < ALG(0)

Rob van Stee: Approximations- und Online-Algorithmen D 7
Using the claim

[1 Start with a given request sequeraand anoptimal offline
algorithm ALG

[1 Use the claim for =1 on ALG to get ALG, which evicts
the LFD page on the first request (if needed)

[1 Use the claim for =2 on ALG; to get ALG
...

[1 Final algorithm ALG, is equal to LFD

Rob van Stee: Approximations- und Online-Algorithmen

Proof of the claim

D :

Suppose that after requesfALG has page while ALG; has

pageb # a. Remaining pages are the same.

Until now, both algorithms have the same number of faults.

ALG

ALGI

Rob van Stee: Approximations- und Online-Algorithmen o 9
Proof of the claim

Until ais requested, AL{zdoesthe same as AL(but itevictsb
If ALG evicts a. Then both algorithms again have the same
pages in the cache, and we are done.

e B m
o P

Rob van Stee: Approximations- und Online-Algorithmen D 10
Proof of the claim
If ais requested before ALG evicés ALG; has a fault. Bua

was the LFD page, soefore thisALG must have had a fault
where ALG did not. ALG now evictsb and loads.

ALG B

-
ALGI E

Rob van Stee: Approximations- und Online-Algorithmen D 11
Comparison of algorithms

[1 LFD is not online, since it looks forward
[1 Which is the best online algorithm?

[1 LIFO is not competitive: consider an input sequence

P1, P2, .-, Pk—1, Pk, Pkr1s Prs Pra-1,- -

[1 LFU is alsonot competitive: consider

pT? pgla R pﬂq—la (pk7 pk—|—l)m_1

Rob van Stee: Approximations- und Online-Algorithmen D 12
A general lower bound

[1 To illustrate the problem, we show a lower bound day
online paging algorithm ALG

[1 There ar&k+ 1 pages
[1 At all times, ALG hask pages in its cache

[1 There is always one page missing: request this page at each
step

[1 OPT only faultsonce every k steps
= lower bound ok on the competitive ratio

Rob van Stee: Approximations- und Online-Algorithmen D 13
Resource augmentation

[1 We will compare an online algorithm ALG to an optimal
offline algorithmwhich has a smaller cache

[1 We hope to gemore realistiaesults in this way

[1 Size of offline cache 1 < k

[1 This problem is known agh, k)-paging
1 K

ALG

OPT

Rob van Stee: Approximations- und Online-Algorithmen D 14
Conservative algorithms

[1 An algorithm isconservativaf it has at mosk page faults

on any request sequence that contains at indstinct
pages

[1 The request sequence mayad®itrarily long
[1 LRU and FIFO are conservative

[1 LFU and LIFO arenot conservative (recall that they are not
competitive)

Rob van Stee: Approximations- und Online-Algorithmen D 15

Competitive ratio
Theorem 1. Any conservative algorithmis Wkﬂ-competitive

Proof: divide request sequenceinto phases
[1 Phase 0 is the empty sequence

[1 Phasa > 0 is the maximal sequence following phasel
that contains at mostdistinct pages

Phase partitioningloes not depend on algorithi&
conservative algorithm has at médftaults per phase.

Rob van Stee: Approximations- und Online-Algorithmen o 16
Counting the faultef OPT

Consider some phase- 0, denote its first request Wy

- phase |
I |

' \/

I k distinct pages

OPT has h pages in cache including f

Thus OPT has at leakt- (h— 1) = k— h+ 1 faults on the grey
requests

Rob van Stee: Approximations- und Online-Algorithmen D 17
Conclusion

[1 In each phase, a conservative algorithm kéesults

[1 To each phase except the last one, weassign(charge)
k—h+ 1 faults of OPT

[1 Thus y
< :
ALG(0) < ho1 OPT(o) +r
wherer < kis the number of page faults of ALG In thast
phase

[1 This proves the theorem

Rob van Stee: Approximations- und Online-Algorithmen o 18
Notes

[J Forh=k/2, we find that conservative algorithms are
2-competitive

[1 The previoudower bound constructiodoes not work
for h <k

[1 In practice the “competitive ratio” of LRU is a small
constant

[1 Resource augmentation can give better (more realistic)
results than pure competitive analysis

Rob van Stee: Approximations- und Online-Algorithmen o 19
Randomized algorithms

[1 Another way to avoid the lower bound kfor paging is to
use arandomizealgorithm

[1 Such an algorithm is allowed to use random bits In its
decision making

[1 Crucial iswhat the adversary knovabout these random
bits

Rob van Stee: Approximations- und Online-Algorithmen D 20
Three types of adversaries

[1 Oblivious knows only the probability distribution that
ALG uses, determines input in advance

[1 Adaptive online knows random choices made so far, bases
Input on these choices

[1 Adaptive offline knows random choices in advance (!)

Randomizatiormoes not hel@gainst adaptive offline adversary

We focus on theblivious adversary

Rob van Stee: Approximations- und Online-Algorithmen D 21
The MARK Algorithm

[1 This algorithmmarkspages which are requested
[1 It never evicts a marked page

[1 Whenall pages are markeahd there is a faylit unmarks
everything (but marks the page which caused the fault)

[1 Eviction strategy: evictandomly and uniformly chosen
page from the set of allnmarkedbages

[1 LRU and FWF are also marking algorithms

[1 Only difference is in eviction strategies

Rob van Stee: Approximations- und Online-Algorithmen D 22
Competitive ratio of MARK

[1 Consider the harmonic numbdfg (k=1,...)

1 1 1
Ho— 1Lt -+ -4 ...t =
(=1+5+5+ 4

[J] We have Ik < H, <1-+Ink

[1 We show that MARK is2H-competitive

Rob van Stee: Approximations- und Online-Algorithmen D 23
Analysis of MARK (1)

[1 Consider theohase partitionin@f an inputo (does not
depend on algorithm!)

[1 Pages in cache at start of phasaeold
[1 Non-old pages requested in phasgenew
[1 Letm; be the number ofiewpages requested in phase

[1 What is the worst order aofewpages vsold pages”?

Rob van Stee: Approximations- und Online-Algorithmen D 24
Analysis of MARK (2)

[1 Worst case Is that theew pages come first in a phase
[1 This meansn page faults on those pages

[1 How many faults are there on tlke- m; old pages?

phase |

__new | od
/

m; pages

Rob van Stee: Approximations- und Online-Algorithmen D 25
Analysis of MARK (3)

[1 The jth old page isn the cachat the moment it is first
requested with probability

kK—m —(j—1)
kK—(j—1)

[1 Explanation:

— k—m — (j — 1) = number ofold unmarked pages the
cache

— k—(j — 1) = total number obld unmarked pages

Rob van Stee: Approximations- und Online-Algorithmen D 26
Analysis of MARK (4)

[1 So, thejth old page causesfault with probability

Ck=m—(j-1) @ m

1 . =1
k—(j—1) k—jr1

[1 Expected number of faults is

k—m m
mi+_Z V- = m +m(Hg—Hm)

= m(Hk—Hm +1) < miH

[1 Now we still need a lower bound for OPT

Rob van Stee: Approximations- und Online-Algorithmen D 27
Lower bound for OPT

phase i-1 phase i
k distinct pages |__new [od
/

m; pages

[1 There aram; new pages in phase

[J Thus, in phases— 1 andi togetherk+ m pages are
requested

[1 OPT makes at least; faults in phasesandi — 1 for anyi

] Total number of OPT faults is at lea; m

Rob van Stee: Approximations- und Online-Algorithmen D 28
Upper bound for MARK

[1 Expected number of faults in phasis at mostmHy for
MARK

[J Total expected number of faults is at mékty; m
(] OPT has at leasty; m faults

[1 Conclusion: MARK is Hi-competitive

Rob van Stee: Approximations- und Online-Algorithmen D 29
Discussion

[1 The upper bound for MARK holds against an oblivious
adversary (the input sequencéiizd in advancke

[1 Question: is it possible to improve MARK?

[1 We show that no algorithm can be better than
Hy-competitive

[1 Thus, MARK is optimal apart from a factor of 2

[] Note thatHy is much smaller thak

Rob van Stee: Approximations- und Online-Algorithmen D 30
Randomized lower bound

[]

[]
[]
L]

ldea: us&k+ 1 pages
Keep track of probabilitiep; that pagej is notin the cache
Create the sequence based on these probabilities

The adversary can do this because it knowsdkbecription
of the algorithm and creates the input sequence

[1 Construction useghases

[1 In each phase, ALG will make faults, OPT makes 1 fault

Rob van Stee: Approximations- und Online-Algorithmen D 31
A phase in the lower bound

[1 Each phase consists bfubphases

[1 Theadversary uses a marking algorithm to serve the
seguence

[1 We makeno assumptionabout the online algorithm!

[1 At the start of subphagethere will bek— i+ 1 unmarked
pages

[1 Subphase Xk unmarked pages (the page which caused the
fault that ended the previous phase is marked)

Rob van Stee: Approximations- und Online-Algorithmen D 32
Calculations

[1 The expected cost of ALG for subphaseill be
1/(k—i+1).

[1 Thus, the total cost for phase is

K
1
: = H.

[1 Since OPT pays 1 per phase, this proves the lower bound
(OPT has no cost as long as unmarked pages exist; this
holds until the entire phase ends (with subphg$e

Rob van Stee: Approximations- und Online-Algorithmen D 33
Construction osubphasg

[1 Each subphase contains
— some (maybe 0) requestsntarkedpages

— onerequest for an unmarked page (it is then marked!)

[1 Let M be the set of marked pages at the start of subphase
(so|M| = j)

[1 There arai= k+ 1— j unmarked pages

[J Considery= Yicm pi (note:pj is probability that pageis
notin the cache)

Rob van Stee: Approximations- und Online-Algorithmen D 34
Subphasg:y= 3 icv b

(1 If y=0, there exists an unmarked pageith p; > 1/u;
request this page and end this subphase

[1 Else, there exists a marked page M with py, > 0.
[1 Definee = py and start with a request for page

[1 Repeatedly request marked pages as follows:

While (expected cost for ALG is less thapulandy > €)
requestmarkedpagel with maximal py

Rob van Stee: Approximations- und Online-Algorithmen D 35
Subphasg: the case/= Sijcpm pi >0

While (expected cost for ALG is less thapulandy > €)
requesimarkedpagel with maximalp,

[1 The expected cost of ALG increases in each step of this
loop, so the loop terminates

[1 In fact, if y > € then cost increases by at least
y/IM[> g/[M].

Rob van Stee: Approximations- und Online-Algorithmen D 36
After the loop

While (expected cost for ALG is less thapulandy > €)
requesimarkedpagel with maximalp,

[1 If expected cost for ALG isit least Yu, request an arbitrary
unmarked page

[1 Else,y<e¢

[1 In this case, request unmarked pdgeith maximal p,
(1 We havep, > (1-vy)/u
[1 Costfor ALG Is

Rob van Stee: Approximations- und Online-Algorithmen D 37
Result

[1 No algorithm ALG is better thakl-competitive against an
oblivious adversary

[1 Against stronger adversaries, this holds a forteriori
[1 There exists akl,-competitive algorithm
[1 Itis substantially more complicated than MARK

[1 Competitiveness fofh, k)-paging is still unknown

