
Sanders/van Stee: Approximations- und Online-Algorithmen 1

Bin packing and scheduling
Overview

� Bin packing: problem definition

� Simple 2-approximation (Next Fit)

� Better than 3/2 is not possible

� AsymptoticPTAS

� Scheduling: minimizing the makespan (repeat)

� PTAS

Sanders/van Stee: Approximations- und Online-Algorithmen 2

Bin packing: problem definition

� Input: n items with sizesa1, . . . ,an ∈ (0,1]

� Goal: pack these items into aminimal number of bins

� Each bin has size 1

Sanders/van Stee: Approximations- und Online-Algorithmen 3

Bin packing: problem definition

� Input: n items with sizesa1, . . . ,an ∈ (0,1]

� Goal: pack these items into aminimal number of bins

� Each bin has size 1

Sanders/van Stee: Approximations- und Online-Algorithmen 4

A simple (online!) algorithm isNext Fit

� Place items in a bin until next itemdoes not fit

� Then, close the bin and start a new bin

� Approximation ratio is 2 (and competitive ratio is also 2)

Sanders/van Stee: Approximations- und Online-Algorithmen 5

A simple (online!) algorithm isNext Fit

� Place items in a bin until next item does not fit

� Then, close the bin and start a new bin

� Approximation ratio is 2 (and competitive ratio is also 2)

Sanders/van Stee: Approximations- und Online-Algorithmen 6

A simple (online!) algorithm isNext Fit

� Place items in a bin until next item does not fit

� Then, close the bin and start a new bin

� Approximation ratio is 2 (and competitive ratio is also 2)

Sanders/van Stee: Approximations- und Online-Algorithmen 7

A simple (online!) algorithm isNext Fit

� Place items in a bin until next item does not fit

� Then, close the bin and start a new bin

� Approximation ratio is 2 (and competitive ratio is also 2)

Sanders/van Stee: Approximations- und Online-Algorithmen 8

A general lower bound

It is possible to improve on Next Fit, for instance by using First

Fit.

However...

Lemma 1. There is no algorithm with approximation ratio

below 3/2, unless P=NP

Proof: reduction fromPARTITION

PARTITION = given a set of items of total size B, can you split

them into two subsets of equal size?

This problem is known to beNP-hard

Sanders/van Stee: Approximations- und Online-Algorithmen 9

The reduction

� Input is a set of items of total size 2

� Does this input fit in two bins?

� An algorithm with approximation ratio< 3/2 must give a

packing intwo bins (not three) if one exists

� Thus, it must solve PARTITION, which is NP-hard

Sanders/van Stee: Approximations- und Online-Algorithmen 10

The asymptotic performance ratio

� This result deals with “small” inputs

� What about more reasonable instances?

� For a given inputI, let OPT(I) denote the optimal number

of bins needed to pack it

� Idea: we are interested in theworstratio for largeinputs

Sanders/van Stee: Approximations- und Online-Algorithmen 11

The asymptotic performance ratio

sup
I

A(I)
OPT(I)

Note: we also use this measure to compare online algorithms

Sanders/van Stee: Approximations- und Online-Algorithmen 12

The asymptotic performance ratio

sup
I

A(I)
OPT(I)

Note: we also use this measure to compare online algorithms

Sanders/van Stee: Approximations- und Online-Algorithmen 13

The asymptotic performance ratio

R∞
A
= limsup

n→∞
sup

I

{

A(I)
OPT(I)

∣

∣

∣

∣

∣

OPT(I) = n

}

.

Note: we also use this measure to compare online algorithms

Sanders/van Stee: Approximations- und Online-Algorithmen 14

A positive result

We can show the following theorem:

Theorem 1. For any ε > 0, there is an algorithm Aε that runs in

time polynomial in n and for which

Aε(I)≤ (1+2ε)OPT(I)+1 ∀I

Meaning: you can get as close to the optimal solution as you

want

The degree of thepolynomialdepends onε: the closer you want

to get to the optimum, the more time it takes

Sanders/van Stee: Approximations- und Online-Algorithmen 15

A simple case

� All items have size at leastε
→ at mostM = b1/εc items fit in a bin

� There are onlyK different item sizes

→ at mostR =
(M+K

M

)

bin types

(M “items” in a bin,K +1 options per item)

� We know that at mostn bins are needed to pack all items

→ at most
(n+R

R

)

feasible packings need to be checked

� We can do this in polynomial (inn) time

Note: this isextremely impractical

Example:n = 50,K = 6,ε = 1/3, then 1.98·1037 options

Sanders/van Stee: Approximations- und Online-Algorithmen 16

Generalizing the simple case (1)

Suppose there aremore different item sizes(at mostn).

Do the following:

� Sort items

� Make groups containingbnε2c items

� In each group, round sizes up to largest size in group

Sanders/van Stee: Approximations- und Online-Algorithmen 17

Generalizing the simple case (2)

So far we had alower bound ofε on the item sizes.

How do we pack instances that also contain such small items?

� Ignore items< ε (small items) at the start

� Apply algorithm on remaining items

� Fill up bins with small items

Sanders/van Stee: Approximations- und Online-Algorithmen 18

The small items

� If all small items fit in the bins used to packL, we useno

more thanOPT(L) bins

� Else, all bins except the last are full by at least

1− ε

� OPT(I) is at least the total sizeof all the items

OPT(I)≥
ALG(I)−1

1− ε
→ ALG(I)≤ (1+2ε)OPT(I)+1

This proves the theorem.

Sanders/van Stee: Approximations- und Online-Algorithmen 19

A better solution

� The core algorithm is very muchbrute force

� We can improve by using dynamic programming

� We no longer need a lower bound on the sizes

� There arek different item sizes

� An input is of the form(n1, . . . ,nk)

� We want to calculateOPT(n1, . . . ,nk), the optimal number

of bins to pack this input

Sanders/van Stee: Approximations- und Online-Algorithmen 20

The base case

� Consider an input(n1, . . . ,nk) with n = ∑n j items

� Determine set ofk-tuples (subsets of the input) that can be

packed into a single bin

� That is, all tuples(q1, . . . ,qk) for which OPT(q1, . . . ,qk) = 1

and for which 0≤ q j ≤ n j for all j

� There are at mostnk such tuples, each tuple can be checked

in linear time

� (Exercise: there are at most(n/k)k such tuples)

� Denote this set byQ

Sanders/van Stee: Approximations- und Online-Algorithmen 21

Dynamic programming

� For eachk-tupleq ∈ Q, we haveOPT(q) = 1

� Calculate remaining values by using the recurrence

OPT(i1, . . . , ik) = 1+min
q∈Q

OPT(i1−q1, . . . , ik −qk)

� Exercise: think about the order in which we can calculate

these values

� Each value takesO(nk) time, so we can calculate all values

in O(n2k) time

� This gives us in the end the value ofOPT(n1, . . . ,nk)

Sanders/van Stee: Approximations- und Online-Algorithmen 22

Advantages

� Much faster than simple brute force

� Can be used to createPTAS for load balancing!

PTAS fromAlgorithmentechnik:

� separatè largest jobs

� assign them optimally

� add smallest jobs greedily

Time O(m`+n). Forε = 1/3,m = 15 we havem` = 8.5·1032.

This PTAS could only be used for very smallm and largeε.

Sanders/van Stee: Approximations- und Online-Algorithmen 23

Scheduling Independent Weighted Jobs
on Parallel Machines

...

1 2 m

???

t i
...

1 2 3 4 5 n

...

...

x(j): Machine where

job j is executed

Li: ∑x(j)=i t j, load

of machinei

Objective: Minimize Makespan

Lmax= maxi Li

Details:Identical machines, independent jobs, known

processing times, offline

NP-hard

Sanders/van Stee: Approximations- und Online-Algorithmen 24

Old results

� Greedy algorithm is(2− 1
m)-approximation

� LPT is (4/3− 1
3m)-approximation

New result:PTAS for load balancing

Idea: find optimal makespan usingbinary search

Sanders/van Stee: Approximations- und Online-Algorithmen 25

A step in the binary search

� Let current guess for the makespan bet

Sanders/van Stee: Approximations- und Online-Algorithmen 26

A step in the binary search

� Let current guess for the makespan bet

� Remove “small” items: smaller thantε

Sanders/van Stee: Approximations- und Online-Algorithmen 27

A step in the binary search

� Let current guess for the makespan bet

� Remove “small” items: smaller thantε

� Round remaining sizes down using geometric rounding

Sanders/van Stee: Approximations- und Online-Algorithmen 28

A step in the binary search

� Let current guess for the makespan bet

� Remove “small” items: smaller thantε

� Round remaining sizes down using geometric rounding

� Find optimal solution inbins of sizet

Sanders/van Stee: Approximations- und Online-Algorithmen 29

A step in the binary search

� Let current guess for the makespan bet

� Remove “small” items: smaller thantε

� Round remaining sizes down using geometric rounding

� Find optimal solution inbins of sizet

� Extend to near-optimal solution for entire input

Sanders/van Stee: Approximations- und Online-Algorithmen 30

A step in the binary search

� Let current guess for the makespan bet

� Remove “small” items: smaller thantε

� Round remaining sizes down using geometric rounding

� Find optimal solution in bins of sizet

� Extend to near-optimal solution for entire input

� More thanm bins needed: increaset

� At mostm bins needed: decreaset

Sanders/van Stee: Approximations- und Online-Algorithmen 31

Geometric rounding

� Each large item isrounded downso that its size is of the

form

tε(1+ ε)i

for somei ≥ 0

� Since large items have sizeat leasttε, this leaves

k = dlog1+ε
1
εe different sizes

Sanders/van Stee: Approximations- und Online-Algorithmen 32

Geometric rounding

� Each large item isrounded downso that its size is of the

form

tε(1+ ε)i

for somei ≥ 0

� Since large items have sizeat leasttε, this leaves

k = dlog1+ε
1
εe different sizes

We find a packingfor the rounded down itemsin bins of sizet

Sanders/van Stee: Approximations- und Online-Algorithmen 33

Geometric rounding

� Each large item isrounded downso that its size is of the

form

tε(1+ ε)i

for somei ≥ 0

� Since large items have sizeat leasttε, this leaves

k = dlog1+ε
1
εe different sizes

We find a packingfor the rounded down itemsin bins of sizet

This gives a valid packing in bins of sizet(1+ ε)

Sanders/van Stee: Approximations- und Online-Algorithmen 34

Geometric rounding

� Each large item isrounded downso that its size is of the

form

tε(1+ ε)i

for somei ≥ 0

� Since large items have sizeat leasttε, this leaves

k = dlog1+ε
1
εe different sizes

We find a packingfor the rounded down itemsin bins of sizet

This gives a valid packing in bins of sizet(1+ ε)

Weadd the small itemsto those bins (and to new bins if needed)

Sanders/van Stee: Approximations- und Online-Algorithmen 35

Comparing to the optimal solution

We use bins of sizet(1+ ε)

Claim: OPT needs at least as many binsof sizet to pack these

items

Sanders/van Stee: Approximations- und Online-Algorithmen 36

Comparing to the optimal solution

We use bins of sizet(1+ ε)

Claim: OPT needs at least as many binsof sizet to pack these

items

Proof: If we need no extra bins for the small items, we have

found an optimal packingfor the rounded down itemsin bins of

sizet

Sanders/van Stee: Approximations- und Online-Algorithmen 37

Comparing to the optimal solution

We use bins of sizet(1+ ε)

Claim: OPT needs at least as many binsof sizet to pack these

items

Proof: If we need no extra bins for the small items, we have

found an optimal packingfor the rounded down itemsin bins of

sizet

Else, all bins (except maybe the last one) are full by at leastt �

Sanders/van Stee: Approximations- und Online-Algorithmen 38

Connection between bin packing and scheduling

� We look for the smallestt such that we can pack the items

in m bins (machines).

� Suppose that we can find the exact value oft

� Then, OPT also needsm bins of sizet to pack these items

� In other words, themakespan onm machinesis at leastt.

(For smallert, the items cannot all be placed below a level

of t.)

Sanders/van Stee: Approximations- und Online-Algorithmen 39

The binary search

� We start with the following lower bound onOPT:

LB = max

{

∑ t j/m,max
j

t j

}

� Greedy gives a schedule which is at most twice this value,

this is an upper bound forOPT

� Each step of the binary search halves this interval

� We repeat until the length of the interval is at mostε ·LB

� Let T be the upper bound of this interval

� ThenT ≤ OPT+ ε ·LB ≤ (1+ ε) ·OPT

� The makespan of our algorithm is at most(1+ ε)T

Sanders/van Stee: Approximations- und Online-Algorithmen 40

Conclusion
Theorem 2. For any ε > 0, there is an algorithm Aε which

works in polynomial time in n and which gives a schedule with

makespan at most (1+ ε)2OPT< (1+3ε)OPT.

Sanders/van Stee: Approximations- und Online-Algorithmen 41

Conclusion
Theorem 2. For any ε > 0, there is an algorithm Aε which

works in polynomial time in n and which gives a schedule with

makespan at most (1+ ε)2OPT< (1+3ε)OPT.

Notes:

� The number of item sizes isk = dlog1+ε
1
εe

Sanders/van Stee: Approximations- und Online-Algorithmen 42

Conclusion
Theorem 2. For any ε > 0, there is an algorithm Aε which

works in polynomial time in n and which gives a schedule with

makespan at most (1+ ε)2OPT< (1+3ε)OPT.

Notes:

� The number of item sizes isk = dlog1+ε
1
εe

� The number of iterations in the binary search isdlog2
1
εe

Sanders/van Stee: Approximations- und Online-Algorithmen 43

Conclusion
Theorem 2. For any ε > 0, there is an algorithm Aε which

works in polynomial time in n and which gives a schedule with

makespan at most (1+ ε)2OPT< (1+3ε)OPT.

Notes:

� The number of item sizes isk = dlog1+ε
1
εe

� The number of iterations in the binary search isdlog2
1
εe

� The running time of the dynamic programming algorithm is

O(n2k)

Sanders/van Stee: Approximations- und Online-Algorithmen 44

Conclusion
Theorem 2. For any ε > 0, there is an algorithm Aε which

works in polynomial time in n and which gives a schedule with

makespan at most (1+ ε)2OPT< (1+3ε)OPT.

Notes:

� The number of item sizes isk = dlog1+ε
1
εe

� The number of iterations in the binary search isdlog2
1
εe

� The running time of the dynamic programming algorithm is

O(n2k)

� The running time of our algorithm isO(dlog2
1
εen2k)

n = 50,ε = 1/3→ 7.8·1013 options

Sanders/van Stee: Approximations- und Online-Algorithmen 45

Conclusion
Theorem 2. For any ε > 0, there is an algorithm Aε which

works in polynomial time in n and which gives a schedule with

makespan at most (1+ ε)2OPT< (1+3ε)OPT.

Notes:

� The number of item sizes isk = dlog1+ε
1
εe

� The number of iterations in the binary search isdlog2
1
εe

� The running time of the dynamic programming algorithm is

O(n2k)

� The running time of our algorithm isO(dlog2
1
εen2k)

� There is noFPTAS for this problem

