Sanders/van Stee: Approximations- und Online-Algorithme

Bin packing and scheduling
Overview
[1 Bin packing: problem definition
[1 Simple 2-approximation (Next Fit)
[1 Better than 3/2 is not possible
[1 AsymptoticPTAS
[1 Scheduling: minimizing the makespan (repeat)

L1 PTAS

Sanders/van Stee: Approximations- und Online-Algorithme o 2
Bin packing: problem definition

[Input: nitems with sizesy,...,an € (0, 1]

[1 Goal: pack these items intonainimal number of bins

B
~
Il-l

[1 Each bin has size 1

Sanders/van Stee: Approximations- und Online-Algorithme o 3
Bin packing: problem definition

[Input: nitems with sizesy,...,an € (0, 1]
[1 Goal: pack these items intonainimal number of bins

[1 Each bin has size 1

Sanders/van Stee: Approximations- und Online-Algorithme

A simple (online!) algorithm ig\ext Fit

[1 Place items in a bin until next itenpes not fit

[1 Then, close the bin and start a new bin

o ;

[1 Approximation ratio is 2 (and competitive ratio is also 2)

_
i

Sanders/van Stee: Approximations- und Online-Algorithme o 5
A simple (online!) algorithm ig\ext Fit

[1 Place items in a bin until next item does not fit

[1 Then, close the bin and start a new bin

[1 Approximation ratio is 2 (and competitive ratio is also 2)

|

Sanders/van Stee: Approximations- und Online-Algorithme

A sim
1P
T

nle (online!) algorithm igNext Fit

ace items in a bin until next item does not fit

nen, close the bin and start a new bin

o ;

[1 Approximation ratio is 2 (and competitive ratio is also 2)

i 1»

Sanders/van Stee: Approximations- und Online-Algorithme o 7
A simple (online!) algorithm ig\ext Fit

[1 Place items in a bin until next item does not fit

[1 Then, close the bin and start a new bin

[1 Approximation ratio is 2 (and competitive ratio is also 2)

ATI1E

Sanders/van Stee: Approximations- und Online-Algorithme D 8
A general lower bound

It Is possible to improve on Next Fit, for instance by usingsFi
Fit.

However...

Lemma 1. Thereis no algorithm with approximation ratio
below 3/2, unless P=NP

Proof: reduction fronPARTITION

PARTITION = given a set of items of total size B, can you split
them into two subsets of equal size?

This problem is known to beIP-hard

Sanders/van Stee: Approximations- und Online-Algorithme D 9
The reduction

[1 Input is a set of items of total size 2
[1 Does this input fit in two bins?

[1 An algorithm with approximation ratie: 3/2 must give a
packing intwo bins (not three) if one exists

[1 Thus, it must solve PARTITION, which is NP-hard

Sanders/van Stee: Approximations- und Online-Algorithme D 10
The asymptotic performance ratio

[1 This result deals with “small” inputs

(1 What about more reasonable instances?

[1 For a given input, letoPT(l) denote the optimal number
of bins needed to pack it

[1 Idea: we are interested in therstratio forlargeinputs

Sanders/van Stee: Approximations- und Online-Algorithme D 11
The asymptotic performance ratio

A(l)
oPT(l)

Sanders/van Stee: Approximations- und Online-Algorithme D
The asymptotic performance ratio

A(l)
S:JpOPT(I)

Sanders/van Stee: Approximations- und Online-Algorithme D
The asymptotic performance ratio

L a(l) \
R. = limsupsu OPT(l)=n .

/

Note: we also use this measure to compare online algorithms

Sanders/van Stee: Approximations- und Online-Algorithme D 14
A positive result

We can show the following theorem:

Theorem 1. For any € > O, thereisan algorithm 4 that runsin
time polynomial in n and for which

Ze(1) < (1+2¢)opT(l)+1 VI

Meaning: you can get as close to the optimal solution as you
want

The degree of thpolynomialdepends om: the closer you want
to get to the optimum, the more time it takes

Sanders/van Stee: Approximations- und Online-Algorithme D 15
A simple case

[] All items have size at least
— at mostM = |1/¢] items fit in a bin

[1 There are onlK different item sizes
— at mostR= (M) bin types

(M “items” in a bin,K + 1 options per item)

[1 We know that at mogt bins are needed to pack all items

— at most("5") feasible packings need to be checked
[1 We can do this in polynomial (in) time

Note: this isextremely impractica

Example:n = 50,K = 6,& = 1/3, then 198- 103/ options

Sanders/van Stee: Approximations- und Online-Algorithme o 16
Generalizing the simple case (1)

Suppose there araore different item size@t mostn).

Do the following:
[] Sort items
(1 Make groups containingne?| items

[1 In each group, round sizes up to largest size in group

Sanders/van Stee: Approximations- und Online-Algorithme D 17
Generalizing the simple case (2)

So far we had @ower bound oft on the item sizes.

How do we pack instances that also contain such small items?
[1 Ignore items< € (small items) at the start
[1 Apply algorithm on remaining items

(1 Fill up bins with small items

Sanders/van Stee: Approximations- und Online-Algorithme D 18
The small items

(1 If all small items fit in the bins used to patk we useno
more thamoPT(L) bins

[1 Else, all bins except the last are full by at least
1—¢
[J oPT(l) is at least the total sizef all the items

oPT(l) > ALG(l) —1

> —7 o ALG(l) < (1+2e)orT(l) +1

This proves the theorem.

Sanders/van Stee: Approximations- und Online-Algorithme D 19
A better solution

The core algorithm is very mudirute force

We can improve by using dynamic programming
We no longer need a lower bound on the sizes
There arek different item sizes

An input is of the form(ny,. .., ny)

0 O o O O O

We want to calculat®pPT(ny,...,ny), the optimal number
of bins to pack this input

Sanders/van Stee: Approximations- und Online-Algorithme D 20
The base case

L]
[]

Consider an inputng, ..., Nng) with n= S n; items

Determine set ok-tuples (subsets of the input) that can be
packed into a single bin

That is, all tuplegqs,...,qk) for whichopPT(qy,...,0x) =1
and for which 0< g; < n; for all |

There are at most< such tuples, each tuple can be checked
In linear time

[(Exercise: there are at mast/k)* such tuples)

[1 Denote this set b@

Sanders/van Stee: Approximations- und Online-Algorithme D 21
Dynamic programming
[1 For eachk-tupleq € Q, we haveoprT(q) =1

[1 Calculate remaining values by using the recurrence

oPT(i1,...,ik) = 1+ minoPT(i1 — du,. .., ik — Ok)
qeQ

[1 Exercise: think about the order in which we can calculate
these values

(] Each value take®(nX) time, so we can calculate all values
in O(n?) time

[J This gives us in the end the value@PT(ny,...,NK)

Sanders/van Stee: Approximations- und Online-Algorithme D 22
Advantages

[1 Much faster than simple brute force

[1 Can be used to creaklAS for load balancing!
PTAS fromAlgorithmentechnik:

[1 separaté largest jobs

[1 assign them optimally

[1 add smallest jobs greedily

Time O(m’ +n). Fore = 1/3,m= 15 we havan’ = 8.5-10°2.
This PTAS could only be used for very smailand largee.

Sanders/van Stee: Approximations- und Online-Algorithme D 23

Scheduling Independent Weighted Jobs

on Parallel Machines 1 2 3 4 5 .
X(]): Machine where —

job | Is executed

L;: zx(j):i tj, load
of machine

Objective: Minimize Makespan
Lmax = max L

Details: | dentical machines, independent jobs, known
processing times, offline

NP-hard

Sanders/van Stee: Approximations- und Online-Algorithme

Old results
[1 Greedy algorithm i$2 — %)—approximation
O LPT is (4/3— 5=)-approximation

New result:PTAS for load balancing

ldea: find optimal makespan usibgiary search

Sanders/van Stee: Approximations- und Online-Algorithme D 25
A step in the binary search

[] Let current guess for the makesparntbe

Sanders/van Stee: Approximations- und Online-Algorithme D 26
A step in the binary search

[] Let current guess for the makesparntbe

[1 Remove “small” items: smaller thdna

Sanders/van Stee: Approximations- und Online-Algorithme D 27
A step in the binary search

[] Let current guess for the makesparntbe
[1 Remove “small” items: smaller thaa

[1 Round remaining sizes down using geometric rounding

Sanders/van Stee: Approximations- und Online-Algorithme D 28
A step in the binary search

[] Let current guess for the makesparntbe
[1 Remove “small” items: smaller thaa
[1 Round remaining sizes down using geometric rounding

[1 Find optimal solution irbins of sizet

Sanders/van Stee: Approximations- und Online-Algorithme D 29
A step in the binary search

[] Let current guess for the makesparntbe

[1 Remove “small” items: smaller thas

[1 Round remaining sizes down using geometric rounding
[1 Find optimal solution irbins of sizet

[1 Extend to near-optimal solution for entire input

Sanders/van Stee: Approximations- und Online-Algorithme D 30
A step in the binary search

Let current guess for the makesparnbe

Remove “small” items: smaller thaa

Round remaining sizes down using geometric rounding
Find optimal solution in bins of size

Extend to near-optimal solution for entire input

More thanm bins needed: increase

1 O o oo o o O

At mostmbins needed: decreate

Sanders/van Stee: Approximations- und Online-Algorithme D 31
Geometric rounding

[1 Each large item isounded dowrso that its size is of the
form

te(1+¢)
for somel >0

[1 Since large items have sia¢ leaste, this leaves
k= [l0g,.¢ = different sizes

Sanders/van Stee: Approximations- und Online-Algorithme D 32
Geometric rounding

[1 Each large item isounded dowrso that its size is of the
form

te(1+¢)
for somel >0

[1 Since large items have sia¢ leaste, this leaves
k= [l0g,.¢ = different sizes

We find a packindor the rounded down itema bins of sizet

Sanders/van Stee: Approximations- und Online-Algorithme D 33
Geometric rounding

[1 Each large item isounded dowrso that its size is of the
form

te(1+¢)
for somel >0

[1 Since large items have sia¢ leaste, this leaves
k= [l0g,.¢ = different sizes

We find a packindor the rounded down itema bins of sizet

This gives a valid packing in bins of sizgl + ¢€)

Sanders/van Stee: Approximations- und Online-Algorithme D 34
Geometric rounding

[1 Each large item isounded dowrso that its size is of the
form

te(1+¢)
for somel >0

[1 Since large items have sia¢ leaste, this leaves
k= [l0g,.¢ = different sizes

We find a packindor the rounded down itema bins of sizet
This gives a valid packing in bins of sizgl + ¢€)

We add the small item® those bins (and to new bins if needed)

Sanders/van Stee: Approximations- und Online-Algorithme D 35
Comparing to the optimal solution

We use bins of sizg1+¢€)

Claim: OPT needs at least as many baisizet to pack these
items

Sanders/van Stee: Approximations- und Online-Algorithme D 36
Comparing to the optimal solution

We use bins of sizg1+¢€)

Claim: OPT needs at least as many baisizet to pack these
items

Proof: If we need no extra bins for the small items, we have
found an optimal packingr the rounded down itema bins of
sizet

Sanders/van Stee: Approximations- und Online-Algorithme D 37
Comparing to the optimal solution
We use bins of sizg1+¢€)

Claim: OPT needs at least as many baisizet to pack these
items

Proof: If we need no extra bins for the small items, we have
found an optimal packingr the rounded down itema bins of
sizet

Else, all bins (except maybe the last one) are full by at ledst

Sanders/van Stee: Approximations- und Online-Algorithme 38

Connection between bin packing and scheddiing

[]

We look for the smalledtsuch that we can pack the items
In mbins (machines).

[1 Suppose that we can find the exact valué of

[1 Then, OPT also needams bins of sizat to pack these items

[1 In other words, thenakespan om machiness at least.

(For smallett, the items cannot all be placed below a level
of t.)

Sanders/van Stee: Approximations- und Online-Algorithme D 39
The binary search

[1 We start with the following lower bound coPT:
LB = max{th/m, mjaxtj}
[1 Greedy gives a schedule which is at most twice this value,
this is an upper bound farpT
[1 Each step of the binary search halves this interval
[1 We repeat until the length of the interval is at mestB
[] LetT be the upper bound of this interval
(1 ThenT <oPT+€e-LB< (1+¢€)-0OPT

[1 The makespan of our algorithm is at most+-€)T

Sanders/van Stee: Approximations- und Online-Algorithme D 40

Conclusion
Theorem 2. For any € > 0, there is an algorithm 4, which
works in polynomial time in n and which gives a schedule with

makespan at most (1+€)?0PT < (14 3¢)OPT.

Sanders/van Stee: Approximations- und Online-Algorithme D 41

Conclusion

Theorem 2. For any € > 0, there is an algorithm 4, which
works in polynomial time in n and which gives a schedule with
makespan at most (1-+¢€)?0PT < (14 3¢)OPT.

Notes:

1 The number of item sizes ls= [log; ¢ 2]

Sanders/van Stee: Approximations- und Online-Algorithme D 42

Conclusion

Theorem 2. For any € > 0, there is an algorithm 4, which
works in polynomial time in n and which gives a schedule with
makespan at most (1-+¢€)?0PT < (14 3¢)OPT.
Notes:

1 The number of item sizes ls= [log; ¢ 2]

(1 The number of iterations in the binary searchli, &]

Sanders/van Stee: Approximations- und Online-Algorithme D 43

Conclusion

Theorem 2. For any € > 0, there is an algorithm 4, which
works in polynomial time in n and which gives a schedule with
makespan at most (1-+¢€)?0PT < (14 3¢)OPT.
Notes:
1 The number of item sizes ls= [log; ¢ 2]
1 The number of iterations in the binary searchlig, £ |

[1 The running time of the dynamic programming algorithm is
O(n2k)

Sanders/van Stee: Approximations- und Online-Algorithme D 44

Conclusion

Theorem 2. For any € > 0, there is an algorithm 4, which
works in polynomial time in n and which gives a schedule with
makespan at most (1-+¢€)?0PT < (14 3¢)OPT.
Notes:
1 The number of item sizes ls= [log; ¢ 2]
1 The number of iterations in the binary searchlig, £ |

[1 The running time of the dynamic programming algorithm is
O(n2k)

[J The running time of our algorithm ©(|log, %} 129

n=50,e =1/3 — 7.8- 103 options

Sanders/van Stee: Approximations- und Online-Algorithme D 45

Conclusion

Theorem 2. For any € > 0, there is an algorithm 4, which
works in polynomial time in n and which gives a schedule with
makespan at most (1-+¢€)?0PT < (14 3¢)OPT.
Notes:
1 The number of item sizes ls= [log; ¢ 2]
1 The number of iterations in the binary searchlig, £ |

[1 The running time of the dynamic programming algorithm is
O(n2k)

[J The running time of our algorithm ©(|log, %} 129

[1 There is nd~PTAS for this problem

