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We study “discrete optimization with a blindfold.” We are given an optimiza-

tion problem such as finding the shortest path in a graph or balancing load on

machines, but some of the relevant data, such as edge costs or machine speeds,

is missing. There are various selfish economic agents who each know part of the

data, and who are affected by the decisions we make. We can ask them to report

the data, but they might lie if it is in their self-interest to do so. We aim to design

truthful mechanisms: algorithms for solving our optimization problems that, with

the help of monetary incentives, induce the agents to report the true data.

We identify and address four major problems with the Vickrey-Clarke-Groves

(VCG) mechanism, the most famous general technique for designing truthful mech-

anisms. First, the VCG mechanism can be used only if we want to maximize the

overall social welfare, e.g., minimize the cost to the agents. We develop other

techniques for optimizing other types of objective functions. Second, even if our

goal is to maximize the overall social welfare, the VCG mechanism may be com-

putationally intractable because the underlying optimization problem is NP-hard.

We investigate how to develop approximation algorithms that preserve the truth-

inducing properties of the VCG mechanism. Third, even though the VCG mech-

anism can be used to minimize the total cost incurred by the agents, the amount



the mechanism must pay to the agents can be significantly higher. We prove

that in some natural cases, this is an inherent difficulty with truthful mechanisms,

and is not peculiar to the VCG mechanism. Fourth, even though it is never in

an agent’s individual selfish interest to lie to the VCG mechanism, coalitions of

agents can sometimes benefit by lying in a coordinated way. We study what types

of coordination must occur for this type of cheating to be successful.
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Chapter 1

Introduction

1.1 Motivation

Traditional algorithms design typically assumes that all components of the system

under study are working together. In situations where the various components

are owned by different economic entities, it makes more sense to model these

components as rational (or selfish) agents. A selfish agent will deviate from the

protocol if she thinks it is in her self-interest to do so. This motivates us to attempt

to create protocols that are strategyproof, which means that it is in each agent’s

self-interest to adhere to them.

Game theory is a branch of mathematics that attempts to understand how ra-

tional agents will behave in strategic situations. It has long been widely applied

in economics, where it is a standard part of most curricula. One branch of game

theory called mechanism design concerns the construction of mechanisms, games

whose purpose is to get the agents to behave in a certain way so as to achieve

some desired outcome. Historically, this field grew out of social choice theory,

which typically dealt with things like voting systems, taxation policy and the allo-

cation of public goods. Now that mechanism design is being applied to algorithms

research, new issues such as computational efficiency arise. To distinguish this new

setting, it is often called algorithmic mechanism design, which is the subject of this

dissertation.

Interest in algorithmic mechanism design has come from both the algorithms

side and the economics side. Influential algorithms papers by Nisan and Ronen [58]

and Feigenbaum, et al. [22] promote mechanism design as a means for creating ef-

1
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fective protocols for the Internet, since different pieces of the Internet are owned,

operated and used by different economic entities who might attempt to gain by

manipulating the protocols. At the same time, economists have shown new inter-

est in computation, motivated by the rise of electronic commerce, Internet auction

sites like eBay, and recent large-scale auctions by the United States and other

governments to allocate spectrum rights to mobile phone providers. In particular,

there has been a desire to use combinatorial auctions, which are auctions that al-

low participants to place bids on combinations of goods rather than single goods.

While there are some mechanisms for these types of auctions that have many de-

sirable game-theoretic properties, they represent computational difficulties, hence

the interest in algorithms research from economists.

The angle we take is that we want to do “discrete optimization with a blind-

fold.” There is some discrete optimization problem that we want to solve, but we

do not know all of the data. Instead, there are various rational agents who each

know some of the data. We can ask them to report it, but they might lie. Our

task is to design mechanisms involving payments that induce the agents to tell the

truth, so that we are performing our computations on the correct data, and at the

same time optimize the objective function we are interested in. We will have to

deal with both the game theoretic issues of getting the agents to tell the truth, i.e.,

designing truthful mechanisms, and the algorithmic issues of efficiently computing

the outcomes of these mechanisms.

The most famous positive result in mechanism design is the Vickrey-Clarke-

Groves (VCG) mechanism [69, 14, 31], a general technique for creating truthful

mechanisms. This mechanism is widely touted in the literature, but it can some-

times have some serious drawbacks, both in terms of the results it gives and the
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difficulty in computing it. The focus of this dissertation is to address these prob-

lems.

1.2 Example problems

In this section we describe two mechanism design problems representative of some

of the topics we will address in this work. First we discuss the Vickrey “second-

price” auction, since it occupies an important place in the history of mechanism

design, and has made a significant impact in practice. Then we discuss the shortest

path problem, since it is one of the problems we will study and it shares the discrete

optimization flavor of the rest of this dissertation.

1.2.1 A success story: the Vickrey “second-price” auction

The second-price auction is an innovative auction form. There is one item for

sale, and multiple bidders, who each submit a sealed bid in an envelope. The

auctioneer then opens all the envelopes and awards the item to the highest bidder.

However, in contrast to the first-price auction where the bidder would pay what

she bid, in this auction we charge the winner the amount of the second-highest

bid. Under some simple assumptions about the motivations of the bidders, this

auction is truthful. In this case, this means that each bidder’s best strategy is to

bid the highest amount she would be willing to pay for the object, no matter what

the other bidders do. This derives from the fact that the winner cannot improve

the price she pays by lowering her bid. We return to this auction in Section 2.1

for a rigorous proof. Viewed as an optimization problem, this auction solves the

problem of awarding an object to the bidder who values it most.

The second-price auction works equally well for procurement auctions, where
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the mechanism is acting as a buyer rather than a seller. For instance, the mech-

anism could be run by the government, where the agents are contractors bidding

on a public project. The contract is awarded to the lowest bidder, who is paid the

amount of the second-lowest bid.

The second-price auction is often called the Vickrey auction after William Vick-

rey, who popularized and generalized it, and studied its theoretical properties in

his landmark 1961 paper [69]. However, some scholars trace the history of this

auction back to the famous German poet Johann Wolfgang von Goethe, who used

it as early as 1797 in some innovative negotiations with publishers [50, 44].

The United States Treasury now uses a slight variant on the Vickrey auction

for its competitive bidding process that determines the interest rates for trea-

sury securities purchased in large blocks by financial institutions. Instead of all

winning bidders paying what they bid, they all pay the bid of the highest losing

bidder. As early as 1959, Milton Friedman advocated this in front of Congress.

The Treasury experimented with it briefly in the 1970’s, before returning to the

“pay what you bid” rule for the auction winners. However, a 1991 scandal in which

Salomon Brothers, Inc. admitted to submitting fraudulent bids (which resulted in

a fine of $290 millon) and two other successful attempts to cheat the bidding sys-

tem prompted Friedman and other economists to advocate the Vickrey auction

again [63, 24, 12]. The Treasury experimented with selling 2-year and 5-year notes

using the Vickrey auction, starting in 1992. This trial was so successful that they

switched all treasury issues to the Vickrey format in 1998. According to their re-

port [43], the switch resulted in a more equitable spread of winners, and somewhat

decreased costs for the American taxpayer. They attributed this to more aggres-

sive bidding behavior by a wider range of institutions, who no longer had nearly
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as much to lose if they slightly misjudged the value they should bid. The popular

online auction site eBay also uses a variant on the Vickrey auction.1

The Vickrey auction is an example where the study of truthful mechanism

design has had a significant positive impact on policy and practice. In recognition

of this, Vickrey received the 1996 Nobel Prize in economics for his work.

1.2.2 Shortest paths

Suppose we want to send a package (or data packet) through a transportation (or

data) network from a source node to a destination node. We model the network

as a graph, where the edges of the graph denote the transportation links of the

network. If there is a cost associated with shipping on each edge that we use, then

we want to choose the cheapest path. This is the classic shortest path problem.

The cost is usually viewed as a type of distance, hence the name “shortest” path.

Now suppose that each edge is owned by a different economic agent who will

incur her edge cost if her edge is used. In order to get an agent to let us use her

edge, we will have to pay her to reimburse her. The trick is, only that agent knows

her true cost. Can we still manage to choose the cheapest path?

Suppose that we use the following naive protocol for selecting our path. We

ask each agent to report the cost for her edge, and we select the shortest path with

respect to these costs. If an agent reports her true edge cost and ends up being on

the selected path, then she obtains a profit of zero, since the payment she receives

equals the cost she incurs. Such an agent should overstate her cost somewhat, so

that if she is on the selected path she will be paid more than the cost she incurs,

obtaining a positive profit. However, if she exaggerates too much then some other

1One key difference is that people are allowed to submit multiple bids over time.
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path will become less expensive and our protocol will choose that path instead.

Thus, it might be difficult for her to figure out how much she should overstate her

cost, since this depends on what costs the other agents decide to report. In any

event, we can expect the agents to lie about their costs, but it is unpredictable

how much they will do so.

Nisan and Ronen applied the VCG result to create a truthful mechanism for

this problem [58]. The protocol still asks each edge to report her cost, and chooses

the shortest path with respect to these costs. However, each edge that is on the

selected path is paid more than the cost she announced. These payments are

designed very cleverly so that each agent’s best strategy is always to report her

true cost, no matter what the other agents do. Since we assume the agents are

rational, they will always play this best strategy. Thus, this mechanism succeeds

in making the agents behave predictably, and it maximizes the “social welfare,”

meaning that it minimizes the total cost incurred by the agents.

Every truthful mechanism must pay a premium to the agents in order to induce

truth-telling. The VCG mechanism is not the only truthful mechanism for this

problem, so it may not be the one that results in the lowest overall payments. We

advocate the study of frugal mechanisms (a term we coined in [5, 6]), which keep

the payments low. This is the main topic of Chapter 3.

Feigenbaum et al. [21] studied the shortest path problem in a slightly different

model, where the nodes incur costs rather than the edges. They proposed this as

a model for the problem of routing data packets on the Internet through least-

congested paths. The nodes represent autonomous systems (AS’s), the various

subnetworks of the Internet that are owned by different entities, such as the Sprint

network, the AT&T network, or your local Internet service provider. Transit traffic
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refers to packets that travel through an AS, but whose origin and destination lie

outside the AS. When one AS hands off traffic to another, they exchange some

congestion information in order to help route the traffic through uncongested AS’s.

Since accepting transit traffic costs the AS, it may benefit by exaggerating its

claims about its own congestion. In using a mechanism with side payments to

induce truth-telling, the hope is that we would improve the system performance

by taking away the incentive for an AS to ever misreport its congestion.

1.3 Mathematical framework

In this dissertation, we adopt the algorithmic mechanism design framework set

forth by Nisan and Ronen [58]. We describe all of the notation first, then show

how the Vickrey auction and shortest path examples fit in.

There is a set of agents N that the mechanism must deal with, and a collection

of outcomes O from which it wishes to choose. Each agent i is assumed to have

a type ti, which encapsulates all relevant information about that agent. Agent i’s

type is drawn from some set Ti, which is public knowledge, but the actual value

of ti is known only to agent i. We will often refer to i’s type as its secret data or

true value. Let t denote the vector of types. The mechanism works by asking each

agent to report her type, and computing an outcome and a set of payments based

on the reported types. We refer to i’s reported type as its bid bi, and let b denote

the vector of bids. We let T =
∏

i∈N Ti, Pi : T → R be the payment to agent i,

and P = (Pi)i∈N be the payment scheme. Thus, a mechanism M consists of a pair

(O,P ), where O : T → O is the output function, and P is the payment scheme.

Each agent i has a valuation function vi : O → R that describes her intrinsic

preferences for the various outcomes. This valuation function is one of the items
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specified by the type ti, so technically it should be written as vi(·, ti), but we will

usually write it as vi(·), keeping in mind that it depends implicitly on ti.

Each agent’s goal is to maximize her utility function,2 which we assume to be

of the form ui(o, Pi) = vi(o) + Pi. In the literature, this form of utility function

is called quasi-linear. Since the mechanism determines the outcome and payments

from the bids, we will often abuse notation by writing ui(b) and vi(b) as shorthand

for ui(O(b), Pi(b)) and vi(O(b)).

Of course, an agent’s utility depends both on her bid and the other agents’ bids.

Let b−i denote the vector of all bids other than agent i’s. Similarly, let t−i denote

the vector of all other agents’ types, and T−i =
∏

j∈N−i Tj the space of those type

vectors. For convenience, we often write b as (b−i, bi). We say that truth-telling

is a dominant strategy for agent i if ui(b−i, ti) ≥ ui(b−i, bi) for all b−i ∈ T−i and

bi, ti ∈ Ti. That is, agent i’s best strategy is to report her true type, no matter

what the other agents do.

If there is a payment scheme P such that the mechanism (O,P ) is truthful,

then P is said to implement the output function O, and O is said to be imple-

mentable. Most of the time, the goal of our mechanisms will be to select o ∈ O

to as to maximize or minimize some objective function g(o, t). In other words, we

want to implement the output function O that optimizes g, or at least one that

approximately optimizes it.

Often, the only role of the type ti is to specify the valuation function vi. In

those cases, we might as well simply declare the type to be the valuation function.

However, the type might also contain some extra information that is relevant to

the objective function g(o, t) but not to the agent’s valuation. For instance, in a

2We do not assume in general that these are von Neumann-Morgenstern utili-
ties. See Section 2.5.
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network flow problem where the agent owns an edge, her type might specify the

capacity of that edge.

In the vast majority of recent work in algorithmic mechanism design, the out-

comes and valuation and functions are assumed to have a very simple form. Each

outcome is assumed to pick some set of “winners,” and each agent’s type is a real

number describing her valuation for winning. Thus, if qi is a binary (i.e., {0, 1})

variable indicating whether i wins, then vi = vi(qi) = ±tiqi, where the sign de-

pends on whether the agent accrues a cost or benefit from winning. The vector

(qi)i∈N is called the allocation. Notice that the general model would allow agent

i’s valuation to depend on all of the allocations qj, j ∈ N , but here it depends

only on qi. We use this binary allocation model for much of our work, but also

consider a more general model where the qi can be any non-negative real number.

We refer to valuations of the form vi = ±tiqi as one-dimensional linear valuations.

All of our work assumes this form for the valuations.

Examples. We can describe the Vickrey auction using the binary allocation

model. In order for this auction to fit in this model, we must assume that each

agent cares only about whether or not she wins and how much she pays, not about

who else might win, or what they pay. Agent i’s type ti is a non-negative real

number describing her valuation for winning. Each possible outcome o ∈ O is

described by a vector of indicator functions (qi)i∈N , where qi(b) = 1 if i wins, and

otherwise qi(b) = 0. Thus, agent i’s valuation function is vi(b) = tiqi(b), and her

utility is ui(b) = tiqi(b) + Pi(b). Notice that if i wins, Pi is negative, because the

agent is paying money to the mechanism.

If bi is the largest bid in b, then the Vickrey auction chooses O(b) to be the

allocation that gives the item to i. (If there is a tie for the highest bid, this
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must be resolved by some tie-breaking rule, which we have left unspecified.) If

i is the winner, then Pj(b) = 0 for j 6= i, and Pi(b) = −maxj 6=i bj. One way of

looking at the Vickrey auction is that it maximizes the objective function g(o, t) =

∑

i∈N vi(o). We will prove in Section 2.1 that the Vickrey auction is truthful.

In the shortest path problem, the agents are the edges. Agent i’s type ti is

a non-negative number denoting the cost she incurs if her edge is used. The

feasible outputs O are all allocation vectors (qi)i∈N where the winning edges form

a path from the source to the destination in the graph. Thus, her valuation is

vi(b) = −tiqi(b) and her utility is ui(b) = −tiqi(b) + Pi(b). Since the mechanism

will pay money to the agents, the Pi’s are positive.

1.4 Our contributions

As we mentioned in Section 1.1, the major positive result in mechanism design is

the VCG mechanism. This is a truthful mechanism that handles arbitrary valua-

tion functions for the agents. We describe the mechanism precisely in Section 2.3.2.

For now, it is enough to know that the VCG mechanism selects the outcome that

maximizes the total valuation of all the agents, which is called the utilitarian ob-

jective function.

Our contribution is to address four major drawbacks of the VCG mechanism.

First, in a setting where the mechanism is buying something from the agents, the

VCG mechanism can sometimes be forced to overpay by a large factor compared

to the actual costs incurred by the agents. Second, the VCG mechanism works

only to optimize the utilitarian objective function, whereas in many optimization

problems we are interested in some other objective. Third, even in situations

where the utilitarian objective is appropriate, the VCG mechanism is often NP-
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hard to compute. Fourth, the VCG mechanism is resistant to manipulation by

single agents, but sometimes coalitions of agents can collude to manipulate the

mechanism. We devote one chapter to addressing each of these drawbacks.

Since VCG has these problems, we will be looking for alternate truthful mech-

anisms that solve them. Unfortunately, there is a theorem by Roberts (see Sec-

tion 2.3.2) that says VCG is essentially the only truthful mechanism, if the agents’

valuations are allowed to be arbitrary. Therefore, we must restrict the form of the

agents’ valuations in order to be able to create other truthful mechanisms. The

reason that we consider only problems with one-dimensional linear valuations is

that these admit a much wider class of truthful mechanisms.

In order for a mechanism to be useful, we must be able to compute the output

and payments efficiently. Therefore, we will always focus on algorithms that run

in polynomial time. Many of the objective functions that we consider are NP-hard

to optimize exactly, so we will use approximation algorithms. A solution to an

optimization problem is α-approximate if it is within a multiplicative factor of

α of the optimum. An α-approximation algorithm is an algorithm that runs in

polynomial time, and always returns a solution that is α-approximate.3

It is often difficult to design an approximation algorithm for the output function

in a way that allows us to attach a payment scheme yielding a truthful mechanism.

Overcoming this difficulty is one of the major themes of Chapters 4 and 5.

We now give an overview of the organization of this dissertation.

Chapter 2: Preliminaries We give a brief survey of the most relevant results in

mechanism design. We also develop some tools for computing payments efficiently,

3See the book [68] for a good introduction to the field of approximation algo-
rithms.
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and discuss randomized mechanisms, which will be used in later chapters.

Chapter 3: Frugality We consider cases in which the mechanism is hiring a

team of agents to perform a task, such as the shortest path problem described in

Section 1.2.2. We investigate the “price of truthfulness” – how much a truthful

mechanism can be forced to overpay, compared to the actual costs incurred by

the agents. The VCG mechanism can be forced to overpay by large amounts, so

we investigate other truthful mechanisms for shortest paths and related problems.

Roughly, the results of this chapter show that the overpayment is inherent to the

problem, not specific to VCG. This chapter is based primarily on the paper “Frugal

path mechanisms” [6], co-authored with Éva Tardos.

Chapter 4: Truthful discrete optimization We design polynomial-time truth-

ful mechanisms for a variety of optimization problems with non-utilitarian objec-

tives, such as load balancing, maximum flow, and facility location. This chapter is

based primarily on the paper “Truthful mechanisms for one-parameter agents” [5],

co-authored with Éva Tardos.

Chapter 5: Randomized approximations to VCG We consider cases where

we do want to maximize the utilitarian objective, but cannot use VCG because it is

NP-hard to compute the optimal output. We show how to adapt the technique of

randomized rounding to obtain truthful mechanisms that approximately optimize

the objective. We describe this technique in the context of a particular combi-

natorial auction problem. This chapter is based on the paper “An approximate

truthful mechanism for combinatorial auctions with single parameter agents” [4],

co-authored with Christos Papadimitriou, Kunal Talwar, and Éva Tardos.
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Chapter 6: Collusion Since coalitions of agents can sometimes collude to cheat

the VCG mechanism, if we are to use this mechanism it would be good to un-

derstand which groups can successfully collude, and under which circumstances

these opportunities arise. We investigate these issues in the case of a well-studied

problem called multicast cost-sharing. This chapter is based on parts of the paper

“Approximation and collusion in multicast cost-sharing” [3] co-authored with Joan

Feigenbaum, Arvind Krishnamurthy, Rahul Sami and Scott Shenker.



Chapter 2

Preliminaries
This chapter contains background information motivating our model, and tools

used in the remaining chapters. Section 2.1 proves that the Vickrey auction is

truthful, as we promised in Chapter 1. Section 2.2 discusses why we focus on

truthful mechanisms, and includes the famous “revelation principle.” Section 2.3

reviews some of the major general results in mechanism design, including the VCG

mechanism, mentioned in Chapter 1. Section 2.4 describes the relevant results

on constructing truthful mechanisms when the agents have one-dimensional linear

valuations, the model we use throughout the remaining chapters. Section 2.5 intro-

duces our notions of truthfulness for randomized mechanisms. Section 2.6 shows

how to overcome some difficulties in computing payments. Finally, Section 2.7

discusses some limitations of our model.

Sections 2.1 and 2.4 through 2.6 develop essential tools that are used in the

remaining chapters. The other sections exist primarily to provide context, and

could be skimmed.

2.1 The Vickrey auction

Recall the Vickrey auction introduced in Section 1.2.1. An auctioneer is selling

a single item. Each bidder i has a non-negative valuation ti for receiving the

item, and valuation 0 otherwise. The auctioneer collects the bids b, selects the

highest bidder to be the winner, and charges her the amount of the second-highest

bid. We had previously left the tie-breaking rule unspecified. This detail is not

terribly important, but let us fix a rule for concreteness. We number the agents

14
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from 1 to |N |. If two bidders tie for the highest bid, then the lower-numbered

agent is declared the winner. Recall from Section 1.3 that we assume agent i’s

utility is given by ui(b) = tiqi(b)−Pi(b), where Pi(b) is the amount she pays to the

mechanism and qi(b) ∈ {0, 1} indicates whether i wins.

Theorem 2.1.1 The Vickrey auction is truthful.

Proof: We must prove that, for each agent i, setting bi = ti is a dominant

strategy. To see this, fix i and suppose that the highest bid among all other agents

is h. If h < ti, then by bidding ti, agent i wins the object and pays h, resulting in

a positive utility ti −h. In fact, every bid above h yields an identical result: i wins

the object at price h, whereas bidding below h will cause i to lose the auction,

resulting in a utility of 0. Thus, bidding ti is an optimal strategy for i in this

case. If h > ti, then bidding anything below h will result in a utility of 0, whereas

bidding above h will result in a negative utility of ti − h. If h = ti, then agent

i is indifferent between losing the auction and winning at price h, so all bids are

equally good. Therefore, bidding truthfully in the Vickrey auction is a dominant

strategy for agent i, because no matter what the other agents bid, setting bi = ti

maximizes i’s utility.

Note that bidding truthfully in the Vickrey auction is the only dominant strat-

egy for i, since for every bid bi 6= ti, there is some value of b−i that will cause this

bid to be suboptimal, namely any b−i such that maxj 6=i bj lies strictly between bi

and ti.
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2.2 Why do we require truthfulness?

A natural question to ask is why we are fixated on truthful mechanisms. This

really encompasses two separate issues. First, why do we restrict our attention to

mechanisms where the agents’ strategies are simply to report their types? Why not

instead construct games with more general spaces of strategies, where each agent

still has a dominant strategy? Second, why do we desire games with dominant

strategies? We address these two issues separately.

First we define precisely what we mean by dominant strategies. Suppose that

agent i can select her strategy from an arbitrary set Ai. In the special case that

Ai = Ti, as we have been using so far, then the mechanism is called a direct

revelation mechanism. Let A−i =
∏

j 6=i Aj, and A =
∏

i∈N Ai. Then the output

and payments are now functions of a ∈ A, the vector of strategies chosen by

the agents. Analogous to our notation for bids, we let a−i denote the vector of

strategies chosen by all agents besides i, and write the vector of chosen strategies

as either a or (a−i, ai), as is convenient. A strategy a∗
i ∈ Ai is a dominant strategy

for agent i if ui(a−i, a
∗
i ) ≥ ui(a−i, ai) for all a−i ∈ A−i and ai ∈ Ai. As usual,

ui depends implicitly on agent i’s type, so we really mean that a∗
i is a dominant

strategy for agent i when her type is ti.

A function f : T → O is called a social choice function. It specifies the outcome

desired by the mechanism designer, when the type vector is t. The social choice

function f is said to be implementable in dominant strategies if there exist an

output function O : A → O and accompanying payment functions Pi : A → R

such that, for all i ∈ N and ti ∈ Ti, agent i has a dominant strategy a∗
i (ti) in the

mechanism (O,P ), and O((a∗
i (ti))i∈N ) = f(t). In words, when each agent plays

her dominant strategy, the mechanism gives the desired output.
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A result called the revelation principle says that every social choice function

implementable in dominant strategies can be implemented by a truthful direct

revelation mechanism. The idea behind this is to simulate any mechanism with

dominant strategies by using a direct revelation mechanism.

Theorem 2.2.1 (Revelation principle) If there is a mechanism M that imple-

ments f , then there is also a truthful direct revelation mechanism M′ that imple-

ments f .

Proof: We construct a mechanism M′ to simulate M. Let a∗
i (ti) denote one dom-

inant strategy for agent i when her type is ti. In the direct revelation mechanism

M′, let b result in the same outcome and payments that the vector of strategies

(a∗
i (bi))i∈N produced in M. In M′, clearly it is a dominant strategy for agent i to

bid bi = ti, because this is equivalent to playing the dominant strategy a∗
i (ti) in

M.

We will be concerned with what social choice functions can and cannot be

implemented in dominant strategies, and so we focus only on finding truthful direct

revelation mechanisms. However, one should note that in practice it is sometimes

useful to use indirect mechanisms. For instance, an agent may have to do some

computation in order to figure out her valuation for a good being auctioned. In this

case, it may be easier for the agent to respond to a series of questions of the form

“Is your valuation higher than h?” than to answer the question, “What is your

valuation?” In some cases an agent’s type could come from a very complicated

space, so describing it explicitly could be burdensome. This will not be an issue

for us, since all of the types we deal with are just single real numbers.

We now come to the second question: why do we require dominant strategies?

In game theory, there are many theories about how agents will react to a strategic
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situation. An assertion about the combination of strategies that a group of agents

will play is called an equilibrium concept or solution concept. Whenever we apply a

solution concept, we should ask ourselves how likely it is that agents will actually

play according to this prediction. The concept of dominant strategies is the most

convincing one.

In the bulk of the game theory literature, dominant strategies do not receive

much attention, because in most naturally-occurring games, they do not exist.

In fact, some would even argue that games where dominant strategies do exist

are not mathematically interesting, because it is obvious what each agent should

do. One could study mechanism design using some other solution concept, such as

Nash equilibrium, Bayesian Nash equilibrium, or the serially undominated set (see,

e.g., [59, Chapter 10]). But the point of mechanism design is to accomplish some

task, not necessarily to create interesting games. Whereas most of game theory

tries to gain a grasp on how agents will behave in the face of uncertainty about

the other agents’ choice of strategies, mechanism design attempts to create games

where the agents’ actions will be predictable. Whenever it is possible to design

mechanisms with dominant strategies, this is the best choice.

Another argument for designing mechanisms with dominant strategies is that

it makes the game much easier for the agents to play. For instance, in an auction

setting, each agent only has to compute what the good is worth to her, and need

not worry about doing any research into how the other agents are likely to play.

This was cited by the U.S. Treasury as one of the primary reasons they adopted a

variant of the Vickrey auction [43].

For these reasons, we stick with dominant strategies as our solution concept.
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2.3 General constructions and impossibility results

In this section, we survey the main results of mechanism design, concerning what

truthful mechanisms we can design, depending on how much we assume about

the form of the agents’ utilities. To summarize, the Gibbard-Satterthwaite theo-

rem says that there are no interesting truthful mechanisms if the valuations are

arbitrary and the mechanism is not allowed to make side payments. If side pay-

ments are allowed and the valuations are arbitrary, then the VCG mechanism is

truthful, but Roberts’s theorem says VCG is essentially the only option. Thus, to

create other mechanisms, we must make further assumptions about the form of

the valuations. We take this up in Section 2.4.

2.3.1 The Gibbard-Satterthwaite theorem

In this section, we consider trying to create truthful mechanisms without using

side payments. In this case, the only useful information that the utility function

ui gives us is the relative order of agent i’s preferences. The actual numbers ui(o)

for o ∈ O are irrelevant. So we represent ui with a preference relation ºi. The

assertion x ºi y, where x, y ∈ O means “agent i likes outcome x at least as well as

outcome y.” This is equivalent to ui(x) ≥ ui(y). Similarly, x ≻i y is equivalent to

ui(x) > ui(y). A preference relation ºi is said to be strict if no two outcomes are

considered equally good. That is, for every pair of outcomes x and y, we have either

x ≻i y or y ≻i x. In this case, we denote the preference relation by ≻i instead

of ºi. Let P denote the set of all strict preference relations over O. A preference

profile ≻ is a vector of preference relations, one for each agent. Suppose that the

type space Ti = P for each agent i. Then T = PN . There is one uninteresting

sort of truthful mechanism called a dictatorship.
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Definition 2.3.1 An output function O : PN → O is dictatorial if there exists

an agent i ∈ N such that for every preference profile ≻, we have O(≻) = o, where

o is the outcome that ≻i ranks highest.

In other words, a dictatorial choice rule ignores the preferences of all agents

besides i, and just selects i’s favorite outcome. This mechanism is truthful, because

for all agents j 6= i, all strategies are equally bad, and agent i is best off telling

the truth, since the mechanism just chooses the result that she says is her favorite.

Clearly, such a mechanism is undesirable. The bad news is that we cannot do any

better.

Theorem 2.3.2 (Gibbard [26], Satterthwaite [65]) Suppose that the range of

O consists of at least three possible outcomes, and O yields a truthful mechanism.

Then O is dictatorial.

We refer the reader to [45, pp. 873-876] for a proof. This result feels very

similar to Arrow’s impossibility theorem for voting systems (see [7] or [45, pp.

792-799]), and in fact the standard proof uses Arrow’s theorem.

2.3.2 The Vickrey-Clarke-Groves mechanism and

Roberts’s theorem

The Gibbard-Satterthwaite theorem motivates us to investigate what types of

truthful mechanisms are available if we allow side payments. This leads us to

the VCG mechanism mentioned in Chapter 1. This and its weighted variant are

always truthful. Surprisingly, these are the only truthful mechanisms, if we allow

the valuation functions to be arbitrary. Throughout this section, we identify an

agent’s type with her valuation function.
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The Vickrey auction (Section 2.1) gives some clues as to how a truthful mech-

anism must look. In the Vickrey auction, notice that the price an agent pays is

independent of her own bid, up to whether she wins or loses: every bid above some

threshold T causes her to win and pay T , whereas every bid below T causes her

to lose and pay nothing. Indeed, this principle holds in general.

Proposition 2.3.3 (Bid-independence principle) If the mechanism (O,P ) is

truthful and O(b−i, bi) = O(b−i, b
′
i), then Pi(b−i, bi) = Pi(b−i, b

′
i).

Proof: Assume on the contrary that Pi(b−i, bi) < Pi(b−i, b
′
i). When ti = bi and

the other agents bid b−i, agent i is better off to lie by bidding b′i.

Thus, Pi(b) can be thought of as Pi(b−i, O(b−i, bi)). That is, i’s payment depends

on her bid only insofar is it affects the outcome chosen.

The biggest positive result in mechanism design is the Vickrey-Clarke-Groves

(VCG) mechanism [69, 14, 31] (see also [45, Chapter 23]), a generalization of the

Vickrey auction. For this mechanism, each agent i’s type consists of her valuation

function vi, so bi is the valuation function that i reports. The VCG mechanism

can be used when the goal of our mechanism is to maximize the total valuation of

the agents.

The VCG mechanism (O,P ) is given by:

O(b) = o∗ where o∗ ∈ argmaxo∈O
∑

i∈N
bi(o)

Pi(b) =
∑

j 6=i

bj(o) + hi(b−i)

where the functions hi are arbitrary. That is, VCG selects the outcome that

maximizes the total reported valuation. Notice that, as required by the bid-

independence principle, the payment Pi depends on bi only through its influence
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on the outcome o∗. The hi terms in the payments are irrelevant to truthfulness,

because nothing that agent i does can change hi(b−i). The
∑

j 6=i bj(o) term is the

ingenious bit, because it serves to make the utility of a truthful bidder exactly

equal to the utilitarian objective function (modulo the hi term).

Theorem 2.3.4 The VCG mechanism is truthful.

Proof: Agent i’s utility in the VCG mechanism is (
∑

j 6=i bj(o
∗)+vi(o

∗))+hi(b−i).

Since i’s bid bi has no effect on the hi term, she should select her bid so as to

maximize the first term, via the choice of o∗ that it induces. Suppose that o is the

outcome that maximizes
∑

j 6=i bj(o) + vi(o). Agent i can cause the mechanism to

choose this outcome (or an equally good one) by bidding bi = vi, because then the

function that the mechanism maximizes is exactly this term. If agent i submits

a different bid bi, then the mechanism will select an outcome o∗ that maximizes

∑

j 6=i bj(o
∗) + bi(o

∗), but does not necessarily maximize
∑

j 6=i bj(o
∗) + vi(o

∗).

Recall that the objective function that VCG optimizes, the sum of the total

valuations, is called the utilitarian objective. The VCG mechanism works precisely

because it chooses the payment function to line up each agent’s utility with the util-

itarian objective. One particular choice of the functions hi results in a particularly

nice interpretation. For a subset of agents S ⊆ N , let V (S) = maxo∈O
∑

j∈S bj(o).

If we set hi(b−i) = −V (N − i), then agent i’s overall utility in the VCG mechanism

when she bids truthfully is ui = V (N ) − V (N − i). This can be interpreted as

the net benefit to society that results from the presence of agent i. In most appli-

cations, V (S) is increasing in the set S, and so a truth-telling agent never incurs

negative utility.

The basic VCG mechanism can be modified by weighting the agents differently

and adding a bias to the outcome function, while preserving truthfulness [30, 64].
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Specifically, let w ∈ RN
+ be a set of non-negative weights. Let H : O → R be a

“bias” function. The resulting weighted, biased VCG mechanism is defined by

O(b) = o∗ where o∗ ∈ argmaxo∈O(
∑

i∈N
wibi(o) + H(o))

Pi(b) =
1

wi

(

∑

j 6=i

wjbj(o∗)
)

+ hi(b−i) when wi > 0

Pi(b) = hi(b−i) when wi = 0,

where the choice of o∗ does not depend on any bi such that wi = 0. This last

condition is just a technical nuisance to keep an agent i with wi = 0 from benefitting

by lying.

Theorem 2.3.5 For every choice of weights and bias function, the weighted, bi-

ased VCG mechanism is truthful.

The proof is essentially the same as the proof of Theorem 2.3.4. Surprisingly, these

are the only truthful mechanisms, if we allow valuations to be arbitrary.

Theorem 2.3.6 (Roberts [64]) Suppose each agent i’s valuation is allowed to

be any function vi : O → R, the mechanism (O,P ) is truthful, the range of O is all

of O, and |O| ≥ 3. Then the mechanism is a weighted, biased VCG mechanism.

By the range of O, we mean the set {O(t) ∈ O : t ∈ T }. Notice that if the

range of O is less than the entire co-domain O, then we can restrict the co-domain

to be range(O), and then apply Theorem 2.3.6.

The VCG mechanism is good because it handles general valuations. However, if

the mechanism designer wishes to optimize some function other than slight variants

on the utilitarian objective, then it is useless. Because of Theorem 2.3.6, if we want

to optimize any other functions, we will have to restrict the form of the agents’

valuations.
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2.4 One-dimensional linear valuations

As we mentioned in Section 1.3, our work will assume that the agents have one-

dimensional linear valuations. Recall that this means the outcome of the mech-

anism will be a vector of allocations (qi)i∈N , agent i’s type ti is a non-negative

real number, and her valuation is given by vi = ±tiqi. Thus, her type represents

her cost or benefit per unit of allocation. The quantity qi might represent some

amount of work that the agent must perform, or an amount of a good that she

gets to consume.

Roughly, the main theorem is that an output function is implementable if and

only if the allocation to agent i is monotone in i’s bid. In the case that vi = tiqi, the

allocation should be increasing; in the case that vi = −tiqi, the allocation whould

be decreasing. We show a standard proof of this fact in Section 2.4.2, along with

an alternate simpler pictorial proof of ours in Section 2.4.3.

One-dimensional linear valuations are actually a special case of a somewhat

more general result proved by Mirrlees [49] in 1971 and extended in [55, 10, 46, 32].

This result concerns agents whose utility functions satisfy a condition called the

single-crossing property, and says roughly that an output function is implementable

if and only if the allocations are monotone. We refer the reader to [25, pp. 257-262]

for a full discussion.

We first examine the case of binary allocations (qi ∈ {0, 1}), then move on to

the case of real allocations (qi ≥ 0).

2.4.1 Binary allocations

Suppose that the quantities qi are binary, and vi(qi) = −tiqi. In this case, for

qi(b−i, bi) to be a decreasing function of bi implies that there is a single threshold
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value where qi jumps from 1 to 0. We will show that the mechanism is truthful if

and only if it has such thresholds.

For each b−i, suppose there is some threshold bid Ti(b−i) such that if bi < Ti(b−i)

then i “wins” (i.e., qi = 1), while if bi > Ti(b−i) then i loses (i.e., qi = 0). If

bi = Ti(b−i), then we do not care whether i wins or loses. If i loses, she is paid

Pi(b−i, 0). If she wins, she is paid Pi(b−i, 0) + Ti(b−i). We call such a mechanism

a threshold mechanism.

Theorem 2.4.1 A mechanism with binary allocations is truthful if and only if it

is a threshold mechanism.

Proof: The proof that every threshold mechanism is truthful is essentially iden-

tical to the proof of Theorem 2.1.1, that the Vickrey auction is truthful.

Conversely, suppose that the mechanism is truthful. Assume for a contradiction

that there exist b−i ∈ T−i and bids T1 < T2 for i such that qi(b−i, T1) = 0 and

qi(b−i, T2) = 1. Let ∆P = Pi(b−i, T2) − Pi(b−i, T1). When i’s true type is T1,

then it cannot be to her advantage to report T2, so ∆P ≤ T1. That is, the extra

payment she would receive is no more than the extra cost she incurs. When i’s

true type is T2, then it cannot be to her advantage to report T1, so ∆P ≥ T2. This

is a contradiction. Thus, the mechanism has threshold bids.

By the bid-independence principle (Proposition 2.3.3), Pi(b) depends only on

b−i and qi(b). Let us fix b−i, and let ∆P = Pi(b−i, T1) − Pi(b−i, T2), where T1 <

Ti(b−i) < T2. When i’s true type is T1, it cannot be to her advantage to report T2,

so ∆P ≥ T1. When i’s true type is T2, it cannot be to her advantage to report T1,

so ∆P ≤ T2. This holds for all T1 < Ti(b−i) < T2, so ∆P = Ti(b−i).

Definition 2.4.2 A mechanism satisfies the voluntary participation condition if

an agent who reports her type truthfully is always guaranteed a non-negative utility.
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A threshold mechanism achieves the voluntary participation property if and

only if Pi(b−i, 0) ≥ 0. Since the mechanism typically wants to minimize its pay-

ments, we might as well take Pi(b−i, 0) = 0. Thus, the payment to a winning agent

i exactly equals her threshold bid Ti(b−i).

Thus, for the case of binary allocations, the allocation function is implementable

if and only if qi(b−i, bi) is monotone decreasing in bi, for all b−i. Analogously, in

the case where vi = +tiqi, the allocation function is implementable if and only if

qi(b−i, bi) is monotone increasing in bi, for all b−i.

2.4.2 Real allocations

The case of real allocations qi ≥ 0 is more complicated, but yields the same mono-

tonicity result in the end. If vi(qi) = −tiqi, then the allocation is implementable if

and only if qi(b−i, bi) is monotone decreasing in bi, for all b−i. And if vi(qi) = +tiqi,

then the allocation is implementable if and only if qi(b−i, bi) is monotone increasing

in bi, for all b−i.

Since we are arguing about dominant strategies, the characterization problem

actually reduces to the single-agent case. For fixed b−i, qi(b−i, bi) becomes just a

function of the bid bi. Thus, for the rest of this section we shall argue about a

single agent with a type t ∈ R, who bids a number b ∈ R, causing herself to receive

allocation q(b) and payment P (b), resulting in an overall utility of u = P (b)−tq(b).

For the symmetric case where the utility is u = +tq(b) − P (b), the derivation is

similar.

Derivation of monotonicity result for arbitrary loads. Here we present a

standard argument, following the presentation in [39, pp. 63-65]

Suppose we have a truthful mechanism (q, P ) for a single agent. We start by
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deriving necessary conditions for truthfulness, which turn out to also be sufficient.

Let us define U(t) = −tq(t) + P (t). Thus, U(t) denotes the agent’s utility when

she bids her true type. Truthfulness is equivalent to, for all b, t ≥ 0,

U(t) ≥ P (b) − tq(b)

U(t) ≥ P (b) − bq(b) + bq(b) − tq(b)

U(t) ≥ U(b) + (t − b)(−q(b)). (2.1)

Thus, U(t) is a convex function, and −q(t) is a subgradient at t. Standard results

from analysis show that U(t) is continuous on [0,∞), differentiable almost every-

where, and is equal to the integral of its derivative. Also, U ′(t) = −q(t) wherever

U is differentiable. Thus, U(t) = U(0) −
∫ t

0
q(x)dx. Writing U(t) = −tq(t) + P (t)

and rearranging gives

P (t) = P (0) + tq(t) −
∫ t

0

q(x)dx. (2.2)

Since U(t) is convex, its derivative is increasing, which implies that q(t) is decreas-

ing.

Thus, for the mechanism to be truthful, it is necessary that q(t) is decreasing

and P (t) is given by equation (2.2). We can easily verify that these conditions are

also sufficient. To check this, note that the truthfulness conditions are equivalent

to inequality (2.1) holding for all b, t ≥ 0. Using equation (2.2) and the definition

of U , this condition rearranges to
∫ t

b
q(x)dx ≤ (t − b)q(b). This holds because q(b)

is decreasing. Thus, we have proven the following result.

Theorem 2.4.3 Consider a mechanism (q, P ) for a single agent of type t, where

u(b) = −tq(b) + P (b). The mechanism is truthful if and only if q(b) is decreasing

in b, and

P (b) = P (0) + bq(b) −
∫ b

0

q(x)dx (2.3)
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In the event that
∫ ∞

0
q(x)dx < ∞, we can set P (0) =

∫ ∞
0

q(x)dx, and the pay-

ment formula reduces to P (t) = tq(t)+
∫ ∞

t
q(x)dx. In this case U(t) =

∫ ∞
t

q(x)dx >

0, so we satisfy the voluntary participation property as well. As mentioned previ-

ously, this extends easily to the case of multiple agents.

Theorem 2.4.4 Consider a mechanism (q, P ) for a single agent of type t, where

u(b) = −tq(b)+P (b). Given a monotone decreasing allocation function q(b), we can

choose payments to implement q and satisfy the voluntary participation condition

if and only if
∫ ∞

0

q(x)dx < ∞. (2.4)

In the case that this integral is finite, then setting

P (t) = tq(t) +

∫ ∞

t

q(x)dx (2.5)

is the minimum payment function that implements q and satisfies the voluntary

participation condition.

Proof: We have already noted that setting the payment as indicated guarantees

truthfulness and the voluntary participation condition, in the case that (2.4) holds.

Now suppose that the payment function P implements q and satisfies voluntary

participation. By Theorem 2.4.3, the payment function must satisfy P (b) = P (0)+

tq(t)−
∫ t

0
q(x)dx. Thus, U(t) = P (0)−

∫ t

0
q(x)dx. If we are to satisfy the voluntary

participation condition, then we must have
∫ t

0
q(x)dx ≤ P (0) for all t. Thus,

∫ ∞
0

q(x)dx < ∞, and the minimum value we can choose for P (0) is
∫ ∞
0

q(x)dx.

An analogous theorem with an analogous proof holds for the case where v =

+tq. We state this theorem here for future reference. Notice that in this case the

mechanism is collecting a payment from the agent, so we would typically want to

maximize the payment.
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Figure 2.1: This graph shows why we cannot allow the load to increase with b.

Theorem 2.4.5 Consider a mechanism (q, P ) for a single agent of type t, where

u(b) = +tq(b)−P (b). The allocation function q(b) is implementable if and only if it

is monotone increasing. Given such an allocation function, the maximum payment

function that satisfies the voluntary participation condition and yields a truthful

mechanism is

P (b) = P (0) + tq(t) −
∫ t

0

q(x)dx. (2.6)

2.4.3 Pictorial proofs

We now give an alternate simple pictorial proof of Theorem 2.4.3.

Proof of Theorem 2.4.3: We explain the pictorial proofs of Figures 2.1 and 2.2.

In Figure 2.1, A and B denote the areas of the rectangles they label. If i’s true

value is y, she would save cost A + B by bidding x. If her true value is x, she

would incur an extra cost of A by bidding y. To motivate truth-telling, the extra

payment for bidding y instead of x should be at least A + B and at most A,

which is impossible since B > 0. Therefore, the allocation curve must decrease

monotonically.
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Figure 2.2: This picture shows why agent i never gains by overbidding.

In Figure 2.2, the allocation curve is decreasing and the payments are given

by (2.2). Geometrically, the payment to i if she bids x is a constant minus the

area between the allocation curve and the horizontal line at height qi(x). If agent

i’s true value is y and she bids x > y, then her cost decreases by A from the

decreased allocation, but her payment decreases by A+B. Since B ≥ 0, she never

benefits from overbidding. Similarly, she never benefits from underbidding. Thus,

the given payment function does induce truth-telling.

It remains to be shown that the payments must be of the given form. From

Figure 2.2, we see that the payment must decrease by at least A and at most

A + B + C when the bid changes from y to x. The lower bound arises in order

to keep an agent of type y from wanting to overbid, and the upper bound arises

in order to keep an agent of type x from wanting to underbid. Subdividing the

interval [y, x] and making a limiting argument show that the payment formula

must be of the form given by (2.3).
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2.5 Randomized mechanisms

One very useful technique in algorithmic design is the use of randomness. A ran-

domized algorithm combines an ordinary input with the outcomes of some random

coin flips in order to determine its output. See [51] for a good introduction. In

the context of mechanism design, we must extend our notion of dominant strategy

truthfulness to accommodate the randomness. We discuss three ways to do this.

Universal truthfulness. One way to view a randomized mechanism M is that

it selects a random ω from a probability space Ω, and then uses a deterministic

mechanism Mω. The randomized mechanism is said to be universally truthful if

every one of the mechanisms Mω in the support of the randomized mechanism is

truthful. In other words, even if agent i knows both the other bids b−i and the

coin flips ahead of time, she cannot benefit by lying. This concept was proposed

in [58] and has also been used successfully in, e.g., [9, 23, 28]. However, sometimes

this notion is too strong, to be obtainable so we consider two ways to weaken it

slightly.

Truthfulness in expectation. Suppose that for each agent i and each possible

set of bids b−i ∈ T−i for the other agents, E[ui(b−i, ti)] ≥ E[ui(b−i, bi)] for all

bi, ti ∈ Ti. That is, bidding truthfully always maximizes agent i’s expected utility,

no matter what the other agents do. Then we say that the mechanism is truthful

in expectation. If agent i knows the other agents’ bids ahead of time but not

the coin flips, then she cannot benefit from lying, if her goal is to maximize her

expected utility. Theorems 2.4.3, 2.4.4 and 2.4.5 still hold, but with q replaced by

the expected allocation, and P replaced by the expected payment.
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Truthfulness with high probability. Suppose that an agent might sometimes

benefit by lying, but only with small probability. Formally, suppose that for each

b−i and ti, Pr[ti /∈ argmaxbi
ui(b−i, bi)] ≤ ǫ. Then we say the mechanism is truthful

with error probability ǫ. If ǫ is inverse polynomial in some specified parameters

of the problem (such as the number of agents), then we say that the mechanism

is truthful with high probability. Even in the rare event that a bad ω is chosen,

computing an effective lie could be difficult for agent i and would typically re-

quire knowledge about the other bids. Moreover, such a lie might backfire in the

probability (1 − ǫ) event that the mechanism selects a good ω. In using such a

mechanism, one hopes that these factors combined will convince the agents not to

bother lying. This notion may be preferable to that of truthfulness in expecta-

tion because it does not assume anything about how the agents view probability

distributions over outcomes.

Two comments are in order here. In much of game theory, one uses von

Neumann-Morgenstern (VNM) utility functions. These define an agent’s utility

not only for deterministic outcomes, but also for probability distributions over

outcomes (often called lotteries). VNM utilities, by definition, satisfy the prop-

erty that an agent’s utility for a randomization over deterministic outcomes equals

her expected utility. (See [45, Chapter 6] for an in-depth discussion of the theory

of utilities.) In our work we do not assume that agents place utilities on lotteries.

Instead, we use the concepts of truthfulness in expectation and truthfulness with

high probability. If an agent does have a utility function over lotteries (meaning

that she will always act so as to attempt to obtain the lottery that maximizes

this function) and that utility function happens to be a VNM utility, then bidding

truthfully is a dominant strategy in any mechanism that is truthful in expectation.
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In some cases (such as the mechanism developed in Section 4.2) we are able to

design mechanisms where truthful bidding guarantees a fixed utility with probabil-

ity 1, whereas other bids both have lower expected utility and non-zero variance.

In some models of portfolio management, the agent’s objective is to maximize

µ− rσ, where µ is the expected profit, σ2 is the variance, and r is a (usually non-

negative) parameter describing the agent’s attitude about risk. The case r = 0

denotes a risk-neutral agent, which is the same as assuming that profit serves as a

VNM utility function. Our zero-variance mechanism is truthful for agents with any

non-negative value of r. Thus, in these mechanisms, truth-telling is a dominant

strategy under a strictly weaker assumption than that of VNM utilities.

Our second comment is that randomness introduced by the mechanism is funda-

mentally different than randomness that appears in a Bayesian framework. This is

because the distributions used to generate the random variables used is made pub-

lic knowledge (along with the output and payment functions) before the agents

have to make their bids. Agents do not have to formulate probabilistic models

about the state of nature, or about the other agents’ beliefs.1 Nor do they need to

have full knowledge of the game. They just need to know that truthful bidding is

a dominant strategy.

2.6 Tricks for computing payments

In this section we discuss how to compute the payment formulas from Theo-

rems 2.4.4 and 2.4.5, in cases where it is not straightforward. Figures 2.3 and 2.4

illustrate the payment formula, in the two cases where v = −tq and v = +tq. Both

1They do have to trust that the mechanism really is generating its random vari-
ables according to its published rules. This raises an interesting practical problem
of how one might verify this.



34

Yq(X) q(b)
q(0)

bmaxb T (Y )X
P (b)

Figure 2.3: The shaded area gives the payment, in the case where v(q) = −tq.

involve definite integrals of the function q(b). If we are lucky, then we can derive an

explicit form for q(b) as a function of b, and integrate it symbolically. Otherwise,

we have to employ some tricks in order to compute the payments in polynomial

time.

Sometimes we know the shape of the curve, but it has exponentially many

breakpoints. Sometimes we may not even know the shape of the curve. Another

issue is what to do when
∫ ∞
0

q(x)dx = ∞. In the first case, we can either discretize

the bids, or use random sampling. Random sampling can also help in the second

case. In the third case it can help to create an artificial cutoff bid. We describe

these tricks below. We discuss them for the case v = −tq (Figure 2.3). Analogous

tricks hold for the case v = +tq (Figure 2.4).

Discretizing the bids. We can select a constant ǫ > 0 and round up every bid

to the next power of (1 + ǫ). In most optimization settings, this will only throw

off our objective function by a factor of at most (1 + ǫ). This does not destroy

truthfulness, because the allocation curve is still monotone – we have changed it

into a step function that is constant on each segment ((1 + ǫ)k, (1 + ǫ)k+1], k ∈ Z.
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Figure 2.4: The shaded area gives the payment, in the case where v(q) = tq.

The advantage is that this step function has at most ⌈log1+ǫ
bhi

blo
⌉ breakpoints, where

blo and bhi are the limits of integration.

Random sampling. If it is acceptable to have a randomized mechanism that

is truthful in expectation, we can easily create a randomized payment with the

correct expectation.

Suppose, as in Figure 2.3, there is some bid bmax such that q(bmax) = 0. Gen-

erate a random variable X uniformly in [0, bmax]. If X ∈ [0, b], set the payment to

bmaxq(b). Otherwise, set the payment to be bmaxq(X). The expected payment is

then

E[P (b)] =

∫ b

0

bmaxq(b)
1

bmax

dx +

∫ bmax

b

bmaxq(x)
1

bmax

dx

= bq(b) +

∫ ∞

b

q(x)dx

as desired. We call this “sampling from the bid axis.” This approach can be

modified to work even if the allocation itself is random. In this case, we replace

q(b) or q(X) with an unbiased estimator, which we can obtain by running the

allocation algorithm once.



36

An alternate approach is to “sample from the quantity axis.” Suppose that,

for any Y , we can efficiently compute sup{x : q(x) ≥ Y }, which we define to be

T (Y ). Then we can generate a random variable Y uniformly in [0, q(b)] and pay

q(b)T (Y ). This works even if q never drops to zero, provided that
∫ ∞

b
q(x)dx < ∞.

The expected payment is then

E[P (b)] =

∫ q(b)

0

q(b)T (y)
1

q(b)
dy

=

∫ q(b)

0

∫ T (y)

0

1 dxdy

= bq(b) +

∫ ∞

b

q(x)dx,

where the last step is obtained by switching the order of integration and simplifying.

Creating an artificial cutoff. If the problem is that
∫ ∞

b
q(x)dx = ∞, then

there is no payment rule that will satisfy the voluntary participation condition.

However, in some situations we can simply ignore the really high bids above some

artificial cutoff without hurting our objective function too much. In this modified

mechanism, q drops to zero at this artificial cutoff, so the integral is finite.

Randomized mechanisms with zero-variance utilities. When applying The-

orem 2.4.4 to a mechanism with a randomized allocation rule, the curve q will

represent an expected load. To achieve truthfulness in expectation, it is enough

to create any randomized payment rule that yields the payment (2.5) in expec-

tation. Suppose that we actually can compute this integral deterministically. In

this case, we can adjust the payments so that the utility for a truth-telling agent

has zero variance, despite the fact that the allocation algorithm is random. To do

this, simply compute P (b) according to (2.5). Then check to see how much the

agent’s actual (random) load differs from the expected load. If the agent got z
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units more load than she was supposed to get in expectation, then compensate her

with an extra zb units of money. This does not change her expected payment, since

E[z] = 0. However, if the agent reports her true type t, then this modification

exactly cancels out the variation in her valuation. Thus, her utility will always be

∫ ∞
t

q(x)dx, no matter how the random coin flips of the algorithm come out.

2.7 Limitations of our model

In this section, we point out various limitations of our model.

Notice that our definition of valuations rules out the possibility that one agent’s

valuation can depend on another agent’s type. The reason for this is that we want

to design dominant strategy mechanisms, which is inherently impossible to achieve

if agent i’s valuation depends on another agent’s type. In an auction for some good

whose value is hard to measure, such as an oil field, the type ti may reflect some

beliefs that i has about the value, such as the amount of oil under the ground. In

this case, one might want to introduce such a dependence. Our framework fails to

model such situations.

This framework also does not take into account the possibility for repeated

play. For instance, bidders in an auction for U.S. Treasury bills know that if they

lose this week’s auction, they can try again next week. Also, in many auction

settings, a bidder would care about the resale value of the object she is buying.

This is another reason why her valuation might depend on other agents’ types,

as these might give some indication about the resale value. We explicitly do not

model this: we view all of our mechanisms as one-shot games.

Notice that the general model set forth in Section 1.3 allows agent i’s valuation

to depend on all of the allocations qj, j ∈ N , but in our work, it depends only on
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qi. For an example where it clearly should depend on all the allocations, consider

a television network bidding for rights to broadcast the Super Bowl. Clearly, the

company much prefers exclusive broadcast rights to an allocation where both they

and other companies are allowed to broadcast.



Chapter 3

Frugality
In this chapter, we are interested in mechanisms that purchase some service from

the agents and whose payments are small, by some measure. We describe these

qualitatively as being frugal. Often, mechanism design views the payments only

as an inducement to the agents to bid truthfully, while the mechanism really cares

about optimizing some unrelated objective function, such as finding the shortest

path in a graph, or balancing load on machines. Of course, the literature on auc-

tions does care about the payments, because the main point of selling something at

auction is to make money (for a good text on auction theory, see [39]). Conversely,

when the mechanism is paying to perform a task, it makes sense to try to keep the

total payment low.

We consider the setting where the mechanism must accomplish some task, and

it will hire a team of agents to do it. Each agent performs a fixed service and

incurs a fixed cost for performing that service. There exist certain teams of agents

who can combine to perform the task, and no team is a subset of another. One

special case is where the agents are edges in a network, we wish to send something

through the network between nodes s1 and s2, and the teams are s1 − s2 paths.

The catch is, an agent’s cost is a secret known only to that agent. One can apply

the VCG mechanism (see Section 2.3.2) to select the team that can perform the

task while incurring the minimum cost to itself. However, the total amount that

the mechanism must pay to the members of this team can be very high. In the

network example, the cheapest team is just the shortest path with respect to the

edge costs. Nisan and Ronen [56] indeed applied the VCG mechanism to solve this

shortest path problem.

39
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One drawback to the VCG mechanism when applied to the shortest path prob-

lem is that it can be forced to pay a huge amount, compared not only to the

actual cost of the path, but also compared to the cost of the cheapest path that is

completely disjoint from it. This raises the question of whether some other truth-

ful mechanism avoids this problem. Roughly, we show that all reasonable path

selection mechanisms can be forced to overpay just as badly as VCG in the worst

case. Thus, our results are negative. While we phrase everything in terms of paths

because of their familiarity, all of our results have analogs for the more general

problem of hiring a team.

3.1 The team and path selection problems

In this section, we define the general team selection problem and associated ter-

minology, and specialize it to the path selection problem. We also note the im-

plications of our general results on truthful mechanisms from Section 2.4.1 when

applied in this setting.

The general team selection mechanism design problem is defined as follows. As

usual, N denotes the set of agents. Each agent is capable of performing a fixed

service. Agent i’s type ti is the cost she incurs for performing that service. Let

F ⊆ 2N be a collection of the feasible subsets of agents. If S ∈ F , this means that

the team of agents S is capable of performing the desired task. The mechanism

must select some feasible set of agents. We require our mechanisms to satisfy the

voluntary participation property, as we must in order for the question of minimizing

payments to make sense. We refer to the team S selected by the mechanism as

the winning team, and say that agents i ∈ S on this team win, while agents not

on the team lose.
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Recall the results of Section 2.4.1, which show that in every truthful mechanism,

for any fixed bids b−i, there exists a threshold bid Ti(b−i) ≥ 0 for agent i such that

if i bids below Ti(b−i) it will win, and if i bids above Ti(b−i) it will lose. Thus,

we assume that there is no agent i who belongs to every feasible team, or else

there would be no threshold bid for i. Also, since we are looking for truthful

mechanisms that minimize payments subject to satisfying voluntary participation,

we can assume that a winning agent receives payment Ti(b−i), whereas a losing

agent receives zero payment. Therefore, there is no flexibility in our payment

scheme. The payment scheme is entirely determined by the rule we use for selecting

the winning team.

For the path selection problem, the agents are edges in the graph, there is a

source s1 and a sink s2, and the feasible sets are all possible paths from s1 to s2.

By convention, edges in a graph are traditionally denoted by the letter e, so we

will tend to refer to the agents as e rather than i, as we have in previous chapters.

Also, bP will denote the vector of bids along a path (or any other set of edges) P ,

and b−P the vector of all bids besides bP . If e is a cut edge separating s1 and s2,

then it is on every feasible path. Thus, we assume that there is no cut edge, and

hence there exist two edge-disjoint paths from s1 to s2.

By the comments above, our path selection mechanisms are entirely determined

by our rule for selecting the winning path. To enforce truthfulness, we need a path

selection rule that is monotone, meaning that a losing edge can never cause itself

to win by raising its bid, i.e., it induces threshold bids for the agents. The payment

to a winning edge e will then be the largest amount it could have bid and still won.

Recall from Section 2.3.2 that the VCG mechanism selects the shortest path. Thus,

the payment to a winning edge e in the VCG mechanism is the maximum amount
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that e could have bid and still been on the shortest path. Another interpretation

of this is that e’s payment exceeds its bid by a bonus equal to its “marginal value

to society,” the amount by which the shortest path value would increase if e were

removed. Notice that in the case that the graph consists of just some parallel arcs

from s1 to s2, the VCG mechanism for shortest paths reduces to the procurement

version of the Vickrey auction, from Section 1.2.1: the lowest bidder wins, and is

paid the amount of the second-lowest bid.

Note that the edges are allowed to bid any positive real number, but not zero or

∞. However, we will come across cases where a bid is so large that it is “effectively”

infinite, and we will use “bidding ∞” as a convenient shorthand for this. We will

make this concept precise in Section 3.4.

3.2 How should we measure frugality?

The procurement version of the Vickrey auction has a nice property that we would

hope to carry over to the shortest path problem. If we are buying a good or

service from the lowest bidder, we would like to know that we are not losing too

much by paying the second lowest bid. Of course, if the lowest bid is 1 and the

second lowest is 100, then we are paying a big premium to enforce truthfulness.

Since there are other truthful auction mechanisms, we might hope to find one

that never pays more than some constant times the lowest bid. Unfortunately,

elementary arguments show that this is impossible. However, since Vickrey pays

the second lowest bid, if there is tight competition in the market then the premium

for truthfulness is probably not high, because the two lowest bids are likely to be

close together.

In contrast, the VCG shortest path mechanism can pay many times the cost of
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the chosen path, even if there is a disjoint alternate path of similar cost. Consider

a graph consisting of two disjoint s1 − s2 paths, P and Q. Suppose the length of

path P (according to the bids) is L, the length of Q is L(1+ ǫ), and P has k edges.

Then the VCG mechanism chooses the path P . For each edge e ∈ P , the payment

is be + ǫL, since this is the highest it can bid before Q becomes the shorter path.

Thus, the total payment made to P is L(1 + kǫ). If kǫ is large, then we could pay

a large factor times the actual cost of the chosen path. Moreover, for fixed ǫ, we

pay Θ(k) times the cost of the longer path. The problem here is that the removal

of any edge of P forces us to take path Q. So, given the presence of the other

edges, the marginal “added value” of an edge e ∈ P is ǫL, even though it actually

requires all of these edges to reap this benefit. If this entire path were one entity,

then the VCG mechanism would pay it a profit of only ǫL, but since it is composed

of k entities each of whom must be induced to bid truthfully, the mechanism must

pay a total profit of kǫL.

3.3 Our results

We show that no “reasonable” truthful mechanism avoids this pitfall of the VCG

mechanism. Since the payment scheme is entirely determined by the path selection

rule, if we restrict ourselves to selecting the shortest path, then VCG is the only

truthful mechanism. However, it is conceivable that choosing an almost-shortest

path might yield a better payment. Since each edge on the chosen path is paid

at least its bid, we will still want to choose a fairly short path (with respect to

the bids). The VCG mechanism paid a lot because it had to pay profits to many

different edges, which suggests that we should give preference to paths with fewer

edges.
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A natural class of selection rules that allows us to easily encode such a bias is

what we call min function mechanisms. For each path, we evaluate some function

of the bids on its edges, and select the path with the minimum function value.

The VCG mechanism is a special case, where the function is just the sum of the

bids. Unfortunately, an example similar to the bad example for VCG shows that

min function mechanisms can be made to perform similarly poorly.

Since min function mechanisms exhibit essentially the same bad behavior as

VCG, it is logical to look for other mechanisms. We outline some basic natural

properties that we argue any reasonable path selection rule should have, and verify

that min function mechanisms satisfy them. We then prove a characterization

result that on two reasonably large classes of graphs, every mechanism satisfying

our reasonable properties is indeed a min function mechanism. One corollary of

our result is that on any graph containing three node-disjoint s1 − s2 paths, every

mechanism satisfying our properties can be forced to exhibit the same bad behavior

as the VCG mechanism. The two classes of graphs for which we prove our result

are: (a) graphs with an s1 − s2 arc, and (b) connected graphs containing s1 and

s2, with the addition of two node-disjoint s1 − s2 paths. We also show that our

characterization result fails on any graph consisting of only two node-disjoint s1−s2

paths. We conjecture that it holds for all graphs containing three node-disjoint

s1 − s2 paths.

Bikhchandani et al. [11] study the behavior of the VCG mechanism applied to

the minimum spanning tree (MST) problem. This is the team selection problem

where the collection of feasible sets F consists of spanning trees of the graph. They

prove that if T1 is the MST and T2 is the MST in the remaining graph after T1 has

been removed, then the VCG mechanism does not pay more than cost(T2). This
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result contrasts starkly with our main result that, under suitable assumptions,

truthful path selection mechanisms can be forced to pay Θ(n) times the actual

costs incurred, even in a tight market.

3.4 Desired properties for truthful mechanisms

We discuss some properties that we argue any reasonable path selection rule ought

to possess. First, each edge and path should be able to control its own fate in

a limited way. In an ordinary auction (with the agents selling), it is a standard

requirement that any agent bidding high enough will lose and low enough will win,

provided the other agents’ bids are fixed. In the path selection setting, it could

be that every path that contains a particular edge e contains other very expensive

edges, so edge e would lose no matter how low she bids. However, if all of the edges

along a path P bid sufficiently low, then path P should win. One way to look at

this is that if the total cost of path P is sufficiently low compared to every other

path (since every other path contains at least one edge not in P ), then P should

win. On the other hand, if there is at least one cheap path P and edge e /∈ P ,

then by bidding sufficiently high, e should be able to force itself to lose. Second,

since we are comparing the merits of various paths, it makes sense that raising the

bids of edges not on path P should only make P more attractive. In particular, if

P is the winner, it should still win even if other edges bid higher. We call this the

independence property, because it implies that our comparison between paths P

and Q is independent of the bids on all other edges. We summarize these properties

below.

• (path autonomy) Given any bids b−P for the edges off the path P , if all the

edges on P bid sufficiently low then P will win.
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• (edge autonomy) Suppose P is a path, edge e /∈ P , and the bids along P are

fixed at bP . Then there exists some bid T such that if e bids T or higher, no

path using e will win, no matter what the bids of the edges not in P ∪ {e}.

• (independence) If path P wins, and an edge e /∈ P raises its bid, then P will

still win.

Our last property, which we call sensitivity, is the most technical. It essentially

says that if two paths are “tied,” then perturbing the bids appropriately should

break the tie.

Definition 3.4.1 Suppose that for some set of bids, path P wins. Suppose that

there exists an edge e such that arbitrarily small perturbations of e’s bid cause

another path Q to win. Then we say paths P and Q are tied for the lead.1

Sensitivity just says that the mechanism should pay attention to all of the bids.

If P wins but is tied with Q for the lead, then any increase in the bid of any edge

in P − Q or any decrease in the bid of any edge in Q − P should make Q more

attractive than P . Thus, any of these perturbations should make P lose. However,

they may not make Q win, since there may be other paths also tied for the lead.

The rigorous definition appears below.

• (sensitivity) Suppose path P wins, and Q is tied with P for the lead. Then

increasing be for any e ∈ P −Q or decreasing be for any e ∈ Q− P causes P

to lose.

We now record a simple consequence of the independence property to which

we have already alluded.

1Note that, by independence, e belongs to either P or Q.
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Proposition 3.4.2 If lowering the bid on some edge causes the winning path to

change, then the new winning path must contain that edge.

Proof: Suppose P wins, but lowering the bid on edge e causes path Q to win,

where e /∈ Q. Raising e’s bid back to its original value changes the winning path

back to P , contradicting independence.

Now that we have defined independence and edge autonomy, we can state

precisely what we mean when we say that an edge e “bids ∞.” We mean that

we are about to consider several settings for the bids along particular paths in the

graph. For each of these settings, the edge autonomy property guarantees there is a

threshold such that if be is above the threshold, e loses. Thus, if we set be anywhere

above the maximum of these thresholds, e loses for each of these settings. By the

independence property, the precise value of be does not matter, as it does not affect

which path wins. To avoid running through this argument every time, we simply

write that “e bids ∞.”

3.5 Min function mechanisms

We define a broad class of truthful mechanisms called min function mechanisms,

that allow us to easily introduce a bias toward certain paths, say ones with fewer

edges. For each s1 − s2 path P in the graph, define a positive real valued function

fP of the vector of bids bP . The mechanism evaluates each function fP (bP ) and

selects the path with the lowest function value, breaking ties using any arbitrary

rule that does not depend on the bids of edges not involved in the tie. (Since

there are possibly exponentially many paths, we cannot necessarily compute these

mechanisms in polynomial time, even if the functions are simple. But this is of

no concern to us at present, since we are after a characterization result.) In order



48

for the mechanism to be truthful and satisfy the desired properties, we require the

functions to satisfy the following:

• fP (bP ) is continuous and strictly increasing in be, for each e ∈ P

• (infinite limit) limbe→∞ fP (bP ) = ∞ for each e ∈ P

• (zero limit) limbP→0 fP (bP ) = 0.

Notice that the VCG shortest path mechanism is a special case, where the

function fP simply sums the bids along the path P : fP (bP ) =
∑

e∈P be. Another

example of a min function mechanism is to set fP (bP ) = ln(1 + |P |) ∑

e∈P be. This

would introduce a mild bias against paths with many edges. Another example

would be fP (bP ) =
∏

e∈P b2
e, although it is not clear why this one would be useful.

Theorem 3.5.1 The min function path selection rule yields a truthful mechanism.

Proof: We must show that this path selection rule is monotone, i.e., a losing edge

can never cause itself to win by raising its bid. If P is currently the winning path

and e /∈ P , then fP (bP ) is the minimum function value. Raising be only increases

the function values for all paths including e, but does not affect fP , so path P still

wins. Thus, the mechanism is monotone.

We now show that every edge in the winning path has a threshold bid. Let P

be the path not including e whose function value is minimum. (It exists because

the graph is 2-edge connected.) Let T be the largest bid for e such that some

path Q containing e has fQ(bQ−e, T ) ≤ fP (bP ). As e raises its bid towards T , the

winning path could change, but always contains e. Once be is raised beyond T ,

path P wins.
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Notice that our proof relies only on the functions fP increasing with infinite

limit. Continuity and the zero limit are not important for truthfulness, and we can

dispense with the strictness if we employ an appropriate tie breaking rule (such as

numbering the paths and breaking ties by the lowest numbered path). We included

these extra requirements on the fP ’s so that min function mechanisms will satisfy

our desired properties.

Theorem 3.5.2 Min function mechanisms satisfy the edge and path autonomy,

independence and sensitivity properties.

Proof: Path autonomy follows from the zero limit property, since the functions

are positive valued. Edge autonomy follows from the infinite limit property and

the functions being increasing. Independence follows because the fP ’s are strictly

increasing and unaffected by the edges not on P , and the tie-breaking does not

depend on edges not involved in the tie. Sensitivity follows because the fP ’s are

continuous and strictly increasing.

Theorems 3.5.1 and 3.5.2 show that on any graph, a min function mechanism

is truthful and satisfies the desired properties. We now show a partial converse,

namely that on two large classes of graphs, every truthful mechanism satisfying

the desired properties is a min function mechanism. The first class is all graphs

that contain an s1−s2 arc. The second class is all graphs consisting of a connected

graph containing s1 and s2, plus two parallel s1−s2 paths whose nodes are disjoint

from each other and from the rest of the graph.

We would like to have some concept of the bids on one path being “less than”

the bids on another path. As we have noted, the independence property implies

that, when deciding the winner between paths P and Q, the bids on the other

edges are irrelevant. Thus, we might as well assume that the other edges all bid
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∞. Suppose P bids bP , Q bids bQ, and all other edges bid ∞. If P wins, then we

will write bP ≺ bQ. For this to be defined, it is necessary that the bids bP and bQ

can be realized simultaneously, i.e., they agree on the common edges P ∩ Q. Note

that if P and Q share a node (other than s1 and s2) then we can put together

pieces of P and Q to create another finite path L. If L is the winner, then we

cannot necessarily compare bP and bQ. In this case, we say that bP and bQ are

incomparable. If P and Q are node-disjoint then they are the only two finite paths,

so one of them must win and the bids are comparable. As a matter of notation, if

v is an explicit vector that we intend to interpret as a vector of bids for path P ,

we will write it as (v)P .

Lemma 3.5.3 Given a mechanism satisfying the independence property, suppose

P,Q, and L are three s1−s2 paths, the bids bP and bL can be realized simultaneously

and are comparable, and Q is node-disjoint from P and L. If bP ≺ bQ and bQ ≺ bL,

then bP ≺ bL.

Proof: Suppose on the contrary that when P bids bP , L bids bL, and the other

edges all bid ∞, path L wins. Now lower the bids on Q to bQ. By Proposition 3.4.2,

either L still wins, or some path containing an edge in Q wins. But since Q is node-

disjoint from P and L, every such path besides Q contains an edge that bid ∞.

Thus, either L or Q wins. If L wins, then independence implies it still wins after

we raise the bids on all edges in P − L to ∞, but this contradicts the assumption

bQ ≺ bL. If Q wins, then it still wins after we raise all the bids on L − P to ∞,

which contradicts bP ≺ bQ.

Theorem 3.5.4 If graph G contains the edge s1−s2, then any truthful mechanism

for the s1 − s2 frugal path problem on G that satisfies the independence, sensitivity

and edge and path autonomy properties is a min function mechanism.
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Proof: For each path P with bids bP , we must first define a value for fP (bP ).

Let R denote the arc from source to sink. We call this the reference arc. Since R

is node-disjoint from every other s1 − s2 path, (c)R is comparable to every bid for

every other path. Define fR((c)R) = c. For each other path P and set of bids bP ,

define

fP (bP ) = sup{c : (c)R ≺ bP}. (3.1)

In other words, fP (bP ) is defined to be the threshold bid for the reference arc when

P bids bP and all other edges bid ∞. Since the mechanism is truthful, R will win

if it bids below this threshold, and lose if it bids above the threshold.

Now we must show that the functions fP select the correct path. Suppose

on the contrary that fP (bP ) < fQ(bQ), but the mechanism selects path Q. By

independence, if we raise all other bids to ∞, then Q still wins, so bQ ≺ bP . By

definition of fP and fQ, neither P nor Q can be R. Now let c ∈ (fP (bP ), fQ(bQ)),

so bP ≺ (c)R and (c)R ≺ bQ. Applying Lemma 3.5.3 yields bP ≺ bQ, which is a

contradiction.

Finally, we must prove that the functions fP satisfy the three properties we

require of the functions defining a min function mechanism. Edge autonomy im-

plies that fP (bP ) → ∞ as any bid along P goes to ∞, and path autonomy implies

that fP (bP ) → 0 as bP → 0, since no matter what the reference arc bids, P must

be able to lose to or beat it. Truthfulness implies the functions fP are monotone

increasing, since raising be can never cause a path containing e to beat the refer-

ence arc. Strict monotonicity and continuity are obvious for fR, but are a bit more

involved for the other paths.

To show the fP ’s are strictly increasing, we fix some path P , some e ∈ P , and

fix bP to some bid b̄P . Set R’s bid to fP (b̄P ), and all other bids to ∞. Suppose
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that R wins (a similar argument holds when P wins). Then any increase to bR

causes P to win. Thus any decrease to be causes P to win (by sensitivity). Let

us decrease be by ǫ, so that bP = (b̄P−e, b̄e − ǫ) and P wins. We want to show

that the threshold bid for R is lower, which shows that fP (bP ) is lower. If not,

than any decrease to R’s bid causes R to win. So by sensitivity, any increase in be

causes R to win. In particular, raising be by ǫ
2

so that bP = (b̄P−e, b̄e − ǫ
2
) causes

R to win. But we already argued that P wins in this situation, so we’ve reached

a contradiction.

To show continuity, we again argue by contradiction. Suppose we have some

path P such that fP is not continuous. Then fP is discontinuous in some coordinate

be, where e is an edge of P . Since fP is monotone increasing in be, there must

be some jump discontinuity at some point bP = b̄P , where fP (b̄P−e, b̄
−
e ) = x,

fP (b̄P−e, b̄
+
e ) = y, x < y, and the + and − denote limits as be → b̄e from above and

below. Suppose fP (b̄P ) = x (a similar argument holds when fP (b̄P ) = y). Suppose

R bids x+y
2

and P bids b̄P , so P wins. Any increase in e’s bid would raise fP (bP )

above y, so R would win. Thus, by sensitivity, any decrease in R’s bid causes R

to win, in particular for bR ∈ (x, x+y
2

), which is a contradiction.

Theorem 3.5.5 If the graph G consists of some connected graph including nodes

s1 and s2, plus two extra s1− s2 paths that are disjoint from the rest of graph, then

any truthful mechanism for the s1 − s2 frugal path problem on G that satisfies the

independence, sensitivity and edge and path autonomy properties is a min function

mechanism.

Proof: Let M denote the mechanism. Let us call one of the disjoint paths R

(for reference path) and the other disjoint path S (for secondary reference path).

Define fR((c · 1)R) = c, where 1 denotes the vector of all ones, i.e., every edge on
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R bids c. For any P 6= R, define

fP (bP ) = sup{c : (c · 1)R ≺ bP}.

We also need to define fR(bR) when the bids are not all the same, but let us

postpone this for now. The proof that the functions fP for P 6= R are strictly

increasing, continuous, and have the two limit properties, is exactly the same as

in the proof of Theorem 3.5.4, except that every time we set the reference arc bid

to c in that argument, we set it to c ·1 here. Therefore, the range of each function

fP (for P 6= R) is (0,∞).

We want to show that the mechanism M always selects a path of minimum

function value. In other words, if fP (bP ) < fQ(bQ), we need to rule out the

possibility that Q wins. If Q were to win, then, by the independence property, it

would still win after we raise the bids of all edges not in P or Q to ∞, so we would

have bQ ≺ bP . Thus, it suffices to rule out this possibility. In other words, we want

to show that if fP (bP ) < fQ(bQ) and bP and bQ are comparable, then bP ≺ bQ.

There are several cases, depending on whether P or Q is one of the two reference

paths.

Case 1: fP (bP ) < fQ(bQ) and neither P nor Q is R. We note that if bR = c·1

where c ∈ (fP (bP ), fQ(bQ)), then bP ≺ bR ≺ bQ so we can apply Lemma 3.5.3 to

obtain bP ≺ bQ.

Before we can consider the other cases, we must define fR(bR) when the bids

along R are not all the same. Let

fR(bR) = sup{c : ∃bS s.t. fS(bS) = c and bS ≺ bR}.



54

Now that we have shown the other functions fP to have the properties we want,

we can use them to prove the properties for fR.

Case 2: fP (bP ) < fR(bR) and P 6= S. By definition of fR, there exist bids b̄S

for path S such that b̄S ≺ bR and fS(b̄S) ∈ (fP (bP ), fR(bR)]. By Case 1 we have

bP ≺ b̄S. Applying Lemma 3.5.3 gives bP ≺ bR. The argument is similar when

fP (bP ) > fR(bR).

Case 3: fS(bS) < fR(bR). Select any other s1 − s2 path P in the graph. Since

the range of fP is (0,∞), there exists a bid b̄P such that fP (b̄P ) ∈ (fS(bS), fR(bR)).

By Case 1 we have bS ≺ b̄P , and by Case 2 we have b̄P ≺ bR, so by Lemma 3.5.3

we have bS ≺ bR. The argument is similar when fS(bS) > fR(bR).

For P 6= R, we already know that fP is strictly increasing, continuous, and has

the two limit properties. Now that we know the mechanism selects a path of small-

est function value as the winner, we can prove that fR also has these properties,

using arguments similar to the proof of Theorem 3.5.4. Thus, our functions satisfy

the required properties to define a min function mechanism, and M always selects

a path of minimum function value. Since a min function mechanism may break

ties arbitrarily, we choose ours to break ties the same way that M does. Thus, we

have successfully represented M as a min function mechanism.

We conjecture that Theorem 3.5.5 extends to all graphs containing 3 node-

disjoint s1 − s2 paths P,Q, and R. In such a graph, when all other edges incident

to an internal node of P or Q bid ∞, the mechanism reduces to a case covered

by Theorem 3.5.5. It seems that one ought to be able to extend the min function

representation to the whole graph.
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3.6 Costly example for min function mechanisms

We show here that any min function mechanism can be forced to pay L(1 + kǫ),

where L is the cost of and k is the number of edges on the winning path, even if

there is some node-disjoint path of cost L(1 + ǫ). If kǫ is large, then we would pay

a large factor times the actual cost of the chosen path, even though we are in a

“tight market.” Moreover, for fixed ǫ, we pay Θ(k) times the cost of the longer

path. This contrasts with the Vickrey auction, where we only pay as much as the

2nd lowest bid.

Consider a min function mechanism on a graph consisting of two node-disjoint

s1−s2 paths, P and Q. Fix some L, ǫ ∈ R+, and let |P | and |Q| denote the number

of edges in P and Q. Let bi
P denote the vector of bids along P where all edges

bid L
|P | , except for the ith edge, which bids L

|P | + ǫL. Similarly, let bi
Q denote the

bids along Q where all edges bid L
|Q| , except for the ith edge, which bids L

|Q| + ǫL.

Suppose without loss of generality that fQ(b1
Q) is the maximum of the function

values fP (b1
P ), . . . , fP (b

|P |
P ), fQ(b1

Q), . . . , fQ(b
|Q|
Q ). Let b0

P denote the vector of bids

when every edge along P bids L
|P | . Now consider how the mechanism acts when

P bids b0
P and Q bids b1

Q. Since fP (b0
P ) < fP (b1

P ) ≤ fQ(b1
Q), path P wins. To

determine the payments, we must figure out the threshold bid for each edge in P .

Since, for i = 1, . . . , |P |, fP (bi
P ) ≤ fQ(b1

Q), P still wins (or ties) even if one of the

edges along P raises its bid by ǫL. Thus, the threshold bid for each edge in P is at

least L
|P | + ǫL, so the total amount paid by the mechanism is at least L(1 + |P |ǫ),

even though the length of P is L and Q is only L(1 + ǫ). If the graph consists of

more than just P and Q, we can achieve the same result by setting the bids of all

other edges to be ∞.

Theorem 3.6.1 Any truthful mechanism on a graph that contains either an s1−s2
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arc or three node-disjoint s1 − s2 paths and satisfies the independence, sensitivity

and edge and path autonomy properties can be forced to pay L(1 + kǫ), where the

winning path has k edges and costs L, even if there is some node-disjoint path of

cost L(1 + ǫ).

Proof: If G belongs to one of the two classes covered by Theorems 3.5.4 and 3.5.5,

then the mechanism is a min function mechanism. Otherwise, select three node-

disjoint paths, P,Q, and R. When all of the other edges of G bid ∞, we can

essentially ignore them, by the independence property. We can then apply The-

orem 3.5.5 to the remaining graph, which consists of P,Q, and R. Thus, the

mechanism reduces in this case to a min function mechanism. The preceding dis-

cussion shows how any min function mechanism can be forced to pay the specified

amount.

3.7 An exceptional mechanism

In this section, we exhibit a truthful mechanism (for a graph outside our two

classes) that satisfies the independence, sensitivity and edge and path autonomy

properties but is not a min function mechanism. Let the graph G be a 4-node

graph consisting of 2 s1 − s2 paths P and Q, each having two edges. Let x1 and

x2 be the bids along P , and y1 and y2 be the bids along Q. Let us describe the

winning path via a “phase diagram.” For a given (y1, y2), draw a dividing line in

the x1 − x2 plane with x1-intercept (y1 + y2

2
, 0) and x2-intercept (0, y1

2
+ y2). If

(x1, x2) lies on or below the line, then P wins. Otherwise Q wins. In Figure 3.1, P

loses if it bids x1, wins if it bids x2, and ties but wins the tiebreaker if it bids x3.

It is easy to check that this mechanism is truthful and satisfies the desired

properties. For P , the threshold bids are where the horizontal and vertical lines
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P wins
21 Q wins bQ = (2; 1)

1 2 3 x1
x2

x1x3x2
Figure 3.1: The winning path is determined by this “phase diagram.”

x1
b2Q

b1Q1 2
12
x2

b2P b1P
Figure 3.2: This figure shows that the ≺ relation on bids is non-transitive.
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through (x1, x2) cross the dividing line in the phase diagram, provided this crossing

occurs in the first quadrant, and zero otherwise. Increasing either bid along Q

pushes the dividing line both up and to the right in the phase diagram, which

cannot cause Q to win unless it was already the winner. Since increasing either

bid can push the dividing line out arbitrarily far, the edges of Q have threshold

bids as well. Thus, the mechanism is truthful. Since, for fixed (y1, y2), the region

of the phase diagram where P wins contains a neighborhood of the origin, P can

win by bidding low enough. Path Q can also win by bidding sufficiently low, since

this moves the dividing line arbitrarily close to the origin. Hence path autonomy

holds. With bQ fixed, either edge on P can cause itself to lose by bidding larger

than the appropriate intercept of the dividing line defined by bQ. With bP fixed,

either edge on Q can cause itself to lose, because both intercepts of the dividing

line go to ∞ as either edge’s bid does. Thus, edge autonomy holds. Independence

holds trivially because there are only two paths from which to choose. The two

paths are tied for the lead exactly when (x1, x2) is on the dividing line. In this

case P wins, but increasing either bid on P causes the point to move above the

line so Q wins, and decreasing either bid on Q causes the line to move down and

left, so Q wins. Thus, sensitivity holds.

To show that this mechanism cannot be represented by a min function mech-

anism, consider the bids b1
P = (2, 1

5
), b2

P = (1
5
, 2), b1

Q = (2, 1) and b2
Q = (1, 2).

Figure 3.2 overlays the phase diagrams. The dashed dividing line corresponds

to Q’s bid b1
Q and the solid line to b2

Q. From the phase diagram, we see that

b1
P ≺ b1

Q ≺ b2
P ≺ b2

Q ≺ b1
P , and perturbing any of these bids a small amount would

not change the outcome. If the mechanism were representable by a min function

mechanism, then we would have fP (b1
P ) < fQ(b1

Q) < fP (b2
P ) < fQ(b2

Q) < fP (b1
P ),
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which is a contradiction.

This example is easily extended to two node-disjoint s1−s2 paths, each with at

least 2 edges. If the bids on P are x1, . . . , xk and the bids on Q are y1, . . . , yl, then

in the phase diagram we represent bQ by the dividing line with intercepts y1 + y2

2
+

∑

i≥3 yi and y1

2
+ y2 +

∑

i≥3 yi, and we represent bP by the point (x1 +
∑

i≥3 xi, x2).

Thus, the extra bids on Q just move the dividing line outward and the extra bids

on P just move the point to the right.

3.8 Truthfulness without independence

The last section showed that some assumption on the structure of the graph is

necessary to prove our characterization result. Here we show that the independence

assumption is also necessary, by exhibiting a truthful mechanism that satisfies

sensitivity and edge and path autonomy but violates independence.

Consider a graph consisting just of three parallel s1 − s2 arcs. If b1 + b2 ≤ 6b3,

then the lower of b1 and b2 wins. Otherwise the lowest bid wins. Ties go to

the lowest numbered bidder. This is clearly truthful and satisfies edge and path

autonomy. Edges 1 and 2 are tied for the lead if b1 = b2 ≤ 3b3, because in this case

edge 1 wins but any decrease to b2 causes edge 2 to win. Since any increase in b1

causes either b2 or b3 to win, the sensitivity property holds in this case. Edges 1

and 3 are tied for the lead if either (b1 +b2 > 6b3 and b3 = b1 ≤ b2) or (b1 +b2 = 6b3

and b3 ≤ b1 ≤ b2), because in both cases b1 wins, but any decrease in b3 causes

edge 3 to win. Sensitivity holds here, because any increase in b1 causes either edge

2 or 3 to win. These are the only ways for edge 1 to be tied for the lead. A similar

analysis holds for ties between edges 2 and 3. So the sensitivity property holds for

this mechanism. If b1 = 2, b2 = 3 and b3 = 1, then edge 1 wins, but if b2 increases
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to 5, then edge 3 wins. Thus, the independence property fails.

3.9 Efficient computation of min function mechanisms

To this point, we have not been concerned with how to compute min function

mechanisms efficiently, since our goal was to prove a negative results. However,

even though all min function mechanisms can be forced to overpay just as badly

as VCG in the worst case, we have reason to believe that certain classes of them

might perform better in practice. Here, we mention one attractive and natural

class that can be computed in polynomial time.

Our original motivation for defining min function mechanisms was to provide

a means for biasing the path selection rule against paths with a large number of

hops. The hope is that such a path selection rule will choose a path with fewer

hops, so we will pay bonuses to fewer edges. Here is one way to introduce such a

bias. Let g be any positive, increasing (and easily computed) function defined on

the positive integers, and define fP (bP ) = g(|P |) ∑

e∈P bP , where |P | denotes the

number of edges in path P .

This class of min function mechanisms can be computed in polynomial time,

using O(n) Bellman-Ford shortest path computations. A single run of Bellman-

Ford computes the shortest path from s1 to s2 using k hops, for each k = 1, . . . , n−

1. To compute the winning path, we just multiply the length of the shortest k-hop

path by g(k), and take the minimum result. To compute the threshold bid for

each winning edge e, we perform another Bellman-Ford shortest path computation

on the graph with edge e deleted, to determine which path Q has the minimum

function value among all paths not using edge e. There may be several values k

for which the shortest k-hop path Pk uses edge e, and for which fPk
(bPk

) ≤ bQ(bQ).
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For each of these, Q becomes preferred once e has raised its bid by (bQ(bQ) −

fPk
(bPk

))/g(k). Computing the maximum of these increments gives the bonus for

edge e, because that is the lowest bid for which a path not containing e wins.

3.10 Characterization result for general team selection

mechanisms

Min function mechanisms can be defined for the general problem of team selection

in the obvious way: we just define a function fP for every feasible team P . In the

definitions of edge and path autonomy, independence and sensitivity, if we replace

“edge” everywhere by “agent,” and “path” by “team,” we obtain the analogous

properties for team selection mechanisms. In the proofs of Lemma 3.5.3 and The-

orems 3.5.4 and 3.5.5, the only way in which we relied on the fact that the teams

were paths is that no s1 − s2 path is a subset of another. Our definition of the

team selection problem already specified that no feasible team should be a subset

of another. Thus, analogs of these three results all hold for the general team selec-

tion problem. The analog of a graph containing the edge s1 − s2 is a set of feasible

teams containing at least one team consisting of a single agent. The analog of a

connected graph plus two extra s1 − s2 paths disjoint from the rest of the graph is

a set of feasible teams containing at least three teams, where the agents composing

two of the teams belong only to that team. Using these analogous concepts, we

can prove analogs of Lemma 3.5.3 and Theorems 3.5.4 and 3.5.5. The proofs go

through without modification. Theorem 3.6.1 did rely slightly on the structure of

paths. The condition we need for an analog of this theorem to hold is that there

are three feasible teams P,Q, and R such that the only feasible teams that are

subsets of P ∪ Q ∪ R are P,Q, and R.
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3.11 Further work

It is natural to question how reasonable are our assumptions of independence,

sensitivity and edge and path autonomy. At first glance, the independence as-

sumption may appear to be the most innocent, but inspection of the proofs of

Theorems 3.5.4 and 3.5.5 reveal that independence is the crux. Indeed, if we re-

lax some of the assumptions on the functions defining min function mechanisms,

requiring them only to be increasing with infinite limits, then we are still left with

truthful mechanisms that seem intuitive. These can fail the sensitivity and path

autonomy properties, but independence and edge autonomy are essential features.

The first two properties, while natural, were assumed mostly to make the proof

go through nicely. One open problem is to prove our characterization results (for

the relaxed definition of min function mechanism) without assuming these two

conditions.

The bigger open problem left by our work is to prove non-frugality of all truthful

path selection mechanisms, without the independence assumption. Recently, after

the initial publication of our work, Elkind et al. [19] indeed proved that every

truthful mechanism (without any additional assumptions) can be forced to overpay

just as badly as VCG in the worst case. They also examine mechanisms where they

assume a commonly known probability distribution on edge costs, and they wish

to find a mechanism for which truth-telling is a Bayesian Nash equilibrium. This

is a much weaker solution concept than the concept of dominant strategies used

throughout this dissertation, and hence it admits a larger class of mechanisms.

Remarkably, they show that the mechanism in this class that minimizes the total

expected payments (where the expectation is over the probability distributions on

the edges) is a particular type of min function mechanism. In other words, even
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though they are considering a wider class of admissible mechanisms, the optimal

mechanism in this class is still truthful according to the stronger definition used

throughout our work. This optimal mechanism is a min function mechanism whose

definition is tuned for the given probability distributions. They also give examples

of distributions where the expected total cost (to the agents) of the shortest path

is Θ(n), as is the expected total payment by the optimal min function mechanism,

but the VCG mechanism pays Θ(n
√

n) in expectation.

Following our work, Talwar [67] investigated the behavior of the VCG mecha-

nism on the general team selection problem. Recall the result of Bikhchandani et

al. [11] that when the collection of feasible sets F are all of the spanning trees of a

graph, the VCG mechanism never pays more than the cost of the cheapest feasible

set that is disjoint from the one chosen. The main result of [67] is that applying

the VCG mechanism to a team selection problem yields this worst-case guarantee

if and only if the collection of feasible sets F is what they call a “frugoid,” which is

a generalization of a matroid. It would be interesting to determine whether there

are set systems other than frugoids where some other mechanisms besides VCG

can achieve a similar worst-case guarantee.

Feigenbaum et al. [21] ran some experiments to determine how much the VCG

mechanism overpays on some artificial examples generated from the problem of

routing between autonomous systems on the Internet. (We briefly discussed this

model in Section 1.2.2.) They ran their experiments on a 5773-node graph where

the nodes denote autonomous systems from a recent snapshot of the Internet, and

the edges denote links between them. In their model, the nodes incur costs rather

than the links. They assumed all node costs were 1, and computed VCG prices

for randomly selected s1 − s2 pairs. They report that 68% of the node payments
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were 1, 28% of them were 2, and the average node payment was 1.44. This means

that VCG overpaid by 44% on average. However, we believe that this number is

artificially small because of the design of the experiment. Since the node costs

were all taken to be 1, computing the shortest path is equivalent to computing

the path with the least number of hops. If deleting a winning node results in an

alternate path using the same number of hops, then this node’s threshold bid is

1, so she receives no bonus. As they report, this occurred 68% of the time. If

we were to add some variation in the node costs, all of these zero bonuses would

now become positive. It would be interesting to test how significantly this changes

their experimental results. In this experiment, using min function mechanisms that

are biased towards paths with few hops would not help, because VCG is already

choosing the path with the fewest hops. In an experiment where the node costs

vary widely, the shortest paths could often have more than the minimum number

of hops. In these cases, it would be interesting to test whether min function

mechanisms could give improved results.

Another open question involves the efficient computation of min function mech-

anisms. A naive implementation of the VCG shortest path mechanism requires one

Dijkstra shortest path computation for each winning edge to compute its payment.

However, Hershberger and Suri [33] show how to compute the entire mechanism

in time dominated by two Dikstra computations. In Section 3.9 we showed how

to compute a natural class of min function mechanisms using one Bellman-Ford

shortest path computation per winning edge. It is an open problem whether one

can compute this class of min function mechanisms using just O(1) Bellman-Ford

computations.



Chapter 4

Truthful discrete optimization
In this chapter, we show how to design truthful mechanisms for several combina-

torial problems where the VCG mechanism does not apply because the objective

function is not utilitarian. We want mechanisms that we can compute in poly-

nomial time. Since some of the problems we consider are NP-hard, we design

approximation algorithms for them. In all of the problems we consider, an agent’s

allocation causes her to incur a cost, not attain a benefit. Therefore, we refer to

agent i’s allocation qi as her load. As we mentioned in Sections 1.3 and 2.4, ti

denotes i’s cost per unit load, so vi = −tiqi.

Our main tool is Theorem 2.4.3, which shows that a mechanism is truthful if

and only if each agent i’s load is monotone decreasing in her bid, and her pay-

ment is given by a particular integral of her load. Thus, the first order of business

in creating an efficiently-computable truthful mechanism is to obtain a monotone

allocation algorithm. In some cases, we are able to compute the payment inte-

grals directly in polynomial time. In others, we must resort to the general tricks

developed in Section 2.6.

We start off by looking at some load-balancing problems on uniformly related

parallel machines. We describe this model here, in order to give an idea of how

the agents’ types are related to the data of the optimization problem. There are n

jobs that we want to run on m machines. Each job j has a processing requirement

pj (the amount of load it represents), and each machine i runs at some speed si.

If job j is scheduled on machine i, it takes pj/si units of time to complete. The

goal is to allocate the jobs to machines so that the last job finishes as soon as

possible. Each machine is an agent, who incurs a cost proportional to the total

65
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time she spends processing. Agent i’s load qi is just
∑

pj, summing over the jobs

that are assigned to i, and we take her type ti to be 1/si, so that vi = −tiqi. We

examine three different load balancing problems in this model of uniformly related

machines.

We first consider scheduling to minimize makespan, the problem usually de-

noted by Q||Cmax in the literature. The objective is to allocate the jobs such that

the last job finishes as early as possible. This problem is NP-hard, and the stan-

dard approximation algorithms (greedy load-balancing or the PTAS1 [35]) cannot

be used in truthful mechanisms, because they are not monotone. We give a 2-

approximation mechanism that is truthful in expectation, based on randomized

rounding of the optimal fractional solution. In this case, the truthfulness alone is

not the barrier to approximability – the optimal allocation is monotone, so if we

had unbounded computational resources, we could obtain a truthful mechanism

that yields the optimal solution. We also prove that our mechanism is frugal, in

contrast to the results of Chapter 3 for the path selection problem.

We next consider scheduling with preemption to minimize makespan, which is

usually denoted Q|pmtn|Cmax in the literature. In this model, we may start a job

on one machine, interrupt it, and finish it later on another machine. There are

multiple algorithms that solve this problem in polynomial time [29, 37], but not

all of them are monotone. We give a method for converting any optimal algorithm

into a monotone one, thereby yielding an optimal truthful mechanism.

For Q||∑ Cj, the problem of scheduling uniformly related parallel machines

to minimize the sum of completion times (or equivalently, the average completion

time), we observe that the standard algorithm is already monotone. For both this

1A PTAS is a family of algorithms that, for fixed ǫ yields a 1+ ǫ approximation
in polynomial time.
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problem and the previous two, we show how to compute the payments explicitly

in polynomial time.

We show that optimizing an affine function over a fixed set can be done truth-

fully, if the linear decision variables are the loads and their coefficients are mono-

tone functions of the corresponding bids. The feasible set is not allowed to depend

on the bids. Problems that fall under this category include some linear program-

ming problems, minimum cost flow, and uncapacitated facility location.

There are special cases of the uncapacitated facility location problem that can

be solved in polynomial time. However, the general problem is NP-hard. For the

problem defined on general metric spaces, we adapt the “online” algorithm of [48]

to give a truthful approximation mechanism with constant performance guarantee,

provided the facility costs are known to come from a constant interval.

Even though maximum flow can be solved via linear programming, it is not

covered by our general result above because we take the edge capacities to be the

agent types, so the feasible set of flows depends on the bids. Instead, we show

how to attain a monotone algorithm via combinatorial methods. Interestingly,

no optimal maximum flow mechanism that satisfies the voluntary participation

condition can obtain the optimal flow (although it can be made to come arbitrarily

close).

For one problem, we also derive a lower bound on the approximation ratio

achievable by a truthful mechanism. We consider scheduling on uniformly related

parallel machines to minimize the weighted sum of completion times (Q||∑ wjCj).

In contrast to the simple optimal algorithm for unweighted completion times, we

can show for this problem that no truthful mechanism can achieve an approxima-

tion ratio better than 2√
3
, even using unbounded computation.
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Throughout this chapter, the types ti represent both data for the optimization

problem, and part of the formula expressing i’s valuation function. In the discus-

sion of our load balancing model, we said that a machine’s cost is proportional

to her processing time. Since ti is the inverse of i’s speed, then its units are time

per unit work. We said the valuation vi = −tiqi. Since the valuation is in units

of money and tiqi is in units of time, technically there should be a constant of

proportionality on the right hand side. For simplicity of presentation, we choose

our unit of currency so that the constant of proportionality is one. Everything we

present still works if we let the constant vary from machine to machine, so long as

the constants are known to the mechanism (not part of the private data).

4.1 Related work

Compared to the amount of work that has addressed computational issues sur-

rounding the VCG mechanism, considerably less has addressed non-utilitarian ob-

jective functions. Nisan and Ronen [58] applied the mechanism design framework

to some standard optimization problems in computer science, suggesting general

objective functions. This chapter is closest in spirit to their work.

While our main example is the problem Q||Cmax, scheduling on machines with

speeds, the main focus in [58] is a similar NP-hard problem R||Cmax, scheduling

on unrelated machines. In that problem, each machine has n items of private

data, the amounts of time it would take for it to process each job (so the one-

parameter monotonicity result of Theorem 2.4.3 does not apply). The output

is an allocation of jobs to machines, and the cost to a machine equals the total

time it spends processing its jobs. The best approximation algorithm for this

problem yields a performance guarantee of 2 [42], but nobody has been able to
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convert this into a truthful mechanism. Nisan and Ronen provide a simple truthful

mechanism (consisting of a separate Vickrey auction for each job) that yields an

m-approximation, where m = |N |. They conjecture that no truthful mechanism

has a better approximation guarantee, although the best lower bound they prove

is 2. With strong additional restrictions on the types of payment schemes allowed,

they prove a lower bound of m. Note the large gap between the best approximation

factors known for a polynomial-time algorithm, 2, and for a truthful mechanism,

m. We have a similar gap for Q||Cmax between the PTAS of [35] and the truthful

2-approximation of Theorem 4.2.4.

The lower bound of 2 for R||Cmax stands in contrast to our truthful (but not

polynomial-time) mechanism that exactly solves Q||Cmax. Ronen and Nisan do

give a mechanism that solves R||Cmax exactly, but only in a much stronger model

in which the mechanism is allowed to observe the machines process their jobs and

compute the payments afterwards, which makes it easy to penalize lying agents.

4.2 Load balancing

We consider the problem Q||Cmax, which we mentioned in the introduction. This

problem is NP-hard, although there is a PTAS [35]. We are given n jobs and m

machines. The jobs represent amounts of work p1 ≥ . . . ≥ pn. The output is an

assignment of jobs to machines. Machine i runs at some speed si, so it must spend

pj

si
units of time processing each job j assigned to it. The load on machine i is

qi(b) =
∑

pj, where the sum runs over jobs j assigned to i. Each machine is an

agent, who incurs a cost equal to the time she spends processing her jobs. We

take the type to be ti = 1
si

so that the machines’ costs are of the correct form,

vi = −tiqi(b). The mechanism’s goal is to minimize the completion time of the last
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job on the last machine, i.e., g(O(b), t) = Cmax = maxi tiqi(b).

The mechanism design problem for Q||Cmax contrasts sharply with the mostly

negative results of Nisan and Ronen [58] (see Section 4.1). We show that truth-

fulness alone does not prohibit achieving the optimal allocation. Then we give a

randomized polynomial-time truthful mechanism that yields a 2-approximation for

Cmax.

Definition 4.2.1 A vector (q1, . . . , qm) is smaller than (q̄1, . . . , q̄m) lexicographi-

cally if, for some i, qi < q̄i and qk = q̄k for all k < i.

Proposition 4.2.2 There is a truthful mechanism (not polynomial-time) that out-

puts an optimal solution for Q||Cmax and satisfies the voluntary participation prop-

erty.

Proof: Among the optimal allocations of jobs, our algorithm selects the one in

which the load vector (q1, . . . , qm) is lexicographically minimum. Clearly, a machine

raising its bid bi (i.e., announcing it is slower) will not cause the allocation to change

unless that machine is the bottleneck. In this case raising bi will either result in the

same optimal allocation, or cause machine i to get less load. Thus, the loads qi are

decreasing, so by Theorem 2.4.3 this output algorithm admits a truthful payment

scheme given by (2.5). As we just argued, qi(b−i, ·) is constant except for jumps at

the breakpoints where machine i becomes the bottleneck and the optimal solution

shifts load off of i, so qi(b−i, 0) is a decreasing step function. Moreover, a sufficiently

slow machine receives no work, so
∫ ∞

0
qi(b−i, x)dx < ∞, and by Theorem 2.4.4 we

can choose P to satisfy the voluntary participation property.

We now move to polynomial-time mechanisms. We cannot simply use any

existing approximation algorithm because the work assigned to agent i typically
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changes in complicated ways as her bid bi changes. In particular, the PTAS in [35]

relies on dynamic programming and rounding the job sizes down to the nearest

power of (1+ǫ). Even if the dynamic programming can be done so that the load on

a machine according to the rounded job sizes is decreasing in her bid, the rounding

still causes problems. To see this, suppose that a machine were to announce a

slightly slower speed, causing her to receive a different set of jobs, and the load

according to the rounded job sizes decreased by less than a (1+ ǫ) factor. Suppose

the actual sizes of the old set of jobs were already powers of (1 + ǫ), so that the

rounding had no effect, but the actual sizes of the new set of jobs were all just

below powers of (1 + ǫ), so that all the rounded sizes were smaller by a factor of

almost (1 + ǫ). Then the total actual size of the new set of jobs is larger than the

actual size of the old set of jobs. Thus, the overall algorithm is not monotone, even

though it is with respect to the rounded job sizes.

The following greedy load balancing algorithm also fails to be monotone. Con-

sider the jobs one at a time, from largest to smallest. Start off with all of the

machines empty. When considering job j, place it on the machine that would

have the smallest overall processing time, if j were added to it. One can easily

show that this algorithm gives a 2-approximation. However, the following example

shows that it fails to be monotone. Consider scheduling three jobs with processing

requirements p1 = 2 and p2 = p3 = 1 + ǫ on two machines of speeds s1 = 1 + ǫ

and s2 = 1. First job 1 is assigned to machine 1, then jobs 2 and 3 both go on

machine 2. Now suppose that machine 1’s speed decreases to 1 − ǫ. In this case,

the algorithm would put job 1 on machine 2 and jobs 2 and 3 on machine 1. By

decreasing its speed (increasing its bid), machine 1 caused its load to increase from

2 to 2 + ǫ.
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Having shown why known approximation algorithms are not monotone, we now

consider how to create an algorithm that is monotone. We want to make sure that

i’s load never increases if her bid increases (i.e., announced speed decreases), while

the other machines’ bids stay fixed. In creating an approximation algorithm, our

first task is to establish a lower bound on the cost of an optimal solution.

We first note that our problem is equivalent to bin packing with uneven bins,

which leads to a lower bound on C∗
max, the optimal makespan. This bound is

implicit in the 3
2
-approximation algorithm of [35]. Given a guess T at the value of

C∗
max, we create a bin of size T/bi for each machine i. The size of a machine’s bin

is the maximum load we can assign to it if the machine is to finish all its jobs by

time T . Then C∗
max ≤ T if and only if there exists an assignment of jobs to bins

such that each bin is at least as large as the total size of all the jobs assigned to it.

For each j, let us consider the j largest jobs. These will give us a lower bound

Tj on C∗
max. Let us number both the bins and jobs from largest to smallest,

so b1 ≤ . . . ≤ bm and p1 ≥ . . . ≥ pn. Given our guess for T , let i(j, T ) be

the smallest bin that is large enough to accommodate job j, all by itself, i.e.,

i(j, T ) = max{i : T/bi ≥ pj}. Then either jobs p1, . . . , pj can all fit in the first i(j)

bins, or else T < C∗
max. A necessary condition for the jobs to fit is that the total

size of these jobs does not exceed the total size of the bins, i.e.,

T ≥
∑j

k=1 pk
∑i(j,T )

ℓ=1
1
bℓ

. (4.1)

Let us define

Tj = min
i

max

{

bipj,

∑j
k=1 pk

∑i
ℓ=1

1
bℓ

}

. (4.2)

We claim that Tj is a valid lower bound on C∗
max, and it is the best lower bound

we can obtain from this argument, using the j largest jobs. Notice that the first

term in the max is increasing with i, whereas the second term is strictly decreasing
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with i. Thus, the value of i that defines Tj in the minimization in (4.2) (call it ij)

is either the last i such that the second term in the max is larger (call this case

1), or the first i such that the first term in the max is larger (call this case 2). In

either case, when T = Tj, the bin ij is large enough to accommodate the job j,

while the bin ij + 1 is not. That is, i(j, Tj) = ij. Moreover, the first ij bins do

have enough collective capacity to hold the j longest jobs. Thus, Tj satisfies the

condition (4.1), so we cannot conclude Tj < C∗
max. However, for every T < Tj, we

claim that condition (4.1) fails, from which we can conclude that Tj ≤ C∗
max. Since

T < Tj, clearly i(j, T ) ≤ ij. Thus, in case 1 we have

T < Tj =

∑j
k=1 pk

∑ij
ℓ=1

1
bℓ

≤
∑j

k=1 pk
∑i(j,T )

ℓ=1
1
bℓ

,

so condition (4.1) fails. In words, the bottleneck defining Tj is that the total

capacity of the largest ij bins is just enough to fit the top j jobs, so we cannot

make them any smaller. In case 2, we have i(j, T ) < ij. Thus,

T < Tj = bijpj ≤
∑j

k=1 pk
∑ij−1

ℓ=1
1
bℓ

≤
∑j

k=1 pk
∑i(j,T )

ℓ=1
1
bℓ

so condition (4.1) fails in this case as well. In words, for Tj, the total capacity of

the first ij − 1 bins is not enough to fit the top j jobs, so the size of bin ij causes

the bottleneck, and we cannot make it any smaller. Thus, Tj ≤ C∗
max.

Let us define

TLB = max
j

Tj = max
j

min
i

max

{

bipj,

∑j
k=1 pk

∑i
l=1

1
bl

}

. (4.3)

Since Tj ≤ C∗
max for all j, and TLB is just the max of these lower bounds, TLB is

also a valid lower bound for C∗
max.

We now consider how to use the TLB lower bound to create an assignment of

jobs to bins that is close to optimal. We first relax our requirements by allowing
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fractional assignments. A fractional assignment of jobs to bins consists of a par-

tition of each job j into pieces whose sizes sum to pj and an assignment of these

pieces to the bins. A fractional assignment is valid if each bin is at least as large

as the total size of all fractional jobs assigned to it, and every bin receiving a piece

of a job is large enough to contain that entire job (if it didn’t have anything else

in it).

We claim that if we set the bin sizes according to TLB, then a valid fractional

assignment exists, and can be constructed greedily. Assign jobs 1, 2, . . . , (k− 1) to

bin 1, where k is the first job that would cause the bin to overflow. Then assign to

bin 1 a piece of job k exactly as large as the remaining capacity in bin 1. Continue

by assigning jobs to bin 2, starting with the rest of job k, and so on. We now show

that this assignment is valid. Since T ≥ Tn, the total bin size is at least as large

as the total size of all jobs, so all jobs are fully assigned. By construction, no bin

is overfilled. It remains to show that, for each j, job j is fractionally assigned only

to bins of size at least pj. If the bins were sized according to Tj, then the total

size of all bins at least as large as pj is at least
∑j

k=1 pk, by definition of Tj, so the

greedy assignment would finish assigning job j before it reached the bins of size

< pj. In fact, Tj is the smallest value of T for which this is true. Since TLB ≥ Tj,

job j is fully assigned at least as early when the bins are sized according to TLB.

Thus, the greedy fractional assignment is valid. The lemma below follows.

Lemma 4.2.3 Sizing the bins according to TLB, the greedy algorithm yields a valid

fractional assignment. Moreover, TLB is the smallest value for which this is true.

In the greedy assignment, each bin contains some number of full jobs plus at most

two partial jobs.

Two natural 2-approximation algorithms now suggest themselves, but we show
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that they are not monotone. Here is the first one. Starting with the greedy

assignment, round each split job to the faster of its two machines. The load on

each machine is now at most the total size of the jobs fully assigned to that bin

in the fractional assignment, plus at most one more job. Since the fractional

assignment is valid, the rounded one overflows each bin by at most a factor of 2,

so this algorithm is a 2-approximation.

Unfortunately, this algorithm does not yield decreasing load curves, as we argue

now. Suppose that bipj is the lone bottleneck term in (4.3) with 1 < i < m and

j ≤ n − 2. Thus, bin i has size pj and gets part but not all of job j, the first part

of this job having gone in bin i− 1. Suppose that job j + 1 exactly finishes off bin

i. Thus, after the rounding, i gets just job j +1. If i perturbs its speed downwards

a tiny bit, then TLB increases a tiny bit, such that bin i stays size pj, since bipj

is still the bottleneck term defining TLB. This means that all of the bins < i got

slightly larger, so bin i gets less of job j, but still all of job j + 1 and now part of

job j + 2. Thus, after the rounding, i gets jobs j + 1 and j + 2. This situation

occurs, for instance, when the jobs are sizes 5, 4, 2 and 1, the machines are speeds

7, 4 and 1, and the second machine lowers its speed just below 4.

Another simple 2-approximation is to round each job to a machine that pro-

cesses at least half of it, since each job is split across at most two machines.

Unfortunately, this algorithm also does not yield decreasing load curves. Consider

the same situation as above, except that job j + 1 is split almost evenly between

bins i and i + 1, with just over half in bin i + 1, whereas job j is unevenly split. If

i slightly decreases her speed, then bin i gets slightly more than half of job j + 1,

so it gets this job after the rounding, while job j is rounded the same way in both

cases. This situation occurs, for instance, when there are jobs of sizes 5, 4 and 2



76

and machines of speeds 6, 4+ǫ and 2, and the second machine slows down to speed

4 − ǫ.

It seems difficult to overcome this type of problem with a deterministic algo-

rithm, so we turn to randomized ones. We use randomization to obtain a monotone

load curve.

Our algorithm. Starting with our greedy fractional assignment of jobs to bins,

we randomly assign jobs as follows. Select a single random α uniformly in [0, 1],

which we will use to round all jobs in a coordinated fashion. In the greedy fractional

assignment, note that each job j is split between at most 2 bins. Let i be the first

bin that receives part of job j, with the rest (if any) of job j spilling over into bin

i + 1 (the next smaller bin). If the fraction of job j that is assigned to i is at least

α, then round job j to bin i. Otherwise, round it to bin i + 1.

Theorem 4.2.4 The randomized allocation described above admits a payment

scheme that makes it truthful in expectation. The resulting mechanism satisfies the

voluntary participation condition, and deterministically yields a polynomial-time

2-approximation mechanism for Q||Cmax. Moreover, the payments can be chosen

such that truthful agents always attain a fixed utility.

Proof: To establish the approximation guarantee, we just need to show that no

bin becomes more than doubly full after the rounding. Consider bin i, with bin

size B. In the fractional assignment, bin i has some number (possibly zero) of

jobs that are fully assigned to that bin, plus at most two jobs that are partially

assigned to i. Call these jobs j and k (if they exist). Job j is the job that is

split between machine i and the next faster machine. Job k is the job that is split

between machine i and the next slower machine. Bin i overflows only if one or
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both of j and k is rounded to it. Since the fractional assignment is valid, pj and

pk are both at most the size of bin i. Thus, if only one of them is rounded to

it, then the overflow is at most a factor of 2. So we need worry only about the

case where both j and k are rounded to bin i. If job k is rounded to bin i, then

the fractional assignment must have assigned at least an α fraction of job k to bin

i, by the rounding rule. Thus, it assigned at most a 1 − α fraction to the next

faster machine. Similarly, the fractional assignment must have assigned less than

an α fraction of job j to the next slower machine. Thus, the amount of extra work

that i receives in addition to what it got in the fractional assignment is at most

αpj + (1−α)pk ≤ B. Thus, no matter what the value of α, bin i becomes at most

doubly full after the rounding.

We now show that the expected load on each machine i decreases as i bids

higher (i.e., claims to be slower), so that we can apply Theorem 2.4.4. Note that

each job j is assigned to each machine i with probability equal to the fraction of

job j that was assigned to i in the fractional assignment. Therefore, the expected

load on i is precisely the load in the greedy fractional assignment. For full bins

this is TLB/bi, for the empty bins it is 0, and for the (at most) one partially full

bin it is the work left over from the full ones. Suppose some machine claims she is

slower, replacing her bid bi with αbi, where α > 1. This yields a new lower bound

T ′
LB from (4.3). Clearly T ′

LB ≥ TLB, but also T ′
LB ≤ αTLB, since shrinking bin i

by a factor of α then blowing up all bins by α would allow for a valid fractional

assignment. Thus, the overall effect of increasing i’s bid is to enlarge the other

bins while shrinking bin i (or possibly leaving it the same size). If i was initially

full, then its load clearly cannot increase, since the size of the bin did not increase.

If i was initially the one bin that was only partially full, then the amount of work
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it gets is exactly equal to the amount that did not fit into the larger bins. Since

T ′
LB ≥ TLB, the bins larger than i fit at least as much work as they did initially,

so the amount left over for i cannot increase. The expected load qi(b−i, bi) is a

decreasing function of bi, so by Theorem 2.4.3, we can design a truthful payment

scheme. Since machines bidding sufficiently high receive no jobs, we can choose

the payments to satisfy voluntary participation, by Theorem 2.4.4.

For this mechanism, we can compute the payments exactly without resorting

to the tricks of Section 2.6. To compute the payments, we must compute the

function qi(b−i, ·) and the integral
∫ ∞

bi
qi(b−i, x)dx. Let TLB(x) denote our lower

bound when agent i bids x and the others bid b−i. For small bids (fast speeds) bin

i is full, so qi(b−i, x) = TLB(x)/x. For large bids the load is zero. For the interval

inbetween, the load is just the leftover work from the larger bins. Thus, we just

need to find TLB(x). On different intervals it is either constant, of the form cx, or

of the form c
d+1/x

(where c and d are constants), depending on which term is the

bottleneck in formula (4.3). Breakpoints occur only when x coincides with another

agent’s bid or when two of the terms inside the braces in (4.3) (considered as a

function of x) cross. Thus the number of intervals is polynomial and the integral

over each interval is a closed-form expression, so the mechanism is computable in

polynomial-time.2 Since we can compute qi(b−i, bi), the expected load on agent

i, we can pay i a correction term of bi(Z − qi(b−i, bi)) where Z is the actual load

assigned to i as a result of the random coin flips. Thus, as we commented in

Section 2.6, an agent who tells the truth always attains a fixed utility, independent

of the coin flips.

2The closed form expressions giving the payments in the mechanism described
above may contain natural logarithms, so our model of computation must allow
us to compute these if we wish to obtain a numerical answer for the payment.
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Most randomized algorithms use the randomization either to improve the per-

formance guarantee of the algorithm or the running time. Our mechanism has the

peculiar feature that we introduced the randomness not for either of these reasons,

but to cause the expected load to decrease monotonically as the bid increases.

4.2.1 Frugality of our load balancing mechanism

In contrast to our negative results of Chapter 3 for path selection mechanisms, the

expected payments by our 2-approximation algorithm for Q||Cmax never exceed

the expected costs incurred by the machines by more than a logarithmic factor,

provided no single machine dominates the processing power.

Theorem 4.2.5 The expected payment to each machine i ≥ 2 is at most TLB(1 +

2 ln z
bi

), where z = b1(p1 + . . . + pn)/pn and TLB is given by (4.3). The expected

payment to machine 1 is at most TLB( b2
b1

+2 b2
b1

ln z1

b2
), where z1 = b2(p1+. . .+pn)/pn.

Proof: The expected payment to machine i consists of two terms (formula (2.4)).

The first term biqi(bi) exactly compensates machine i for its expected cost, which is

TLB for all machines that are full in the greedy fractional assignment of Lemma 4.2.3.

The second term,
∫ ∞

bi
qi(x)dx, is the (expected) profit. We always have qi(x) ≤

TLB(x)/x, where TLB(x) is the lower bound on the optimal makespan C∗
max com-

puted in formula (4.3) when machine i bids x and the other machines bid b−i.

Equality holds as long as bin i is full in the fractional assignment. But (for i > 1)

TLB(x) stays approximately constant, since machine i constitutes at most half of

the processing power, so decreasing its speed can at most double TLB(x). To see

this, recall from Lemma 4.2.3 that TLB is the smallest T such that sizing the bins

according to T admits a valid fractional assignment. Consider the valid fractional

assignment obtained from TLB(bi). Now double all the bin sizes, delete bin i, and
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reassign all the fractional jobs it had to the largest bin. Since the free space in the

largest bin is at least as large as the original size of bin i, all of these jobs fit, and

this fractional assignment is valid. Thus, TLB(∞) ≤ 2TLB. Moreover, qi(x) drops

to zero at some point y. Thus, the integral is at most 2TLB ln y
bi

.

This argument breaks for machine 1 if it is much faster than all the rest com-

bined, since the load on this machine stays nearly constant as its announced speed

decreases toward that of the second fastest machine. Therefore, our bound on its

profit depends on the ratio between the speeds of the fastest two machines.

It then remains to bound y. If machine i > 1 has speed 1/x = pn/(b1(p1 + . . .+

pn)), then placing even the smallest job on i would take longer than processing all

jobs on machine 1. Thus, when i bids z, it gets no work, so y ≤ z. Similarly, when

machine 1 bids z1, it gets no work.

Corollary 4.2.6 If the sizes of all n jobs differ by a factor of at most r1, and the

speeds of the two fastest machines differ by a factor of r2, then the payment given

by the mechanism exceeds the total expected cost incurred by all the agents by a

factor of at most O(r2 ln(r1n)).

Proof: We apply Theorem 4.2.5 to bound the ratio of payment to expected cost,

machine by machine. For each machine i whose bin is full in the greedy fractional

assignment, the cost is TLB. There is at most one machine with a partially full

bin. We cannot bound its ratio, but clearly its payment is no greater than that of

the next faster machine. For machine 1, the ratio is at most r2(1 + 2 ln(r1n)), and

for each other full machine the ratio is at most 1 + ln( r1n
r2

).
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4.3 Load balancing with preemption

Now we consider another load balancing variant, often denoted Q|pmtn|Cmax. Just

as in Q||Cmax, the machines run at different speeds and we are aiming to minimize

the makespan. However, now we allow preemption, which means that a job can

be started on one machine, interrupted and continued later on the same machine

or another. The output consists of a complete schedule, defining which jobs go

on which machines for which periods of time. The only constraints are that no

machine may work on more than one job at a time, no job may be run on two

different machines at once, and the total work done on each job j must meet its

processing requirement pj. There are multiple algorithms to solve this problem

optimally in polynomial time [29, 37], but not all are monotone as stated. Here

we give a method for converting any optimal algorithm for Q|pmtn|Cmax into a

monotone one.

We begin by examining a combinatorial lower bound on the optimal makespan

T . In describing the algorithm, we assume the job sizes and machine speeds are

sorted largest to smallest. Since each job may be processed on at most one machine

at a time, the fastest k machines must have enough collective capacity to handle

the longest k jobs within time T . Thus,

Tk =

∑k
j=1 pj

∑k
i=1 si

is a lower bound on T , for each k = 1, . . . ,m. Moreover, all the m machines must

have enough collective capacity to handle all n jobs, which yields another lower

bound

T0 =

∑n
j=1 pj

∑m
i=1 si

.

The maximum of these lower bound turns out to be tight, since it is obtainable by
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a feasible schedule.

Theorem 4.3.1 ([29, 37]) There is an algorithm for Q|pmtn|Cmax that runs in

polynomial time and outputs an optimal schedule with makespan equal to

max
0≤k≤m

Tk.

We now show how to transform any optimal algorithm A into a monotone one.

Suppose that T0 is the bottleneck. Then all of the machines are busy for the entire

time T0. In this case, we simply use the schedule output by A. Otherwise, Tk

is the bottleneck for some k (in the case of a tie, choose the largest k). Then

algorithm A must keep all k of the fastest machines busy for the entire time Tk,

working only on the k longest jobs. In this case, we schedule these k jobs on these

k machines as given by A, and recursively schedule the remaining jobs on the

remaining machines. Each level of the recursion results in scheduling a new block

of machines. The first block consists of the f1 fastest, the second block of the f2

fastest, and so on. The machines in the kth group all process for an amount of

time T (k), which is the lower bound that was computed during that level of the

recursion.

Proposition 4.3.2 If there is more than one block, the block processing times

satisfy T (1) > T (2) > . . ..

Proof: We prove that T (1) > T (2). The rest of the inequalities follow by induction.

Since T (1) is the bottleneck at the top level of recursion, this shows that the longest

f1 jobs barely fit on the first f1 machines. Thus, algorithm A must schedule them

that way. Moreover, it schedules the rest of the jobs within the same time limit.

But T (2) is the optimal makespan for the residual problem, hence T (2) ≤ T (1).
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Strict inequality holds because block 1 was chosen according to the largest k such

that Tk was the bottleneck.

Theorem 4.3.3 The allocation described above is optimal, monotone, and admits

a truthful payment scheme satisfying the voluntary participation condition. The

mechanism can be computed in polynomial time.

Proof: Clearly the allocation can be computed in polynomial time, since it

involves at most m calls to the polynomial-time algorithm A. (Actually, A is

called for disjoint blocks of the input, so the overall time is bounded by the time

for running A on the whole input.) It computes an optimal allocation, because

it has makespan T (1), just like algorithm A. We just need to show that the load

curves are decreasing, and the payments can be computed efficiently.

Recall that the speed used in the algorithm is the inverse of a machine’s bid.

Thus, as machine i increases its bid, it decreases its speed. We must show that this

decreases its load. Suppose that, for a particular bid, machine i is part of the kth

block. Let T (k)(x) denote the value of T (k) computed when i’s bid is x. As i slows

down (i.e., x increases), it increases T (k)(x) until either T (k)(x) = T (k−1) (and the

kth block merges with the (k − 1)st), or until machine i becomes as slow as the

fastest machine in block k + 1, and they switch places. Between these breakpoint

values, as bi changes, only T (k) changes with it – none of the other T (ℓ)’s do. At a

breakpoint where two blocks merge, i gets the same load. At a breakpoint where

i moves to the next block, i’s load only decreases, by Proposition 4.3.2. Between

breakpoints, i’s processing time T (k) is of the form a
c+ 1

bi

where a > 0, c ≥ 0. Thus,

its load is of the form a
1+cbi

, which is decreasing in bi, as required.

For each machine i, we need to integrate the load curve over x. The integral

over each segment between breakpoints can be computed in closed form, since
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the load is of the form a
1+cbi

. Since, at each breakpoint, either two blocks merge

or the machine jumps from one block to the succeeding one, the total number of

breakpoints is at most twice the number of blocks, which in turn is at most m.

Thus, the payments can be computed in polynomial time.

4.4 Sum of completion times

We now turn to another problem involving uniformly uniformly related parallel

machines, scheduling to minimize the sum of completion times. This problem

is sometimes denoted Q||∑ Cj. The setup is exactly the same as the one we

considered for Q||Cmax, except we consider a different objective function g. Now,

in addition to allocating jobs to machines, we must specify in which order each

machine processes it’s jobs. The time at which job j completes is denoted by Cj,

and the objective is to minimize
∑

j Cj. This optimization problem is solved by

a simple algorithm [15], which we describe below. The goal of this section is to

prove that this algorithm yields a truthful mechanism that can be computed in

polynomial time.

Assume we have numbered the jobs so that p1 ≥ . . . ≥ pn. Consider a given

schedule of jobs on machines, and let us rewrite the objective function in a more

convenient form. In this schedule suppose that job j is processed on machine i,

and let P (j) denote the set of jobs that are processed on machine i prior to job

j. Then the completion time Cj of job j is
∑

k∈P (j)∪{j}
pk

si
=

∑

k∈P (j)∪{j} bipk, since
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bi = 1
si

. If J(i) denotes the set of all jobs processed on machine i, then we have

∑

j∈J(i)

Cj =
∑

j∈J(i)

∑

ℓ∈P (j)∪{j}
bipℓ

=
∑

ℓ∈J(i)

∑

j∈J(i)−P (ℓ)

bipℓ

=
∑

ℓ∈J(i)

|C(i) − P (ℓ)|bipℓ.

In other words, if job j is the kth to last job scheduled on machine i, then it

contributes kbipj to the objective function, because it takes time bipj to process,

and this time contributes to the completion times of k jobs.

Therefore, we can think of the problem as assigning jobs to slots (at most

one job per slot), where there are slots for the kth to last job on each machine

i, i = 1, . . . ,m, k = 1, . . . , n. Slot k on machine i has a multiplier kbi, and the

contribution of job j to the objective function is pj times the multiplier for the slot

it uses. Define the multiset of multipliers M = {kbi : k = 1, . . . , n, i = 1, . . . ,m}.

Clearly, the best assignment of jobs to slots is the greedy one: the jth largest job

goes in the slot with the jth lowest multiplier in this multiset.

Theorem 4.4.1 The algorithm described above is monotone, admits a truthful

payment scheme satisfying the voluntary participation constraints, and yields an

optimal solution for Q||∑ Cj. The mechanism is computable in polynomial time.

Proof: We have already argued that the solution is optimal.

We must show that the load on machine i only decreases as machine i raises

her bid and eventually reaches zero, so that we can use Theorem 2.4.4 to get a

truthful payment scheme. We compute the load on machine i as a function of

her bid by considering M(x), the multiset of multipliers when i bids x and the

other machines bid b−i. The assignment changes at breakpoints x where one of the
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multipliers corresponding to machine i coincides with a multiplier corresponding

to another machine, at which point the jobs in the two slots are exchanged. Since x

is increasing, the multipliers for i’s slots are increasing, so in this exchange, i gives

away a job in exchange for the next smaller job. Therefore, the load function is a

step function that drops at these breakpoints and is constant elsewhere. The load

eventually drops to zero when i’s smallest multiplier x becomes the (n+1)st smallest

multiplier in M(x). Thus, by Theorem 2.4.4, we can create a truthful payment

scheme satisfying voluntary participation constraints. The output algorithm is

clearly computable in polynomial time. Finding the payments requires computing

integrals of the load curves, as in (2.5). Since each load curve has at most O(n2)

breakpoints, the payments can be computed in polynomial time.

4.5 Maximum Flow

Now we consider the maximum flow problem. We are given a directed graph

G = (V,E) with m edges, a source node S, and a sink node T . Each edge e has

a finite non-zero capacity ce. The problem is to find a max flow from S to T

respecting the capacity constraints on all edges. There are many algorithms for

computing a max flow in polynomial time (see, e.g., [2]). In this section, we cast

max flow as a mechanism design problem, and show how to obtain polynomial

time truthful mechanisms.

We assume that each edge e is an agent, and the capacity of her edge is private

data. Agent e incurs a cost equal to the congestion on her edge. That is, if we

send qe units of flow on edge e, then agent e incurs a cost of qe/ce. In order for this

problem to fit the form we have been considering (i.e., the agent’s cost equals teqe,

her type times her load), we take the private data to be te = 1/ce, and the load on



87

edge e to be the flow qe. Since the edge capacity is the natural quantity to think

about, we will think of an edge’s bid as announcing its capacity. But for purposes

of using Theorem 2.4.3 and equation (2.5) to construct truthful mechanisms, we

take be to be the reciprocal of the capacity that edge e announced. Thus, in truthful

mechanisms the flow on edge e must decrease as its announced capacity decreases.

We can guarantee this property by using max flows that are lexicographically

minimal (in the sense of Definition 4.2.1). We can compute such a flow using m

max flows (where m is the number of edges). There is a closed-form expression

for the payments in terms of the flow, so we can design a mechanism that solves

max flow exactly in polynomial time. Unfortunately, the load curves have infinite

integrals, so we cannot satisfy the voluntary participation condition. However, we

could choose to ignore edges of capacity below ǫ/m, in which case the load curves

would drop to zero at that point, so we could satisfy voluntary participation and

obtain a flow within an additive ǫ of optimal.

Proposition 4.5.1 No truthful mechanism for max flow that always yields the

true max flow can satisfy the voluntary participation constraints.

Proof: Let e be any edge in the min cut when the bids are (b−e, b̂e). Then if

e announces a capacity below 1/b̂e (bids above b̂e), it is still part of the min cut,

so the algorithm must saturate it. But then qe(b−e, be) = 1/be for be ≥ b̂e, so

∫ ∞
0

qe(b−e, x)dx = ∞, and by Theorem 2.4.4, there is no truthful payment scheme

that satisfies the voluntary participation constraints.

It is not enough to compute any max flow according to the announced capacities

1/be and use this as our output, since this will not necessarily lead to the flow on

edge e decreasing as its bid increases (i.e., as its announced capacity decreases).

Instead, we number the edges 1, . . . ,m and compute a lexicographically minimal
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max flow. That is, among all max flows, we choose the one that sends the minimum

flow across e1, and among those we choose the one that sends the minimum flow

across e2, etc.

Proposition 4.5.2 We can compute a lexicographically minimal max flow via m

max flow computations.

Proof: We first compute any max flow q from S to T . We then shunt as much

flow as possible off of edge e1 = (u1, v1) by sending it from u1 to v1 through the

rest of the network. Specifically, we remove edge e1 from the residual network and

update q by superimposing a max flow from u1 to v1 in the residual network, and

decrementing qe1 by this flow value. This yields a max flow from S to T in which

qe1 is minimized. We proceed similarly with edges e2, . . . , em−1. When shunting

flow off of edge ei = (ui, vi), we need to make sure that we do not change the flows

already computed for edges e1, . . . , ei−1. Thus, we delete edges e1, . . . , ei−1 before

computing the max flow from ui to vi in the residual graph.

We now reason about the shape of the load curves when we use lexicographically

minimal max flows. Fix an edge e, and the other bids b−e. Suppose that edge

e is not saturated in the lexicographically minimal max flow. We claim that if e

increases its announced capacity, then the lexicographically minimal max flow does

not change. If it did, then every strict convex combination of the new flow and the

old flow would improve over the old flow, and those sufficiently close to the old flow

would still obey the old capacity on edge e, so would be feasible. This contradicts

the old flow being lexicographically optimal for the old bid. Thus, there is some

constant cutoff K such that the flow sent on e is K if e’s announced capacity is at

least K (i.e., be ≤ 1/K) and the flow saturates the edge if the announced capacity

is at most K (be ≥ 1/K).
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We just showed the flow (load) on edge e decreases as its announced capacity

decreases (bid increases). By Theorem 2.4.3, it admits a truthful payment scheme,

but by Proposition 4.5.1, we cannot choose it to satisfy voluntary participation

constraints since it computes the true max flow. However, if we are prepared

to lose an additive ǫ in the flow, then we can satisfy the voluntary participation

constraints. Let F ∗ denote the value of the max flow with respect to the announced

capacities 1/be.

Theorem 4.5.3 Given any fixed ǫ, there is a truthful polynomial time mechanism

for max flow that finds a flow of value at least F ∗ − ǫ and satisfies the voluntary

participation constraints. Moreover, the output and payments may all be computed

with a single lexicographically minimal max flow.

Proof: We immediately discard edges whose announced capacity is less than ǫ/m

(i.e., edges e with be > m/ǫ). The total capacity of all discarded edges is at most

ǫ, so the value of the minimum cut decreased by at most ǫ, so the max flow in the

remaining network is at least F ∗−ǫ. Now compute a lexicographically minimal max

flow in the remaining network. As in the discussion above, the flow on any edge e is

some constant Ke for large announced capacities (be ≤ 1/Ke), then saturates edge

e for announced capacities between Ke and ǫ/m (flow 1/be for 1/Ke ≤ be ≤ m/ǫ),

but then it drops to zero (for be > m/ǫ). Thus, using (2.4) for our payment

scheme, we get a truthful mechanism satisfying voluntary participation constraints.

Moreover, we may compute the payment to edge e directly from the flow qe on e,

using (2.4). Edges with no flow are paid zero. If e is saturated (i.e., beqe = 1),

then Pe = 1 + qe ln mqe

ǫ
. If e is not saturated and carries a non-zero flow less than

ǫ/m, then Pe = qem/ǫ. Otherwise, Pe = 1 + qe ln mqe

ǫ
.
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4.6 Affine Functions of the Loads: LP and Uncapacitated

Facility Location

Here we consider a general class of problems admitting truthful mechanisms. Our

first result is the existence of a truthful mechanism; at our initial level of generality

we cannot say whether we can compute it. Later we discuss special cases where we

can compute it in polynomial time. Suppose the mechanism wishes to minimize

some affine function of the loads

g(o, b) = d(o) +
∑

i∈N
ci(bi)qi(b), (4.4)

where d is some function of the output o not depending on the bids, ci(bi) is an

increasing function for each agent i, and the set of feasible outputs o does not

depend on the bids. Assume that, for every set of bids, there exists an optimal

solution to (4.4). Recalling Definition 4.2.1, let us number the agents from 1 to m.

Theorem 4.6.1 For the problem stated above, if each coefficient ci(bi) is strictly

increasing in bi, then any optimal output function O(b) admits a truthful payment

scheme. Otherwise, any output function that gives an optimal solution whose vector

of loads (q1, . . . , qm) is lexicographically minimal admits a truthful payment scheme.

Proof: To apply Theorem 2.4.3, we just need to show that the load qi(b) on agent i

never increases as her bid bi increases, with the other bids b−i fixed. Let b̄ = (b−i, b̄i)

and b̂ = (b−i, b̂i) be two sets of bids differing only in agent i’s bid, and let ō, ô, q̄j and

q̂j be the corresponding outputs and loads. Assume on the contrary that b̂i > b̄i

but q̂i > q̄i. Let ∆ = (d(ō) +
∑

j 6=i cj(bj)q̄j)− (d(ô) +
∑

j 6=i cj(bj)q̂j), the difference

in the two objective functions, not including the qi term, since that is the only one

that depends on bi. Since ô is a feasible output for bid b̄ but the function chose ō
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instead, we must have 0 ≤ g(ô, b̄) − g(ō, b̄) = −∆ + ci(b̄i)(q̂i − q̄i). Similarly, since

the output ô is optimal for bids b̂, we have 0 ≤ g(ō, b̂)−g(ô, b̂) = ∆+ci(b̂i)(q̄i− q̂i).

Combining these gives (ci(b̄i) − ci(b̂i))(q̂i − q̄i) ≥ 0. If ci strictly increased as bi

increased from b̄i to b̂i, then the product is negative, which is a contradiction. If ci

stayed the same, then the product is zero, so all of the inequalities are tight. Thus,

both outputs ō and ô give the same objective function value for both bids b̄ and

b̂ but the loads are different, which contradicts their both being lexicographically

minimal.

There are many examples of problems fitting this model. One example is linear

programming problems in which some of the decision variables are the loads qi, d(o)

is the part of the objective depending on the other variables, the cost coefficient

on qi depends on i’s bid bi, and the feasible set is given by linear inequalities not

depending on the bids. One example would be minimum cost flow, where each

agent represents an edge e, her cost is teqe where e is the flow on edge e, and

the mechanism is aiming to minimize
∑

e ce(be)qe, subject to the standard flow

constraints, with capacities on the edges and supplies and demands of flow at the

nodes. It is important that the capacities, supplies and demands do not depend

on the bids, since these determine the feasible set of flows.

Another example is uncapacitated facility location. In this problem, there is

a set of facility points F , a set of client points C, costs fi for each facility i, and

a metric d giving the distance between every pair of points in C ∪ F . A solution

selects a collection of facilities to open. Then each client is assigned to the closest

open facility. There are no capacities, so an open facility can serve an arbitrary

number of customers. We incur the facility cost fi for each open facility i, and if

client j is assigned to facility i, we incur a service cost d(i, j). The objective is to
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minimize the sum of the demand and service costs. In our model, each facility is

an agent, her private data is her facility cost, and she will incur this cost if she

is opened. Thus in (4.4), qi is an indicator variable telling whether i is opened,

ci(bi) = bi (the reported facility cost), and d(o) is the service cost.

If the functions ci(bi) are given by wibi for some set of weights wi, then our

objective function is the same one optimized by the weighted, biased VCG mech-

anism. However, our mechanism treats a more general case, since it works for all

increasing functions ci.

Even though the maximum flow problem (Section 4.5) and load balancing with

preemption on uniformly related machines to minimize makespan (Section 4.3) can

both be solved by linear programming, they do not fit into this model because the

feasible regions depend on the bids. For max flow, there is a constraint that the

flow variable on edge e is at most e’s capacity, which in our model is given by e’s

bid. For the linear programming formulation of the load balancing problem, the

objective function is a variable z, and the program includes constraints for every

machine i saying that z is at least as large as i’s total processing time. Since the

expression for the processing time involves i’s speed, which is given by her bid, the

feasible region depends on the bids.

We mention linear programming because it can be used to model many op-

timization problems, and because linear programs can be solved in polynomial

time. However, there is one catch with computing the payments. While we can

optimize over the polyhedron of feasible solutions in polynomial time, we cannot

necessarily compute the payments in polynomial time. Computing the payment to

agent i requires integrating the work curve, so we need to know how qi(bi) changes

with bi (suppressing the other bids b−i in the notation, as they are held fixed).
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As bi increases, the objective function coefficient vector changes, but the feasible

polyhedron remains the same. Thus, qi(bi) stays constant over intervals where the

optimal vertex of the polyhedron is the same. There are finitely many breakpoints

where the optimum jumps to another vertex of the feasible polyhedron. So the load

curve is a step function. Unfortunately, polyhedra can be exponentially complex

in the size of their description, so there could be exponentially many breakpoints.

Thus, it might take exponential time to compute the payments, even though we

can compute the output in polynomial time. In these cases, we can resort to the

tricks in Section 2.6. We can either discretize the bids in order to obtain a truthful

deterministic mechanism that approximately optimizes our objective, or we can use

random sampling to obtain an optimal mechanism that is truthful in expectation.

4.6.1 Uncapacitated facility location

We can apply Theorem 4.6.1 to the uncapacitated facility location problem, as

defined in the last section, because ci(bi) = bi, which is strictly increasing in bi.

This yields the following.

Theorem 4.6.2 Any algorithm that solves the uncapacitated facility location prob-

lem optimally admits a truthful payment scheme.

Uncapacitated facility location is NP-hard, so we cannot expect to find a

polynomial-time algorithm to solve it. However, there are some special cases that

can be solved in polynomial time, such as if the facilities and customers lie on

a line, circle, or tree. Slight generalizations of these cases are solved in [27]. In

these cases, we can also compute each payment easily, as it just involves finding

the threshold bid at which a facility would no longer be open (i.e., where qi(b−i, ·)

jumps from 1 to 0).
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We can adapt the algorithm of Meyerson [48] to create a truthful mechanism

for facility location in an arbitrary metric space. Meyerson’s algorithm works for

the case where each customer point is also a potential facility, and all facilities cost

a uniform amount f . The algorithm is simple. We select a random permutation

of the facilities, and consider them one by one. When a new facility arrives, we

compute the cost c of connecting the associated customer to the nearest facility

already open. We then open the new facility with probability min(1, c
f
). Meyerson

proves that this randomized algorithm gives a constant approximation factor (in

expectation).

In our setting, the facility costs are reported by the agents. Suppose that we

know ahead of time that all facility costs lie in a bounded interval [f1, f2], where

f2

f1
is a constant. In this case, for a facility reporting its cost to be bi, we open it

with probability min(1, c
bi

). Meyerson’s analysis is valid only for uniform facility

costs, but since f2

f1
is a constant, we only lose an additional constant factor.

Here the expected load on an agent (facility) is the probability that it is opened,

which is clearly monotone decreasing. In this case, we need only integrate up to

f2 in the formula (2.5), since agents cannot bid higher than that. It is not clear

how to compute the overall expected probability of opening i, as a function of the

bid bi. Fortunately, there is an even simpler method of calculating payments in

this case. We simply compute the largest value (in [f1, f2]) that i could have bid

and still been opened, conditioned on all of the coin flips up to that point in the

randomized algorithm. Thus, this method is truthful for every outcome of the coin

flips, not just truthful in expectation.

Theorem 4.6.3 There is a randomized universally truthful mechanism for unca-

pacitated facility location that achieves a constant approximation factor in expecta-
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tion, provided every customer point is also a potential facility, and all the facility

costs are known to lie in an interval [f1, f2], where f2

f1
is bounded by a constant.

4.7 Lower bounds

We can use the characterization of Theorem 2.4.3 to prove lower bounds on ap-

proximability by truthful mechanisms. In particular we consider scheduling on

machines with speeds to minimize the weighted sum of completion times, usually

denoted Q||∑ wjCj. This is identical to the problem studied in Section 4.4, but

with a slightly different objective function. Each job j has a weight wj > 0, and the

goal is to schedule jobs on machines to minimize
∑

j wjCj. Whereas minimizing

∑

j Cj was easy, minimizing
∑

j wjCj is NP-hard. However, there is a PTAS for

this problem [13]. We show a lower bound of 2√
3
≈ 1.15 for truthful mechanisms

even scheduling just two jobs on just two machines. This is interesting because

it shows that for this problem, truthfulness implies a stronger lower bound on

approximability than does the restriction to polynomial-time algorithms.

The idea behind our lower bound is that in an optimal allocation, the fast

machines should get the important jobs, whereas in a truthful allocation the fast

machines should get the bulk of the work. If we arrange the job weights wj so that

these two principles conflict, then the truthful allocation will be suboptimal.

Theorem 4.7.1 No truthful mechanism for Q||∑ wjCj can achieve an approxi-

mation ratio better than 2√
3
, even on instances with just two jobs and two machines.

Proof: Consider an instance with two jobs and two machines. Job 1 has weight

and processing requirement 1, while job 2 has weight w and processing requirement

p, where p > 1. Suppose machine 1 runs at speed 1, and machine 2 runs at speed

s. In order for our mechanism to be truthful, the load on machine 2 must increase
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monotonically as its bid decreases (i.e., as its speed increases). To show that any

truthful mechanism is suboptimal, we must select p and w so that in the optimal

schedule, the load on machine 2 is non-monotone in s. With foresight, we set p

and w such that pw < 1.

In the optimal schedule, for small s, both jobs will be assigned to machine 1.

As we raise s, the jobs will eventually be split between machines, the machines

will swap jobs, then eventually machine 2 will get both jobs, for large enough s.

When the jobs are split, the job with larger weight-processing product goes on

the faster machine. Since pw < 1, job 2 goes to the slower machine. Thus, the

load on machine 2 is non-monotone in the optimal assignment, since p > 1. It is

easy to check that the optimal assignment is to give both jobs to machine 1 when

s ∈ (0, p
p+1

), put job 1 on machine 1 and job 2 on machine 2 when s ∈ ( p
p+1

, 1), swap

the jobs when s ∈ (1, 1 + 1
p
), and put both jobs on machine 2 for s ∈ (1 + 1

p
,∞).

Whenever both jobs are on the same machine, job 1 goes first (by Smith’s rule).

Now we reason about the behavior of any truthful mechanism, as s increases

from 0 to ∞. If the mechanism is to achieve a finite approximation ratio, then

it must assign both jobs to machine 1 when s ≪ 1 and both jobs to machine 2

when s ≫ 1. For intermediate values of s it may split the jobs. The key is that

if machine 2 gets job 2 for some value of s, then it must keep job 2 for all larger

values of s, since the load may only increase and p > 1. The optimal schedule

violates this. Because pw < 1, we have 1
1+w

∈ ( p
p+1

, 1). Thus, when s = 1
1+w

,

the optimal schedule gives job 2 to machine 2, but when s = 1 + w, it gives only

job 1 to machine 2. Therefore, the truthful mechanism is suboptimal either when

s = 1
1+w

or when s = 1 + w. We discuss the first case. The second is symmetric.

Since we are assuming the truthful mechanism does not split the jobs the
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optimal way when s = 1
1+w

, the best possible schedule it can use is to split the

jobs the other way. Thus, the mechanism gives a schedule with objective function

value at least pw + (1 + w), while the optimal schedule has value 1 + pw(1 + w).

For any fixed p, the ratio of these two values is maximized when w =
−p+

√
2p2+p

p2+p
.

The ratio increases as p ↓ 1, approaching a limit of 2√
3
.

4.8 Further work

This chapter addressed the interesting problem of “discrete optimization with a

blindfold,” trying to solve discrete optimization problems where we do not know

all of the data up front, and instead must elicit it from some rational agents.

Admittedly, our models are somewhat artificial because we limited ourselves to

agents with one-dimensional types, since we wanted to use Theorem 2.4.3. It

would be nice to be able to address more realistic models. Unfortunately, there is

a dearth of useful characterization theorems analogous to Theorem 2.4.3 for more

complicated valuation functions, if our goal is to optimize non-utilitarian objective

functions.

Our favorite example of a considerably more compelling model for which there is

still some hope of proving something is the problem of load balancing on unrelated

machines (R||Cmax), introduced in the mechanism design context by Nisan and

Ronen [58] and described in Section 4.1. Any time there is such a large gap

between what we know how to do and what we know is impossible, it is tantalizing

to try to close this gap. In this case, Nisan and Ronen gave a truthful mechanism

obtaining an m-approximation, but their lower bound for the approximation ratio

achievable by a truthful mechanism is only 2. Using strong additional assumptions

on the form of the payment scheme used, they can improve the lower bound to m.
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However, these assumptions explicitly rule out the types of payments that would

encourage load balancing, so we do not see this as convincing evidence that the

lower bound for all truthful mechanisms should be m.

There is a characterization of truthful mechanisms akin to Theorem 2.4.3 that

almost applies to this model, so we describe it here in order to point out where

the difficulties lie. The type for machine i in this model is itself a vector, ti =

(ti1, . . . , tin), where tij is the time required for machine i to process job j. Recall

that machine i’s cost is assumed to be the total amount of time it spends processing.

Thus, if qij is an indicator function denoting whether job j is assigned to machine

i, then we can write i’s valuation as vi = −∑n
j=1 tijqij.

We now describe a theorem from [47] that applies to valuation functions of

this form. Consider the real-valued function qij(b−i, bi), with b−i fixed. Since the

types are n-dimensional, bi is an n-vector, the value that i reports for the vector

ti = (ti1, . . . , tin). Let qi be the vector of functions (qij)
n
j=1. Suppose that each

of the vector-valued functions qi(b−i, bi) is continuously differentiable with respect

to the vector bi (for each fixed b−i). Then the derivative of qi with respect to bi

(with b−i fixed) is an n × n matrix Di(b−i, bi). The theorem from [47] says that

the allocation function q is implementable if and only if −Di(b−i, bi) is positive

semidefinite, for all b−i and bi.

There are two problems with this theorem in light of our intended application.

First, it seems rather unwieldy to apply. Second, it does not apply directly to the

model for R||Cmax because in this model, each qij is a binary function, and the the-

orem assumed that the qij were continuously differentiable. It would be interesting

if one could prove a version of this theorem that gave a useful characterization of

implementable binary allocations, and then apply this characterization either to



99

create a truthful mechanism for R||Cmax with an approximation guarantee better

than m, or to improve the lower bound beyond 2.



Chapter 5

Randomized approximations to VCG
In this chapter, we consider how to obtain truthful mechanisms that approximate

the VCG mechanism in the case that the VCG mechanism is NP-hard to compute.

We focus on a particular case of combinatorial auctions involving so-called “single-

minded bidders.” Our main contribution is to show how an allocation based on

randomized rounding of a linear program can be made simultaneously truthful

with high probability and truthful in expectation.

Multiple-item auctions are a basic tool of electronic commerce. These auctions

allow bidders to coordinate their purchases of complementary goods, such as air-

fare, lodging and ground transportation for a vacation package, or mobile phone

spectrum licenses in adjacent geographical regions. Many such large-scale auctions

have indeed been used recently by the FCC and governmental bodies in Europe

and elsewhere to allocate spectrum licenses to mobile phone providers. The FCC

auctions alone granted thousands of licenses to hundreds of companies, raising

over $40 billion [16]. While the FCC decided to use an innovative simultaneous

ascending auction for its various spectrum licenses, it also strongly considered vari-

ous forms of combinatorial auctions, in which the participants bid on sets of items,

rather than individual items. The sheer magnitude of these spectrum auctions and

the rise of electronic commerce have both generated a surge of interest in designing

good mechanisms for such combinatorial auctions.

We will consider combinatorial auction mechanisms where each bidder i bids

a valuation bi for a set Si she is interested in. We will assume that each bidder

i is bidding for a single set Si, and this set is known to the auctioneer or can

be inferred from context. Thus, each agent’s only private information is her true

100
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valuation for that set.

There are two natural goals for designing good auctions: maximizing the rev-

enue, and maximizing the total valuation, which is the sum of the valuations of the

bidders who receive their desired sets. In this chapter we will concentrate on the

latter objective, which is referred to as efficiency in the economics terminology. In

some cases, maximizing efficiency is a more important objective than generating

revenue. For instance, one of the primary goals in the spectrum auctions was to

get spectrum licenses into the hands of the companies that could best use them to

build up a viable mobile phone network, and it is widely believed that high valua-

tion is a strong indicator of how well-positioned the company is to make good use

of the spectrum license [16].

The VCG mechanism is truthful and maximizes the total valuation. Thus, in

this context we would like to use it, unlike in Chapter 4, where we were interested

in non-utilitarian objectives. However, computing the VCG mechanism in this case

requires solving the well-known SetPacking problem, which is NP-hard. Simply

replacing the exact optimization routine required in the VCG mechanism with an

approximation algorithm destroys truthfulness [57].

We create a technique that makes randomized rounding-based approximation

algorithms useful in designing truthful mechanisms. First introduced by Raghavan

and Thompson [62], randomized rounding of an LP solution is now a commonly

used technique for designing polynomial-time approximation algorithms. Typically

such rounding algorithms succeed with high probability. However, it is not clear

what the associated mechanism should do to ensure truthfulness when the rounding

fails to produce a feasible solution. By Theorem 2.4.5, a randomized allocation

algorithm A can be implemented truthfully in expectation if and only if for every
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agent i, the probability that A assigns the desired set Si to agent i is increasing in

her bid bi. Thus, our first task is to develop a technique for obtaining a monotone

allocation algorithm from such a rounding scheme, which we do in Section 5.3.

In Section 5.4 we construct a clever payment scheme that allows us to achieve

truthfulness both in expectation and with high probability. In Section 5.5 we show

that our mechanism approximates the “fractional” version of the VCG mechanism,

both in terms of valuation satisfied and revenue generated.

5.1 Combinatorial auctions and single-minded bidders

A combinatorial auction is designed to divide up a set G of items among a set N of

n bidders. Each bidder’s valuation depends only on the set she is assigned. Thus,

i’s valuation is given by a function vi : 2G → R+. A single-minded bidder i is one

who values only a particular set of items. More formally, there is a set Si and a

c ≥ 0 such that vi(T ) = c if Si ⊆ T and vi(T ) = 0 otherwise. In this chapter, we

consider the case where all bidders are single-minded, and the auctioneer knows

the sets Si ahead of time. This is the case of known single-minded bidders. There

can be multiple copies of each good, in which case the multiplicity mj denotes the

number of copies of item j that are available.

Two previous papers have studied auctions with single-minded bidders, in the

case that all goods have multiplicity one. Lehmann et al. [41] first studied this

problem, giving a truthful mechanism based on a greedy allocation. Their mecha-

nism attains a
√

m-approximation to the optimal allocation, where m is the number

of items. Moreover, they prove their result is nearly the best possible, in the fol-

lowing sense. For every constant c < 1
2
, there is no polynomial time algorithm

that achieves an approximation guarantee of mc, unless NP = ZPP . Mu’alem
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and Nisan [54] consider the case of known single-minded bidders. They show how

to combine certain truthful mechanisms into an improved mechanism, while pre-

serving truthfulness. Using this technique, they improve the greedy mechanism

of Lehmann et al. by adding a partial enumeration of the space of allocations.

The resulting polynomial time mechanism yields an ǫ
√

m approximation, for any

constant ǫ > 0.

We consider the case of known single-minded bidders when there are Ω(ln K)

copies of each item available, where K is the maximum size among any of the sets

Si. Each bidder desires only one copy of each good in her desired set; that is, Si

is a set, not a multiset. For the corresponding optimization problem of finding

an allocation maximizing total valuation, there is a good approximation algorithm

that uses randomized rounding. Our randomized auction mechanism is based on

this algorithm. Our auction mechanism runs in polynomial time and attains a

(1+ ǫ)-approximation to the optimal valuation. The ǫ that we can obtain depends

on the constant inside the Ω(ln K) bound on the multiplicities.

5.2 Special notation for this chapter

In this chapter, we will depart from the notation set forth in Section 1.3. We

will not reserve the symbols ti and qi for types and allocations. In this chapter,

t and q have other meanings, which will be defined when we get to them. Since

agent i’s type is just her valuation for her desired set, we will denote this by vi.

Since the mechanism is collecting payments from the players and these make up

the mechanism’s revenue, we will denote these by Ri.

We use the term “profit” instead of “utility.” Let the indicator variable zi(b)
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be 1 if i wins her desired set and 0 otherwise. Then we define

profiti(b) = vizi(b) − Ri(b), (5.1)

that is, i’s valuation for the goods she gets, minus the price she pays. Each agent’s

goal is to maximize her own profit.

5.3 Our mechanism for known single-minded bidders

We design a randomized mechanism based on solving the natural linear program-

ming relaxation of the SetPacking problem, and randomly rounding the resulting

fractional allocation. In the case that the number of copies of each item is Ω(ln K)

(where K is the maximum size of a set Si), we prove that our mechanism achieves

near-optimal total valuation, is truthful in expectation and strongly truthful with

high probability, and has revenue that compares well with a natural variant of

VCG. We describe our mechanism by successive refinement of a simple random-

ized rounding idea, sprinkling in motivation as we encounter and overcome various

obstacles.

First recall from Section 2.4.1 that a deterministic mechanism for known single-

minded bidders is truthful if and only if the allocation rule is monotone and the

price for a winning agent equals her “threshold.” That is, if we fix the other bids

b−i, then agent i has some threshold bid Ti(b−i) such that she wins and pays Ti(b−i)

if bi > Ti(b−i), and loses if bi < Ti(b−i). (If bi = Ti(b−i), the agent can win and

pay Ti(b−i), or lose and pay zero; it doesn’t matter which.) From Section 2.5 and

Theorem 2.4.5, a randomized mechanism is truthful in expectation if and only if

for every agent i, the probability pi(b−i, bi) that the mechanism assigns her the

desired set Si is increasing in her bid bi, and her expected payment is equal to a
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certain integral of the function pi:

bipi(b−i, bi) −
∫ bi

0

pi(b−i, u)du.

Thus, to create a mechanism that is truthful with high probability, it needs to

act like a threshold mechanism with high probability, and to get truthfulness in

expectation we need the success probabilities of each agent to be increasing in her

bid. We work on this second property first.

Our mechanism works as follows. First collect the bids. Using some small fixed

ǫ′ ∈ (0, 1) that is publicly known, pretend that we have only m′
j = ⌊(1 − ǫ′)mj⌋

copies of each item j to distribute. Now solve the following linear program to get

an optimal fractional allocation, using the artificially reduced supply of goods.

maximize
∑

i∈N bixi (5.2)

subject to:
∑

i:j∈Si
xi ≤ m′

j for all j ∈ G

0 ≤ xi ≤ 1 for all i ∈ N

Denote the optimal fractional allocation by x. We assume that we always find

a vertex solution to the linear program, and break ties in a particular fixed way

independent of the bids b (e.g., between two vertex solutions, choose the solution

with the higher value of xi for the smallest index i in which they differ). Notice

that a fractional value of xi means that the LP allocates agent i an xi fraction of

each good in her set Si. Now we perform the standard trick of treating the xi’s

as probabilities. We define a preliminary set of initial winners by selecting each

bidder i independently with probability xi. Unfortunately, we may have tried to

sell too many copies of some items, so we will need to modify this outcome by

deleting certain selected bidders. The modified outcome will be feasible. However,

it is not yet clear how the modification affects the monotonicity of an agent’s
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overall success probability, so we will have to return to this issue.

First it is not hard to see that, with high probability, no item is over-sold.

Chernoff bound [51]. Let X1, . . . , Xn be independent Poisson trials such that,

for 1 ≤ i ≤ n, Pr[Xi = 1] = pi. Then for X = X1 + . . . + Xn, µ ≥ p1 + . . . + pn,

and any α < 2e − 1 we have

Pr[X > (1 + α)µ] < e−µα2/4.

Proposition 5.3.1 Let c > 0. Suppose that each item j ∈ G has multiplicity

mj = Ω(ln K). Then the probability that a given item is over-sold is at most 1
Kc+1

(the multiplicative constant inside the Ω is 4(c+1)

ǫ′2(1−ǫ′)
).

It is easy to show that this randomized initial allocation is monotone, i.e., that

the value xi in the optimum is monotone in the bid bi of agent i.

Lemma 5.3.2 Let x be an optimal solution to a linear program when the objective

function vector is b, and let x′ be an optimal solution when the objective function

vector is b′ (where ties are broken independently of b and b′). Suppose bi = b′i for

all i 6= i0 and b′i0 > bi0. Then either x′ = x or x′
i0

> xi0.

Proof: Since x is the optimal solution to the linear program, and x′ is a feasible

solution,

b · x ≥ b · x′ (5.3)

Similarly,

b′ · x′ ≥ b′ · x (5.4)

If x = x′, we are already done. Otherwise the two vertices are distinct, and since

the tie breaking rule is the same, one of the two inequalities must be strict. Adding
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(5.3) and (5.4), and noting that b′ ·x = b ·x+(b′i0 − bi0)xi0 for all vectors x, we get

(b′i0 − bi0)(x
′
i0
− xi0) > 0

from which the result follows.

From the above result, it follows that the probability of rounding any agent to 1

is monotone in her bid. Thus, if no items were ever initially oversold, we would

get a truthful mechanism. However, there is some probability that an agent i

is not allocated her set even though she is initially rounded to 1, because some

item j in Si may be oversold, in which case some or all of the agents desiring j

must be dropped. For reasons of egalitarianism (and for lack of a better idea), we

propose to drop every agent i whose set Si contains an oversold item j. As the

following example shows, the overall probability that agent i wins is not necessarily

monotone in her bid.

Example 1 Consider an instance where there are 51 agents bidding for an item

’A’ with multiplicity 1. Suppose that when the first agent bids a value b1, the

fractional allocation is 1
2

for agent 1, and 1
100

for agents 2, . . . 51. In this case, the

probability that agent 1 is an initial winner is 1
2
, and the probability that she is

finally allocated the item is 1
2
(1 − 1

100
)50 ≈ 0.3.

Now suppose she raises her bid to b2 > b1 and the fractional solution changes

to 0.51 for agent 1, 0.49 for agent 2, and 0 for all the other agents. In this case,

agent 1’s probability of being an initial winner increases to 0.51. However, her

probability of being allocated the item is now (0.51)(1 − 0.49) ≈ 0.26. Hence the

algorithm described above is not monotone.

As a result, we do not yet have a truthful mechanism. In the next two sections,

we show how to achieve monotonicity. We give a very high level description in
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Section 5.3.1 and then fill in the necessary details in Section 5.3.2.

5.3.1 Dealing with over-sold items: the basic idea

While the probability that the rounding fails is small, it may depend on the agent’s

bid and may not be monotone. Our approach is to drop each agent with some

additional probability so as to ensure that the overall probability that agent i

wins is directly proportional to the variable xi. When the rounded solution is not

feasible, it may still be possible to serve some agents without clashes. We use the

following approach:

Step 1. Solve the scaled linear programming relaxation (5.2).

Step 2. Round each variable xi to 1 with probability xi, set to 0 otherwise.

Step 3. Select all agents i that are rounded to 1 and such that the supply con-

straints for all items in Si are satisfied.

Step 4. Drop each agent with some additional probability (to be defined later).

Let x̂ denote the integer assignment resulting in Step 2. Consider an agent i0.

The agent is selected in Step 3 if she is rounded to 1 in Step 2 and the constraints

for all items in Si0 are satisfied. That is, i0 is selected if x̂i0 = 1 and x̂ satisfies

∑

i: j∈Si, i6=i0

x̂i ≤ mj − 1 for all j ∈ Si0 .

Let Ii0 = {i : Si ∩ Si0 6= ∅}. The variables xi : i ∈ Ii0 form a feasible solution

to the scaled linear program (5.2) induced on the items in Si0 . Let qi0 be the

conditional probability that no item in Si0 is over-sold, given that x̂i0 = 1. Set

q∗ = 1 − 2
Kc . Using Proposition 5.3.1 and the union bound on the items in Si0 ,
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we get that qi0 > 1 − 1
Kc > q∗. Thus the probability that agent i0 is selected

at Step 3 is xi0qi0 > xi0q
∗. Therefore, in Step 4 we would like to drop agent i0

with probability 1− (q∗/qi0), so that the probability that agent i0 survives through

the end of Step 4 is exactly xi0q
∗. We would then have a monotone allocation

algorithm.

5.3.2 Dealing with over-sold items: important details

Note that the algorithm described above requires us to exactly compute the prob-

ability qi0 . However, it is #P-hard to compute this number exactly, so the above

scheme cannot be implemented efficiently. We get around this problem by using

an estimator for this probability. First, we need the following simple observation:

Lemma 5.3.3 Let x be any vertex of the polytope {x : Ax ≤ r, 0 ≤ x ≤ 1},

where A ∈ {0, 1}m×n and r ∈ Zm. Then x ∈ Qn and each xi can be written with

denominator D, for some D ≤ m!.

Proof: Any vertex of the polytope is given by a linear system Ãx̃ = r̃ where Ã is

a non-singular square submatrix of A, and x̃ and r̃ are corresponding submatrices

of x and r respectively. Then x̃ = Ã−1r̃. Let D = det(Ã). Since Ã is a 0-1

matrix, D ≤ m!. Moreover D · Ã−1 and r̃ are integer matrices and hence Dx̃ is an

integer vector. Any xi not in x̃ is set to zero or one, and hence trivially satisfies

the conclusion. Hence the claim.

Corollary 5.3.4 Let x′, x′′ be vertices of the polytope {x : Ax ≤ r, 0 ≤ x ≤ 1},

where A ∈ {0, 1}m×n and r ∈ Zm. Then for each i, either x′
i = x′′

i or x′
i ≥ x′′

i (1+δ)

or x′′
i ≥ x′

i(1 + δ), where δ = (1/m!)2.
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Corollary 5.3.4 along with Lemma 5.3.2 imply that whenever an agent i in-

creases her bid, this either has no effect on the allocation or it increases xi by a

factor of at least (1 + δ).

The algorithm described above requires computing 1/qi0 for each agent i0. In-

stead of the exact value, we use an estimator Y for this number, and in Step 4 we

retain agent i0 with probability q∗Y . Consider the following experiment: Round

xi0 to 1. For each i ∈ Ii0 , round xi to 1 independently with probability xi. Recall

that qi0 is defined to be the probability that this solution satisfies the constraints

for all items in Si0 . Let the random variable X denote the number of trials of the

experiment required before this happens, so that E[X] = 1/qi0 . Our estimator Y

for 1/qi0 is min(1+δǫ
N

∑N
ℓ=1 Xℓ, 1/q∗), where N = O(Kc log 1

δǫ
), the Xℓ’s are inde-

pendent trials of the above experiment, c is from Proposition 5.3.1, and ǫ ≪ 1 is

some error parameter of our choosing. (Later, ǫ will be part of the error proba-

bility in our guarantee on truthfulness with high probability. We will typically set

ǫ ≪ 1/Kc.) The reason we take the min is that in Step 4, we retain agent i0 with

probability q∗Y , so we must ensure that this number is at most 1. The expectation

of 1+δǫ
N

∑N
ℓ=1 Xℓ is exactly (1 + δǫ)/qi0 , which is less than and bounded away from

1/q∗. Since
∑N

ℓ=1 Xℓ is a negative binomial random variable with success proba-

bility qi0 ≈ 1, its distribution is concentrated about its mean, so the expectation

of Y will not be much smaller than (1 + δǫ)/qi0 . In particular, we can use moment

generating functions to bound the upper tail’s contribution to the expectation (see

e.g., [51]), and obtain the following.

Lemma 5.3.5 The estimator Y defined above is at most 1/q∗, and

E[Y ] ∈ [1/qi0 , (1 + δǫ)/qi0 ]

.
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This finishes the description of our allocation algorithm, which we will call

RandRound. Note that the probability that agent i0 is not dropped in Step 4

of the algorithm above is exactly q∗E[Y ]. We now argue that this mechanism is

monotone.

Theorem 5.3.6 The probability that an agent i is selected by the algorithm Rand-

Round is monotone increasing in her bid bi.

Proof: Fix an agent i and a vector of bids b−i for agents other than i. Let

b′i > bi. Consider the corresponding LP optima x and x′. From Lemma 5.3.2

either x = x′ or x′
i > xi. In the first case, the experiment is the same and hence

agent i’s probability of succeeding is the same whether she bids bi or b′i. In the

second case, her probability pi(b−i, bi) of winning if she bids bi is given by

pi(b−i, bi) = xiqiq
∗E[Y ]

≤ xiqiq
∗(1 + δǫ)/qi

= xiq
∗(1 + δǫ)

If she bids b′i, then her probability of winning is

pi(b−i, b
′
i) = x′

iq
′
iq

∗E[Y ′]

≥ x′
iq

′
iq

∗/q′i

≥ xiq
∗(1 + δ)

where the last inequality follows from Corollary 5.3.4. Since ǫ < 1, this shows that

the above LP rounding algorithm is monotone.

Theorem 5.3.7 Suppose that each item has multiplicity Ω(ln K), as in Proposi-

tion 5.3.1. Let OPT denote the optimal total valuation achievable by any alloca-
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tion. Then the expected total valuation achieved by the above algorithm is at least

(1 − ǫ′)q∗OPT .

Proof: Every feasible allocation gives a feasible solution to the LP with the

actual multiplicities mj. Scaling down any solution to this LP by a factor of

(1− ǫ′) yields a solution to our LP (5.2) with the artificially reduced multiplicities

m′
j. Therefore, the optimal solution to this LP has value

∑

i∈N bixi ≥ (1−ǫ′)OPT .

The probability that agent i is selected is at least xiq
∗, hence the expected total

valuation is at least (1 − ǫ′)q∗ times the LP optimum.

5.4 Computing payments

We have succeeded in creating an allocation rule where the success probability for

i increases monotonically with her bid. We now consider how to compute pay-

ments in order to obtain a truthful mechanism. Recall that pi(b−i, bi) denotes the

overall probability that i wins her desired set Si. Note that b−i is fixed throughout

this discussion, so we suppress it in the notation where convenient. Recall from

Section 2.5 and Theorem 2.4.5 that to guarantee truthfulness in expectation, i’s

expected payment should be

Ri(b−i, bi) = pi(b−i, bi)bi −
∫ bi

0

pi(b−i, u)du. (5.5)

Notice that pi(b−i, u) is a step function that jumps whenever the selected vertex in

the LP (5.2) changes, and is flat elsewhere. See Figure 5.1. Thus, it could have ex-

ponentially many breakpoints, so we cannot compute Ri directly. However, we can

use the trick from Section 2.6 of sampling from the bid axis to achieve the correct

expected payments, which yields a mechanism that is truthful in expectation.

The goal of this section is to create a payment scheme that simultaneously



113

x(1)

x(2)

x(3)

x(j)

bi

profiti

t(1) t(2) t(3) t(j)

Ri(b-i,bi)

Figure 5.1: The graph shows i’s probability pi(b−i, bi) of winning as a function of

her bid bi. The gray area Ri(b−i, bi) is her expected payment. If bi is a truthful

bid, then the white area is her expected profit.

gives us truthfulness with high probability and in expectation. In Section 5.4.1,

we show how to attain truthfulness with high probability (but not in expectation),

using a simpler (non-monotone) allocation rule. In Section 5.4.2, we show how to

combine this payment scheme with our monotone allocation rule of Section 5.3.1

to simultaneously obtain truthfulness in expectation and with high probability.

5.4.1 Threshold payments

Consider the simpler allocation rule where we leave out Step 4 (the drop step).

As previously noted, this allocation may not be monotone, in which case there is

no payment scheme that is truthful in expectation. Here we give payments that

are instead truthful with high probability. The idea here is very similar to that of

sampling from the quantity axis, as in Section 2.6

In the bidder selection step, let us perform the rounding by selecting n inde-

pendent uniform[0, 1] random variables y1, . . . , yn, and choosing i to be an initial

winner if yi ≤ xi. Note that each bidder i is selected by this experiment indepen-
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x(1)

x(2)

x(3)

x(j)

bit(1) t(2) t(3) t(j)

yi

Ti(b-i,yi)

Figure 5.2: The graph shows i’s fractional allocation as a function of her bid bi

(with b−i fixed). It is a step function that is flat while one vertex of the LP (5.2)

stays optimal, then jumps when another vertex becomes preferred. Since yi lands

in (x(2), x(3)), i’s payment is t(3).

dently with probability xi, as required by Step 2. For each winning bidder i we

compute a price that will depend on the outcome of the random variable yi (and

of course also on b−i). Fix b−i and a realization of the random cutoff yi. There is

a threshold value Ti(b−i, yi) such that i will lose if bi < Ti(b−i, yi) and be an initial

winner if bi > Ti(b−i, yi). See Figure 5.2. This threshold is the point at which

xi(b−i, bi), considered as a function of bi with b−i fixed, first rises to yi. We set

agent i’s price to be Ti(b−i, yi) if she actually wins.

To compute T (b−i, yi), we binary search on bi, re-solving the LP each time. For

the vector of bids (b−i, Ti(b−i, yi)) there are two equally good fractional allocations

x and x′. Therefore, Ti(b−i, yi)(xi − x′
i) =

∑

j 6=i bj(x
′
j − xj). Assuming all bids are

given to d bits of precision, we can express Ti(b−i, yi) as a fraction with denom-

inator at most 2d(m!)4 (by Lemma 5.3.3), so we can use binary search and the

method of Diophantine approximation to compute it exactly in polynomial time

(see e.g., [66]).
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q*x(1)

q*x(2)

q*x(3)

q*x(4)

bit(1) t(2) t(3) t(4)

q*x(4)
q(4)x(4)

(1+    )q*x(4)

x(1)

x(2)

x(3)

x(4)

bit(1) t(2) t(3) t(4)

x(4)

(1+    )x(4)

yi
good

yi
bad

good case:
use threshold

bad case:
add correction term

Possible payment

Ri(b-i,bi)

Figure 5.3: The left graph shows agent i’s probability of success as a function of

her bid bi. The boxes indicate our margin of uncertainty about this probability.

Modulo this uncertainty, the shaded area denotes the truthful payment function.

The right graph illustrates our payment scheme.

If our mechanism never had to throw away any initial winners, then our allo-

cation algorithm would be universally truthful. Suppose we fix a particular real-

ization ω of the vector of random variables y1, . . . , yn. Then the only circumstance

under which agent i could benefit by lying is if i is selected as an initial winner,

but is discarded because one of the items in Si is oversold. Since this probability

is at most 1
Kc , our mechanism is truthful with high probability.

5.4.2 Combining threshold payments with the monotone

allocation

We now show how to modify this threshold scheme to get truthfulness in expecta-

tion, using the monotone allocation rule of Section 5.3.1. If it were the case that

pi = q∗xi for all i, i.e., each agent’s probability of winning were directly propor-

tional to her fractional allocation from the LP, then the threshold payment scheme
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would give the correct expected payment, so it would already be truthful in expec-

tation. The problem is that we just have pi = q∗i xi for some q∗i ∈ [q∗, q∗(1+δǫ)], and

moreover we cannot compute the q∗i exactly. Our solution is to use the threshold

payments as a first approximation, then add a small correction on a set of small

probability.

Let the fractional solution values (the steps in Figure 5.2) be x(1), x(2), . . . , x(j)

such that the solution for agent i’s actual bid bi is x(j). Moreover, let q(k) be the

probability that the sale to agent i survives Steps 3 and 4 given that she is selected

in Step 2, when the solution corresponding to x(k) is used. Thus, her overall success

probability is q(k)x(k) in this case. To get truthfulness in expectation, when agent

i wins, her expected payment should be

1

q(j)x(j)

(

bix
(j)q(j) −

j−1
∑

k=1

(t(k+1) − t(k))q(k)x(k) − (bi − t(j))q(j)x(j)

)

.

Suppose we use the threshold payment scheme. Given that agent i wins, yi is

distributed uniformly on [0, x(j)]. Thus, agent i’s expected payment is

1

x(j)

j
∑

k=1

t(k)(x(k) − x(k−1)),

which rearranges to

1

x(j)

(

x(j)bi −
j−1
∑

k=1

(t(k+1) − t(k))x(k) − (bi − t(j))x(j)

)

where x(0) = 0. Therefore, we must add some correction term to increase this

payment by
j−1
∑

k=1

(t(k+1) − t(k))
x(k)

x(j)

(

1 − q(k)

q(j)

)

in expectation.

One way to do this is to add (t(k+1) − t(k))1−q(k)/q(j)

ǫδ
whenever yi ∈ [x(k), (1 +

ǫδ)x(k)], for k = 1, . . . , j − 1. See Figure 5.3. Since we do not know q(k) and
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1/q(j), we must replace them in the formula with independent unbiased estima-

tors. These estimators can be obtained by running our allocation algorithm. The

expected payment is now that given by formula (5.5), so the mechanism is truth-

ful in expectation. When yi /∈ [x(k), x(k)(1 + ǫδ)] for all k, our payments are just

threshold payments. This happens with probability at least (1− ǫ) since by Corol-

lary 5.3.4, consecutive fractional allocations x(k) are spaced by factors of at least

(1 + δ). As we argued in the last section, the threshold mechanism is strongly

truthful with high probability. Hence we get the following. (Recall ǫ ≪ 1/Kc.)

Theorem 5.4.1 Assuming the item multiplicities are all Ω(ln K) as in Proposi-

tion 5.3.1, allocation algorithm RandRound combined with the above payment

scheme is truthful in expectation and is also strongly truthful with error probability

ǫ + 1
Kc .

5.5 Revenue considerations

Now we consider the revenue generated by our auction. We show that the expected

revenue generated is very close to that generated by a natural fractional relaxation

of the VCG mechanism. First we must define this mechanism.

Recall the VCG mechanism: it chooses a feasible allocation that maximizes the

utilitarian objective function, which is the total reported valuation of the winning

agents. That is, it selects some

x∗(b) ∈ argmaxx

∑

i∈N
bixi, (5.6)

where x runs over all feasible allocations.

The mechanism computes a bonus for each bidder, based on that bidder’s

marginal value, which is the difference she made in the objective function by par-
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ticipating. Formally, let V (N−N ′) denote the maximum total valuation achievable

in (5.6) when the agents in N ′ are removed. Then bidder i’s marginal value is de-

fined to be V (N ) − V (N − i). The mechanism charges Ri(b) = bixi − (V (N ) −

V (N − i)) to each agent i. (This formula evaluates to zero for agents who lose.)

The utilitarian allocation is clearly monotone. Moreover, the objective function is

indifferent about satisfying bidder i when she bids exactly her threshold. So if she

wins, then V (N )−V (N − i) = bi−Ti(b−i), so the VCG payment is Ti(b−i). Notice

that if agent i bids truthfully, then her profit is equal to her marginal value.

The VCG mechanism is defined with respect to a set of feasible allocations.

Usually we maximize over all feasible integer allocations, meaning that each bidder

either wins or loses, and no item is over-sold. However, we could consider enlarging

the set of allowed allocations to permit fractional allocations. That is, we could

allow ourselves to let agent i win to a fractional extent xi, which would mean

that she receives an xi fraction of each good in Si. In other words, we would

be maximizing the linear program (5.2), using the actual multiplicities mj. Of

course, we could implement such a mechanism only if the goods were divisible.

We assume that agent i attains a benefit of vixi from winning to the fractional

extent xi. Thus, she wishes to maximize profiti(b) = vixi(b) − Ri(b). Agent i’s

marginal value to the system is V (N )−V (N − i), where V (N ′) is the optimal LP

value using only the agents in N ′. The VCG payment formula becomes Ri(b) =

bixi−(V (N )−V (N −i)). We refer to this resulting mechanism as fractional VCG,

or FVCG for short.

Similarly, we can define an FVCG mechanism with respect to the artificially

reduced multiplicities m′
j. We will show that the expected revenue of our mecha-

nism is almost the same as the revenue generated by the fractional VCG mechanism
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using the reduced multiplicities.

First we obtain an expression for the revenue generated by the fractional VCG

mechanism. Fixing b−i, how does the optimal allocation xi(b−i, bi) change as i

increases her bid from 0 upward? Suppose the mechanism always selects some

vertex solution of the LP. Initially, xi = 0. The only part of the LP that changes is

the direction of the objective function vector, not the polytope of feasible solutions.

Thus, the optimal xi remains zero for an interval until i’s bid hits some threshold

t(1). At this point, some other vertex solution with xi = x(1) > 0 becomes optimal.

Now this solution remains optimal for some interval, until xi jumps again at bi =

t(2) to some higher level x(2). Suppose xi jumps j times at t(1), . . . , t(j) to new levels

x(1), . . . , x(j) as we raise i’s bid to its actual value bi. For bids in (t(k), t(k+1)), the

LP value increases at rate x(k). Thus, i’s marginal value is
∑j−1

k=1 x(k)(t(k+1)−t(k))+

x(j)(bi − t(j)), and her price Ri is bixi minus this, which is

j−1
∑

k=0

(x(j) − x(k))(t(k+1) − t(k)),

where x(0) = t(0) = 0. To visualize this computation consider the Figure 5.1, with

the curve denoting xi(b−i, bi) (whereas originally the curve in Figure 5.1 was the

probability of being selected as a winner, which is ≈ q∗xi(b−i, bi)).

In our mechanism, the expected payment by agent i is

j−1
∑

k=0

(q(j)x(j) − q(k)x(k))(t(k+1) − t(k)),

where q(k) is the probability that the sale to agent i is not cancelled in Steps 3

and 4, if i were to bid between t(k) and t(k+1) (just as in Section 5.4.2). Thus, we

are comparing vertical strips of equal width, and height x(j) − x(k) for FVCG as



120

opposed to height q(j)x(j) − q(k)x(k) for our mechanism. But

q(j)x(j) − q(k)x(k) ≥ q∗x(j) − (1 + ǫδ)q∗x(k)

≥ (1 − ǫ)q∗(x(j) − x(k))

because q(k) ∈ [q∗, q∗(1 + ǫδ)] and x(j) ≥ (1 + δ)x(k) for all k < j.

Theorem 5.5.1 Suppose that each item j ∈ G has multiplicity mj = Ω(ln K),

as in Proposition 5.3.1. Then the expected revenue generated by RandRound

is at least (1 − ǫ)q∗ times the revenue generated by the FVCG mechanism with

multiplicities m′
j.

Under the same conditions on the multiplicities, the probability that agent i

actually wins is also at least q∗xi. Thus, the auction essentially implements the

FVCG mechanism on the artificially reduced multiplicities.

5.5.1 Comparing against the “optimal” mechanism

It is natural to ask how our revenue compares with that of an “optimal” truthful

mechanism, but it turns out that even posing this question correctly is a tricky

endeavor. One truthful mechanism is to arbitrarily select a feasible set W of

possible winners, set fixed prices Pi for every bidder in that set, and refuse to sell

to any other agents. Any agent i with vi ≥ Pi will then buy her set at price Pi. If we

happen to get lucky and choose W to be the feasible set of bidders that maximizes

the total valuation, and happen to choose Pi = vi for each i ∈ W, then we reap

the entire valuation as revenue. However, this “omniscient mechanism” hardly

seems a fair benchmark. In fact, it is well-known that even when auctioning just a

single copy of a single item, no truthful mechanism can always attain a guaranteed
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fraction of the optimal valuation, because there is no way to deal with a single

astronomical bidder.

Therefore, in the single item case, [28, 23, 40] suggest comparing against vari-

ants of the VCG mechanism. We have shown that our auction achieves expected

revenue approximately equal to that of the FVCG mechanism with a slightly re-

duced supply of goods. One can construct a pair of examples showing that neither

the VCG nor the FVCG mechanism’s revenue dominates the other. Moreover, it is

well-known that artificially decreasing the supply of goods can sometimes dramat-

ically increase revenues. (See [28] for a striking example.) Therefore, it is unclear

how the revenue compares with that of the VCG mechanism using the full supply.

This could be an interesting direction for further work. A huge body of literature

addresses how various auctions fare under probabilistic assumptions about the val-

uations, but we are not aware of any such work applied to combinatorial auctions.

This is another interesting future direction.

5.6 Lying about the set: an example

It is natural to ask if we can extend our method to handle the case where the set

Si is part of agent i’s bid (i.e., the case of single-minded bidders, instead of known

single-minded bidders). The following example shows that, if we insist that agent

i wins with probability roughly proportional to the fractional allocation xi given

by the LP, then it is impossible to obtain a mechanism for single-minded bidders

that is strongly truthful with high probability.

Suppose there are three items {A,B,C} and three bidders {1, 2, 3}. One copy

of each item is available. Suppose bidder 1 bids 2 units for set {B,C} (the truth),

bidder 2 bids 3
2

units for set {A,B} and bidder 3 bids 3
2

units for set {A,C}.
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Then the LP solves to x = (1
2
, 1

2
, 1

2
) (with total valuation 5

2
). If bidder 1 lies by

increasing her set to {A,B,C} (but still bidding 2 units for it), then the LP solves

to x = (1, 0, 0) (with total valuation 2). Suppose that we actually had three copies

of each item available, but were just using 1 as the reduced multiplicities. Then no

item is ever over-sold. Thus, our mechanism (without the drop step) implements

fractional VCG in expectation, so is still truthful in expectation. However, we

show that with probability 1
2
, bidder 1 benefits by lying, and hence we do not have

strong truthfulness with high probability.

When agent 1 bids her true set, her probability p1(b−1, b1) of winning stays

constant at 1
2

for b1 ∈ (0, 3]. Thus the threshold payment scheme of section 5.4.1

would charge her a price of 0 (leading to a profit of 2) for any y1 ∈ [0, 1
2
]. When

y1 falls in (1
2
, 1], however, she loses and has a profit of 0.

On the other hand, if she lies about her set as above, then p1(b−1, b1) jumps

from 0 to 1 at b1 = 3
2
. Thus, with probability 1, she wins and pays 3

2
, so her net

profit is 1
2
, irrespective of y1. Note that when her rounding variable y1 lands in

(1
2
, 1] (which happens with probability 1

2
), her profit when she lies is more than

her profit when she tells the truth. Thus with probability 1
2
, the mechanism is not

universally truthful.

We can extend this example to arbitrarily high item multiplicities by simply

adding in appropriate bidders j who bid high enough that they are fully satisfied

(i.e., the optimal solution has xj = 1). Note that in this case the reduced multi-

plicities are smaller than the actual multiplicities only by an additive −2, not a

multiplicative 1
3
.
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5.7 Conclusion

We have shown a general technique to modify a linear program rounding algorithm

to make it monotone. This gives an approximately efficient truthful mechanism

(in expectation and with high probability) for the combinatorial auction problem

with single parameter agents. The simple rounding algorithm can be derandomized

using pessimistic estimators [61]. It would be interesting to see if the algorithm

can be derandomized while maintaining its monotonicity.



Chapter 6

Collusion
Truthful dominant strategy mechanisms are often called strategyproof because no

single agent can succeed in cheating the mechanism by playing any strategy other

than truth-telling. However, this does not rule out the possibility of collusion by

two or more agents to help each other cheat the mechanism. Mechanisms that also

guard against this kind of manipulation are called group strategyproof. Although

there is one generic method for creating group strategyproof mechanisms for certain

cost-sharing problems [52, 53], this is generally a very difficult property to ensure,

and other examples in the literature of mechanisms with this property are rare.

In particular, VCG mechanisms are in general not group strategyproof. If we

want to use a VCG mechanism in a situation where we suspect agents might be

able to collude, it is important to understand which agents could successfully team

up to defeat the mechanism, and under what circumstances this can occur. For

some simple VCG mechanisms, such as the single-item Vickrey auction, this is easy

to understand. But for other mechanisms, the intricacies of group manipulations

are far less obvious.

In this chapter, we consider multicast cost sharing, a much-studied model in

algorithmic game theory. We investigate the group manipulability properties of one

interesting mechanism, the marginal cost (MC) mechanism (proposed by Moulin

and Shenker [53]). This mechanism is a member of the VCG family, and thus is

truthful and maximizes the utilitarian objective, but it is not group strategyproof.

We completely characterize the circumstances under which a group can successfully

manipulate the mechanism.

124
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6.1 Definitions

Recall that our definition of a truthful mechanism in Section 1.3 is that truth-telling

is a weakly dominant strategy for each agent. Thus, even though ui(b−i, vi) ≥

ui(b−i, bi), for all i, vi, b−i, and bi, there could be some bi 6= ti where equality

holds. That is, for certain values of b−i, there may be some lying bids that i can

make without hurting herself. In so doing, i may be able to help other agents. In

other words, strategyproofness does not preclude the possibility of a coalition of

users colluding to improve their utilities.

Any reported valuation profile b can be considered a group strategy for any

group S ⊇ {i | bi 6= vi}. It will be handy to have a notation for perturbing reported

valuations. If b is one valuation profile, and b̂S is a vector of valuations for agents

in the set S, then let b|S b̂S denote the vector whose ith component is bi if i /∈ S and

b̂i if i ∈ S. Thus, if S is the strategizing set, we can write the reported valuation

profile as v|SbS. A mechanism M is group-strategyproof (GSP) if there is no group

strategy such that at least one member of the strategizing group improves his

utility while the rest of the members do not reduce their utilities. In other words,

if M is GSP, the following property holds for all v, b, and S ⊇ {i|vi 6= bi}:

either ui(b) = ui(v) ∀i ∈ S

or ∃i ∈ S such that ui(b) < ui(v).

Notice that this definition of group strategyproofness assumes that the agents are

not able to exchange money as part of their collusion. One could make an alterna-

tive stronger definition that no group of agents can improve their total utility by

cheating, in which case the mechanism would be resistant even to coalitions who

can exchange money afterwards to compensate a member who “took a hit for the
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team.” However, we will stick to our weaker definition, which is more standard in

the literature.

The single item Vickrey auction described in Section 1.2.1 is clearly not group

strategyproof. Recall that this auction awards the item to the highest bidder, at a

price equal to the second-highest bid. Because the agent with the second-highest

valuation can lower her bid in order to lower the price that the highest bidder must

pay, these two bidders alone can successfully manipulate the mechanism (provided

the third-highest valuation is strictly lower than the second-highest). Because the

structure of this mechanism is so simple, it is trivial to characterize the sets of

bidders who can successfully collude, and how they can do it. In particular, any

set containing the bidder with the top valuation and all bidders tied for the second-

highest valuation has a successful group strategy that consists of lowering the bids

such that the bidder with the highest valuation still wins, but at a lower price.

The MC mechanism for multicast cost-sharing is more complicated, and so the

analysis of successful group manipulations is considerably more involved.

6.2 The multicast cost-sharing problem

Multicast routing is a technique for transmitting a packet from a single source to

multiple receivers without wasting network bandwidth. To achieve transmission

efficiency, multicast routing constructs a directed tree that connects the source

to all the receivers and sends only one copy of the packet over each link of the

directed tree. When a packet reaches a branch point in the tree, it is duplicated

and a copy is sent over each downstream link. Multicasting large amounts of data

to large groups of receivers is likely to incur significant costs, and these costs need

to be covered by payments collected from the receivers. However, receivers cannot
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Figure 6.1: A multicast cost-sharing problem.

be charged more than what they are willing to pay, and the transmission costs of

shared network links cannot be attributed to any single receiver. Thus, one must

design cost-sharing mechanisms to determine which users receive the transmission

and how much they are charged.

Figure 6.1 depicts an instance of the multicast cost-sharing problem. There

are five potential receivers, each located at a particular node of the multicast tree

and each having a certain valuation for receiving the multicast transmission. For

example, the notation v1 = 3 beside the leftmost node on the second level from the

top means that potential receiver number 1 is located at this node and is willing

to pay at most 3 to receive the transmission. The numerical values on the links

represent the costs of sending the transmission over those links. The source of the

transmission is the root node at the top level of the tree. If R ⊆ {1, . . . , 6} is

the set of actual receivers, then the transmission will be sent only to the nodes of

the tree at which members of R are located. The total cost of this transmission

will be the sum of the costs of the links in the smallest subtree that contains
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these nodes and the root. For example, if R = {2, 3, 4}, then the total cost of the

transmission would be 15. The role of a cost-sharing mechanism is to determine,

for each instance, what the receiver-set R should be and how much each member

of R should be charged.

The multicast cost-sharing problem has been studied extensively in recent

years, first from a networking perspective [34], then from a mechanism-design per-

spective [53], and most recently from an algorithmic perspective [22, 20, 1, 38, 23].

Computationally efficient cost-sharing algorithms are desirable because the compu-

tational resources of the multicast infrastructure (i.e., link bandwidth and nodes’

memory and CPU cycles) must be used to compute them; the point of this in-

frastructure is to deliver content efficiently, not to do cost-sharing, and hence the

latter must not consume enough resources to interfere with the former. The MC

mechanism is attractive because it can be computed very simply in a distributed

fashion, with just two small messages per link and very simple computations at

the nodes. Other cost-sharing methods in the literature use considerably more

computation [22].

Formally, the multicast cost-sharing mechanism design problem involves an

agent population N residing at a set of network nodes N that are connected by

bidirectional network links L. The multicast flow emanates from a source node

αs ∈ N ; given any set of receivers R ⊆ N , the transmission flows through a

multicast tree T (R) ⊆ L rooted at αs and spanning the nodes at which agents in R

reside. It is assumed that there is a universal tree T (N ) and that, for each subset

R ⊆ N , the multicast tree T (R) is merely the smallest subtree of T (N ) required to

reach the elements in R.1. Since we usually draw the tree with the root αs at the

1This approach is consistent with the design philosophy embedded in essentially
all current multicast-routing proposals (see, e.g., [8, 17, 18, 36, 60])
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top, if node α lies along the path from node β to αs (and α 6= β) then we say α lies

above β, and is an ancestor of β. Symmetrically, β lies below α and is a descendent

of α. If these two nodes are directly connected by a link, then α is β’s parent, and

β is a child of α. Each link l ∈ L has an associated cost c(l) ≥ 0 that is known

by the nodes on each end, and each agent i assigns a valuation vi ≥ 0 to receiving

the transmission. Let v = (v1, v2, . . . , v|P |) denote the vector of valuations. Only

agent i knows her true valuation vi.

A cost-sharing mechanism determines which agents receive the multicast trans-

mission and how much each receiver is charged. Since the agents’ valuations

are private information, the mechanism will ask each agent to report some val-

uation bi, and base its decisions on the input vector b of these reported valua-

tions. We let Pi(b) ≥ 0 denote how much agent i is charged and qi(b) denote

whether agent i receives the transmission; qi(b) = 1 if the agent receives the mul-

ticast transmission, and qi(b) = 0 otherwise. The mechanism M is then a pair

of functions M(b) = (q(b), P (b)). The receiver set for a given input vector is

R(b) = {i | qi(b) = 1}. An agent’s individual utility is given by the quasilinear

form ui(b) = qi(b)vi − Pi(b). Notice that ui(b) does depend on i’s true valuation

vi, but we suppress this in the notation. The cost of the tree T (R) reaching a set

of receivers R is c(T (R)), and the net worth, is NW (R) = vR − c(T (R)), where

vR =
∑

i∈R vi and c(T (R)) =
∑

l∈T (R) c(l). The overall net worth measures the

total benefit of providing the multicast transmission (the sum of the valuations

minus the total transmission cost). Of course, the mechanism does not have direct

access to v, so it can only compute NWb(R) = bR − c(T (R)), the net worth with

respect to the reported valuations.

The MC mechanism, a member of the VCG family defined in Section 2.3.2,
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chooses the receiver set R that maximizes NWb(R). Let Wb denote this maximum

net worth NWb(R). For each i ∈ R, let W−i
b be the net worth of the receiver

set that the MC mechanism would have computed if i had not participated (i.e.,

if bi had been set to 0). Then Wb − W−i
b measures the gain in overall net worth

that results from i’s participation. The cost share that MC assigns to i is Pi(b) ≡

biqi(b)−(Wb−W−i
b ). Notice that MC satisfies the voluntary participation property

(ui(b) ≥ 0 so long as i bids truthfully), and never pays an agent to receive the

transmission.

For the instance shown in Figure 6.1, when all agents bid truthfully, the MC

mechanism computes the receiver set R to be {1, 2, 3, 4, 5}, resulting in a total

transmission cost of 15 and net worth of 10. In this case, agent 2 pays P2 = 3, and

all other agents pay zero.

A cost-sharing mechanism satisfying the property that the sum of the prices

paid by the agents exactly covers the cost of the multicast tree is said to be budget-

balanced. As we have just seen, the MC mechanism does not guarantee budget-

balance. In the example above, the cost shares of the agents in the MC mechanism

sum to 3, not covering the total cost of 15. We view it as a bit of a misnomer

to refer to such a mechanism as cost-sharing, since the cost-shares do not come

close to covering the entire cost. However, this is the common term used in the

literature, so we stick to it.

In [22], a distributed algorithm is given that computes the MC receiver set

and cost shares by sending just two modest-sized messages over each l ∈ L and

doing two very simple calculations at each node. We review this algorithm in

the next section, before moving on to characterize the groups that can strategize

successfully against the MC mechanism, and the conditions under which they can
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do so.

6.3 Group strategies that succeed against the MC mecha-

nism

Since the MC mechanism is an instance of the VCG family, it is strategyproof, but

not necessarily group strategyproof. In this section, we characterize exactly how

the MC mechanism fails to be group strategyproof.

We say that a strategy b for a group S is a successful group strategy at valuation

profile v if

• S ⊇ {i ∈ P |bi 6= vi},

• ∀i ∈ S, ui(b) ≥ ui(v), and

• ∃j ∈ S such that uj(b) > uj(v).

In other words, a successful group strategy at v is one that (compared to truth-

telling) harms none of the members of the group and benefits at least one. Note

that the member who benefits may not be one of the members who misrepresented

her valuation. If the group S has only two members, we call the strategy a suc-

cessful pair strategy. If there is no group that has a successful strategy at v, then

we say that the mechanism is GSP at u. A GSP mechanism is one that is GSP at

all v.

It is well known that the MC mechanism is not GSP. However, it is not obvious

in general which forms of collusion would result in successful manipulation. In this

section, we examine this issue in detail by asking two questions. First, at which

valuation profiles is MC GSP? Second, for a valuation profile v at which MC is
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not GSP, exactly which groups can strategize successfully? We will show that

MC fails to be GSP at v if and only if there exists a successful pair strategy or a

specific simple kind of three-agent strategy, and show exactly when these strategic

opportunities arise.

Feigenbaum et al. [22] give a low network complexity algorithm for the MC

mechanism. The algorithm itself gives insights into the workings of the mechanism,

so we describe it here.

Given a reported valuation profile b, the receiver set is the unique maximal

efficient set of agents. To find it, we recursively compute the worth Wb(β) of each

node β ∈ N as

Wb(β) =









∑

γ∈Ch(β)
Wb(γ)≥0

Wb(γ)









− c(l) + b(β)

where Ch(β) is the set of children of β in the tree, c(l) is the cost of the link

connecting β to its parent node, and b(β) denotes the total reported valuation of

the agents residing at β. The worth of a node β measures the marginal amount

that this node and the optimal subtree below it would contribute to the net worth

of the chosen multicast tree, assuming that all the nodes above β had already been

included. We can easily compute the worth at the leaves of the tree, then work

our way up the tree to compute Wb(·) for the remaining nodes recursively. The

maximal efficient set R(b) is the set of all agents i such that every node on the

path from i to the root has nonnegative worth.

Another way to view this is as follows: The algorithm partitions the universal

tree T (N ) into a forest F (b) = {T1(b), T2(b), . . . , Tk(b)}. A link from T (N ) is

included in the forest if and only if the child node has nonnegative worth. This

is illustrated in Figure 6.2. R(b) is then the set of agents at nodes in the subtree
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N = fA;B;C;D;E; F;G;HgN = f1; 2; 3; 4; 5; 6; 7g Edge not in F (b)Edge in F (b)R(b) = f4; 5; 7g

Wb(D) = �1
Wb(A) = 5 Wb(C) = 4Wb(F ) = �1Wb(H) = �2
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b7 = 2

b4 = 7 b3 = 3 b2 = 1
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Wb(B) = 1
b1 = 2HWb(E) = 61 1 1 3 2 4
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T3 T4T2

Wb(G) = 2

Figure 6.2: Forest induced by the MC mechanism.

T1(b) containing the root.

Once F (b) has been computed, for each agent i ∈ R(b), define Y (i, b) to be the

node at or above i with minimum worth. The payment Pi(b) of each agent i is

then defined as

Pi(b) = max(0, bi − Wb(Y (i, b)))

= bi − min(bi,Wb(Y (i, b))) ∀i ∈ R(b) (6.1)

Pi(b) = 0 ∀i /∈ R(v).

We claim that this formula for the payment is equivalent to Pi(b) = biqi(b)− (Wb−

W−i
b ). To see this, we break into cases. If qi(b) = 0 so that i does not receive

the transmission, then removing i from the system does not change the overall net

worth, since the net worth of Y (i, b) is already negative, so it does not affect any

of the nodes above it. Now suppose that qi = 1, so i does receive the transmission.

Then as i lowers its bid, the values Wb(β) decrease at the same rate, for all nodes β

at or above agent i. In particular, the node Y (i, b) remains the same. This persists
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Wv(A) = �1
Wv(B) = 1 Wv(C) = 0 Y (2; v)Y (1; v)

Figure 6.3: An opportunity for a successful pair strategy. The circled groups of

nodes represent the two components of F (v).

until either bi = 0 or Wb(Y (i, b)), whichever occurs first. If it is the latter, then

lowering bi further does not change Wb. Thus, Wb − W−i
b = min(bi,Wb(Y (i, b))).

This completes our description of the algorithm. If there are multiple nodes

at or above i with the same worth, we choose Y (i, v) to be the one among them

nearest to i; this does not alter the payment, but it simplifies our later results

on when a coalition can be successful. For the same reason, we define Y (i, b) for

i /∈ R(b) to be the closest node at or above i that has zero or negative worth. We

will use this characterization of the receiver set and payments in terms of F (v)

and Y (i, v) in our analysis of group strategies against the MC mechanism.

Before launching into the analysis of successful group strategies, we now give

two specific instances which will serve as canonical examples of such strategies.

Example 1 Consider Figure 6.3. Here R(v) = ∅, so when both agents report

truthfully, both attain a utility of zero. But if both lie by reporting b1 = b2 = 4,

then R(b) = {1, 2} and each pays 2, so agent 2’s utility remains at zero while agent

1’s rises to 1. Notice that b′ = (3, 4) would not be a successful group strategy,

because in that case agent 2 would have to pay 3.

Example 2 Consider Figure 6.4. In this case, there is no successful pair strategy.
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Figure 6.4: An opportunity for a basic triple strategy. The circled groups of nodes

represent the two components of F (v).

When all agents report truthfully, only agent 3 receives the transmission, paying

P3(v) = 1. Agents 1 and 2 can never attain positive utility, because whenever either

one appears in the receiver set, she must at least pay for the link directly above her.

If only one of these two agents lies and she manages to join the receiver set, then

she will effectively pay 2 for the two links above her. However, if agents 1 and 2

both lie so that the reported valuations are b = (2, 2, 2), then R(b) = {1, 2, 3}, and

P (b) = (1, 1, 0), so agent 3’s utility rises from 1 to 2 and the other two agents

remain at zero utility.

To better understand these examples, it helps to interpret the payment for-

mula (6.1) in a different way, in terms of cutoff bids.

Definition 6.3.1 Fixing b−i, the vector of reported utilities of all agents aside from

i, suppose there is some number Ci(b−i) such that if bi < Ci(b−i) then i /∈ R(b),

and if bi ≥ Ci(b−i) then i ∈ R(b) and i pays Pi(b) = Ci(b−i). Then we call Ci(b−i)

the cutoff bid for i.

Lemma 6.3.2 The cutoff bid always exists, and can be computed from Wb(·) as
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follows. For i ∈ R(b), Ci(b−i) = max{0, bi −Wb(Y (i, b))}. For i /∈ R(b), Ci(b−i) =

bi + L, where

L =
∑

α∈Nb(i)

|Wb(α)|

and Nb(i) denotes the set of nodes α at or above i such that Wb(α) < 0.

Proof: We consider what happens if i raises or lowers her reported valuation

from bi, while the other agents hold theirs fixed at b−i.

If i ∈ R(b), then all of the nodes at or above i have non-negative worth, and

Pi(b) = bi − Wb(Y (i, b)), (6.2)

provided Wb(Y (i, b)) ≤ bi. Since Y (i, b) is the node of minimum worth at or above

i, agent i can lower her reported valuation by Wb(Y (i, b)) before the worth of this

node drops below zero, causing i to leave the receiver set. As bi varies anywhere

above this threshold, both terms on the right side of (6.2) change by the same

amount, so i’s payment remains unchanged. Thus, Ci(b−i) = bi − Wb(Y (i, v)). If

Wb(Y (i, b)) > bi, then i is in the receiver set and pays zero no matter what her

reported valuation, so Ci(b−i) = 0.

If i /∈ R(b) then there is some sequence of nodes α1, . . . , αk (k ≥ 1) in this order

along the path from i to αs such that Wb(αj) < 0 for j = 1, . . . , k. As i increases

her reported valuation from bi to bi + |Wb(α1)|, the worth of each node from i to

α1 also increases by |Wb(α1)|. As i’s reported valuation rises another |Wb(α2)|, all

the nodes from i to α2 increase their worth by the same amount. Inductively, we

see that i first joins the receiver set when her reported valuation reaches bi +L. As

the reported valuation increases further, all nodes at or above i increase in worth.

Since W(b−i,bi+L)(αk) = 0, i’s payment is bi + L when she first joins the receiver

set. Further raising her reported valuation does not change her payment.
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Armed with this new understanding of the payments, it is easy to detect when

agent j has the opportunity to lie to increase the utility of another agent i. If

i ∈ R(v), then i’s cutoff bid is already at most vi, so j needs to somehow lower it

further. If i /∈ R(v), then j needs to somehow lower i’s cutoff bid below vi, so that

i joins the receiver set and attains positive utility. In both cases, this is possible

if and only if Ci(v−i) > 0 and j resides at or below node Y (i, v), by Lemma 6.3.2.

The tricky part is to figure out how j can do this without hurting herself – if j

raises bj enough to help i, then j will necessarily join the receiver set. (This is

because bj affects the worth of Y (i, v) only if all nodes on the path from j to Y (i, v)

have strictly positive worth, and since i must be in the receiver set to have positive

utility, all nodes above Y (i, v) must have non-negative utility.) If j /∈ R(v), then

Cj(v−j) > vj so if the other agents continue to report truthfully, then j will be

charged more than vj, incurring negative utility. The pair strategy in Example 1

succeeds because A is the first negative worth node above agent 2, and agent 1

resides below A, so agent 1 can “protect” agent 2. The following definition and

theorem formalize this observation.

Definition 6.3.3 Define N ′(v) = {i ∈ P |ui(v) < vi}. Then v is said to admit a

pair opportunity if there are agents i and j in the same component of F (v) such

that i ∈ N ′(v) and j resides at or below Y (i, v).

Theorem 6.3.4 There exists a successful pair strategy for agents i and j at valu-

ation profile v if and only if v admits a pair opportunity for i and j. In this case,

let

L =
∑

α∈Nv(i)

|Wv(α)|,

where Nv(i) is defined as in Lemma 6.3.2, and L′ > L. Then v|{i,j}(vi +L, vj +L′)
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is a successful pair strategy for i and j.

Proof: If direction: Suppose i and j are both in R(v). Then j can raise her

reported valuation bj without hurting herself, since vj is already at least as large

as j’s cutoff bid. Doing so will increase the worth of all nodes above j, including

the entire path from Y (i, v) to αs. This will decrease the price that i pays, since

Y (i, v) is the bottleneck node determining that price.

Now suppose that i and j are in some other component of F (v). We have

L > 0, since otherwise i ∈ R(v). If j raises her reported valuation bj to vj + L,

then i’s cutoff bid will be exactly vi. Since j resides at or below Y (i, v), further

raising j’s reported valuation to vj + L′ will make the worth of all nodes at or

above i strictly positive, driving i’s cutoff strictly below vi. Since i and j are in the

same component of F (v), the root of this component is the first negative-worth

node above each one (with respect to v). Therefore, if i also raises her reported

valuation to vi + L, then j’s cutoff will be exactly vj. Thus, by colluding in this

way, i and j will both be included in the receiver set, j’s utility will remain zero,

and i’s utility will increase. (Note: if i does not reside below Y (j, v), then it is

impossible for i to lower j’s cutoff bid any lower than vj.)

Only if direction: If i and j have a successful pair strategy, then the collusion

must cause one of them to improve her utility, so without loss of generality we can

assume it is i, hence i ∈ N ′(v). We will argue using i and j’s cutoff bids. Let

b̂ denote the successful pair strategy. Since all agents k aside from i and j have

b̂k = vk, we can consider i’s cutoff Ci(b̂−i) to depend only on b̂j, and similarly j’s

cutoff bid to depend only on b̂i.

If i ∈ R(v), then the only way to improve i’s utility is to lower her cutoff bid,

which j can do only if she resides at or below Y (i, v). If i /∈ R(v), then i’s cutoff



139

is initially above vi and must be lowered strictly below vi.

In the latter case, we know that Wv(Y (i, v)) ≤ 0, and there is some node of

strictly negative worth above i. Since the strategy b̂ improves i’s utility, we know

by Lemma 6.3.2 that Wu|j b̂j
(α) > 0 for all nodes α at or above i. In order for j

to cause i to connect and pay less than vi, b̂j must be high enough to make all of

the nodes at and above Y (i, v) have strictly positive worth with respect to v|j b̂j.

In particular, j must reside at or below Y (i, v), since otherwise bj does not affect

the worth of Y (i, v). Moreover, all nodes at or above j must have strictly positive

worth with respect to v|j b̂j. If b̂i ≥ vi, then these nodes also have strictly positive

worth with respect to b̂. If b̂i < vi, then Wb̂(α) may be lower than Wu|j b̂j
(α) for

some of the nodes α at or above i, but all of these still must have non-negative

worth, since otherwise i would not be in the receiver set, so would not attain

positive utility. Therefore, j is also in the receiver set R(b̂).

Suppose i and j reside in different components of F (v). Since Y (i, v) is in i’s

component and j resides below this node, we know j’s component lies below i’s.

Let α denote the root of j’s component in F (v). We just argued that j ∈ R(b̂). But

i’s reported valuation has no effect on Wb(α), which is negative when b = v (i.e.,

when all utilities are reported truthfully). Thus, j’s cutoff Cj(v−j|ib̂i) is at least

vj + |Wv(α)|, so uj(b̂) < 0, which contradicts the assumption that b̂ is a successful

strategy. Thus, i and j must reside in the same component of F (v).

In Example 2, v admits no pair opportunity, so by Theorem 6.3.4, there is no

successful pair strategy. Yet, the three agents can still collude successfully. This

is because agents 1 and 2 are in the same component of F (v), hence can protect

each other from incurring negative utility, and reside below Y (3, v), hence can help

agent 3. It turns out that this situation is the only other way in which a succussful
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group strategy can arise. We now formalize this result.

Definition 6.3.5 Suppose i ∈ N ′(v) and there is a component of F (v), distinct

from i’s, that lies below Y (i, v) and contains agents j and k. Then we say that v

presents a triple opportunity for {i, j, k}.

Definition 6.3.6 Suppose v presents a triple opportunity for {i, j, k}. Let

L =
∑

α∈Nv(j)

|Wv(α)|

and L′ > L. Then the strategy b{i,j,k} = (vi, vj + L′, vk + L′) is called a basic triple

strategy for {i, j, k}.

Note that if either j resides at or below Y (k, v) and k ∈ N ′(v) or vice versa,

then j and k have a successful pair strategy, by Theorem 6.3.4. But even if neither

of those conditions holds, the next claim shows that the basic triple strategy still

succeeds.

Claim 6.3.7 Suppose v presents a triple opportunity for {i, j, k}. Then the cor-

responding basic triple strategies are successful group strategies for {i, j, k}.

Proof: By assumption, j, k /∈ R(v), so these agents intially have zero utility.

Since j and k are in the same component of F (v), we have Nv(j) = Nv(k), the

lowest node in this set being the root of this component. Thus, Wu|j(vj+L′)(α) > 0

for all α ∈ Nv(k), so Ck(v−k|j(vj + L′)) ≤ vk. Similarly, Cj(v−j|k(vk + L′)) ≤ vj.

Thus, under the group strategy b̂ = u|{j,k}(vj+L′, vk+L′), j and k at least maintain

their zero utility.

Since Nv(i) ⊂ Nv(j), L′ > L, and j resides below Y (i, v), we have

Wu|j(vj+L′)(α) > 0
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for all α at or above i. Increasing bk as well only increases the worths, so i ∈ R(b̂)

and Pi(b̂) < vi, so ui(b̂) > 0. Thus, if i /∈ R(v), the strategy improved i’s utility. If

i ∈ R(v), the strategy improves i’s utility because L′ > L guarantees Wb̂(Y (i, v)) >

Wv(Y (i, v)), so j and k’s increased reported utilities lowered i’s cutoff bid.

Definition 6.3.8 If I is a set of agents, we say that i ∈ I is minimal with respect

to F (v) if there is no other agent j ∈ I located in a different component of F (v)

such that i’s component of F (v) contains any nodes above j. That is, if we contract

components of F (v), there is no agent j ∈ I who resides strictly below i.

Theorem 6.3.9 If some coalition S has a successful group strategy at v, then

either there exist agents i, j ∈ S with a successful pair strategy, or there exist

agents i, j, k ∈ S with a successful basic triple strategy. Conversely, if there is a

pair or triple of agents with a successful pair or basic triple strategy, then every set

of agents S containing that pair or triple has a successful group strategy.

Proof: Denote the group strategy by b̂. Since the strategy succeeds, the set

I = {i ∈ S : ui(b̂) > ui(v)} is non-empty. Select some agent i ∈ I that is minimal

with respect to F (v). Since i benefitted from the strategy b̂ as compared to v,

the manipulations of the other agents in S must have reduced i’s cutoff bid, and

i ∈ R(b̂). Thus S must include some other agent h residing at or below Y (i, v),

such that b̂h > vh and the worth Wb̂(α) of each node α between h and Y (i, v) is

strictly positive. Let J denote the set of all such agents in S, and select some

agent j ∈ J that is minimal with respect to F (v). Note that j ∈ R(b̂), since

(under b̂) it has a positive worth path to Y (i, v), and i ∈ R(b̂). If j lies in the

same component of F (v) as i, then i and j have a successful pair strategy, by

Theorem 6.3.4. Otherwise, j’s component lies below i’s.

Suppose j’s component contains no other agents in S, and let β denote the root
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of that component. Because j is minimal in J , even if there is some agent k ∈ S

who resides in a component strictly below j’s, then her misreported valuation has

no positive effect on the net worths computed at the nodes between j and β. This

is because j ∈ J but k /∈ J , so there is some node α at or above k but not at or

above j such that Wb̂(k) ≤ 0. Thus, j’s cutoff bid is at least vj + |Wv(β)| > vj. So

uj(b̂) < 0, which contradicts the assumption that b̂ is a successful strategy. Thus,

j’s component of F (v) contains some other agent k ∈ S. Thus, by Claim 6.3.7,

there is a successful basic triple strategy available for {i, j, k}.

The converse holds because the successful pair and basic triple strategies involve

raising reported utilities, which can never increase the cutoffs for the other agents.

So if each other agent h reports her true valuation vh, then her utility does not

decrease, so she can be considered to be part of the strategizing set.

Summarizing the previous results, we have the following characterization of

valuation profiles for which the MC mechanism is GSP.

Theorem 6.3.10 The MC mechanism is GSP at v if and only if the following

condition holds for each i ∈ N ′(v): there is no agent j in the same component of

F (v) as i such that j resides at or below Y (i, v), and there is no pair of agents j

and k residing in the same component as each other and below Y (i, v).

We have now completely characterized the valuation profiles v at which the

MC mechanism is GSP, shown that the minimal sets of agents who can successfully

manipulate the mechanism are pairs and triples, and shown that every set of agents

containing such a pair or triple has a successful group strategy. The question

remains, what do successful group strategies look like in general? The following

theorem shows that every group strategy can be converted into a “canonical” one.



143

Theorem 6.3.11 If S has a successful strategy b̂ at true valuation profile v, then

S ′ = S ∩ R(b̂) has a successful strategy b̂′ such that

• S ′ ⊆ R(b̂′)

• ui(b̂
′) ≥ ui(b̂) for all i ∈ N

• b̂′i ≥ vi for all i ∈ S ′

Proof: For each i ∈ S − R(b̂) such that b̂i > vi, set b̂′i = vi. This may raise the

cutoff bids for some agents outside R(b̂), but these had zero utility anyway. It has

no effect on the computed net worths for nodes in the root component of F (b̂),

hence no effect on the receiver set or on the price charged to any node in R(b̂).

Now set b̂′i = vi for each remaining i ∈ S −R(b̂). This can only decrease the prices

paid by agents in R(b̂). It may also expand the receiver set, but that will not cause

any of the new recipients to get negative utility because we have already gotten

rid of all the agents in S − R(b̂) who exaggerated their utilities. Now set b̂′i = vi

for each i ∈ S ∩R(b̂) such that b̂i < vi. This does not change the receiver set, and

can only decrease the prices paid by the receivers. Since S had some agent who

benefitted from the strategy and this agent is in R(b̂), we can now throw all agents

in S − R(b̂) out of the strategizing set, leaving us with S ′.

Thus, in some sense, the “interesting” group strategies are the ones in which

the agents who misreport their utilities only exaggerate them, and all of them end

up in the receiver set.



BIBLIOGRAPHY

[1] M. Adler and D. Rubenstein. Pricing multicast in more practical network
models. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 981–990, 2002.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows : Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[3] A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Ap-
proximation and collusion in multicast cost sharing. Games and Economic
Behavior. To appear.

[4] A. Archer, C. Papadimitriou, K. Talwar, and É. Tardos. An approximate
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