Algorithmen für Ad-hoc- und Sensornetze

VL 12 - Synchronisation und Zeitsynchronisation

Dr. rer. nat. Bastian Katz

Lehrstuhl für Algorithmik I Institut für theoretische Informatik Universität Karlsruhe (TH) Karlsruher Institut für Technologie

15 Juli 2009

(Version 3 vom 21. Juli 2009)

Heute

- >> Synchronisation: Was sind synchrone Algorithmen in asynchronen Netzen wert?
 - >> Was sind asynchrone Netze und was brauche ich für synchrone Algorithmen?
 - > ein Synchronisierer in drei Varianten
- >> Zeitsvnchronisation: Wie erreicht man, dass alle Knoten dasselbe Zeitgefühl haben?
 - > Warum schon einfache Lösungen ihre Tücken haben
 - School Gradientensynchronisation: Was man alles falsch machen kann

ehrstuhl für Algorithmik I

Bastian Katz - Algorithmen für Ad-hoc- und Sensornetz Universität Karlsruhe (TH)

Erinnerung: Synchrone Kommunikation

(ganz informell, siehe erste Vorlesung für Details)

- >> Zeit vergeht in Runden, in denen
- >> in jeder Runde kann jeder Knoten
 - beliebige Berechnungen ausführen
 - (und dabei Nachrichten der vorangeg. Runde verwenden) Nachrichten an alle Nachbarn schicken
 - Nachrichten empfangen ("Posteingang leeren")
- + sehr klares Modell, gut verstanden
- so direkt hat das wenig von Sensornetzen
 - >> Schon die Zeit für eine einzelne Übertragung schwer vorherzusehen
 - >> Wer gibt den Startschuss für eine Runde?

Asynchrones Knotenmodell

Definition: Knotenkonfiguration

- Jeder Knoten lässt sich zu iedem Zeitpunkt beschreiben durch
- Menge Q von Zuständen, in denen er sich befinden kann.
- seinen Menge out von ausgehenden Nachrichten
- >> einen Menge in von angenommenen Nachrichten
- Eine Konfiguration c eines Knotens umfasst seinen Zustand und beide Mengen von Nachrichten.

Eine Konfiguration C eines verteilten Systems besteht aus den Konfigurationen aller Knoten $C = (c_1, c_2, \dots, c_n)$.

Viel realistischer: Senden/Empfangen ist aus Sicht des Programmes typischerweise von der Programmausführung unabhängig. Knoten rechnen, übergeben ausgehende Pakete an den Netzwerkstack und fragen, ob Pakete empfangen wurden.

Asynchrone Kommunikation

Definition: Asynchrones Modell

Eine Ausführung eines Programms im Asynchronen Modell ist eine Folge von Konfigurationen und Schritten $C_0, \phi_0, C_1, \phi_1, \ldots$ in der

- φ; darin besteht, dass entweder
 - > eine beliebige Nachricht zugestellt wird
 - >> ein Knoten einen Berechnungsschritt macht, und dabei
 - >> alle eingehenden Nachrichten entgegennimmt
 - » beliebige Berechnungen durchführt
- >> ggf. ausgehende Nachrichten erzeugt
- ≫ C_{i+1} aus C_i durch Schritt φ_i hervorgeht
- >> jede Nachricht irgendwann zugestellt wird
- » Aber: Keine Annahme an die Reihenfolge der Schrittel >> noch nicht mal Reihenfolge der Nachrichten!

Bastian Katz - Algorithmen für Ad-hoc- und Sensometze

Lebrstuhl für Algorithmik I Institut für theoretische Informatik Universität Karlsruhe (TH)

Wie kann man von Zeitkomplexität sprechen, wenn Nachrichten beliebig "verschleppt" werden können?

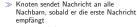
Definition Zeitkomplexität

Die Zeitkomplexität eines Algorithmus im asynchronen Modell ist die maximale Zeit, die bis zur Terminierung vergehen kann, wenn man die Zeit für das Zustellen einer Nachricht auf 1 begrenzt.

- >> Zustellen einer Nachricht: Zeit zwischen dem Berechnungsschritt, der die Nachricht erzeugt und dem Berechnungsschritt, der die Nachricht entgegennimmt!
- >> Vorsicht: So ein Modell "verbirgt" höhere Wartezeiten für Übertragungen bei stark ausgelastetem Kanal!
 - » Nachrichtenkomplexität ist in dem Modell dasselbe

Universität Karlsruhe (TH)
Karlsruher Institut für Technologie

Beispiel: Fluten



- >> wie gehabt..
- >> ohne weitere Kniffe: Reihenfolge beliebig
 - >> Baum ist nicht unbedingt Kürzeste-Wege-Baum zur Senke!

Beispiel: Fluten

- >> Knoten sendet Nachricht an alle Nachbarn, sobald er die erste Nachricht empfängt
 - >> wie gehabt..
- >> ohne weitere Kniffe: Reihenfolge beliebig
 - >> Baum ist nicht unbedingt Kürzeste-Wege-Baum zur Senke!
- >> stört uns ia nicht
- ≫ Zeitkomplexität? O(D)!
 - >> Beweis: Induktion über Abstand zum Startknotenl

7/32

Nicht immer geht das so glimpflich! Was ist zum Beispiel mit Färbungsalgorithmen ohne klare Runden?

Synchronisatoren

Synchronisator

Ein Synchronisator ist ein Verfahren, einen beliebigen synchronen Algorithmus mit asynchroner Kommunikation auszuführen. Dazu fügt ein Synchronisator dem Zustand eines Knotens einen Zähler r hinzu mit folgenden Eigenschaften:

- > der Zähler erhöht sich nur zu Beginn einer Berechnung
- >> springt der Zähler auf i, sind alle Nachrichten empfangen worden, die der Knoten im synchronen Algorithmus in Runde i - 1 empfangen hätte
- ⇒ Bis der Zähler hochspringt, merken wir uns eingehende Nachrichten nur
- ⇒ Wenn der Zähler hochspringt, führen wir die synchrone Runde i aus!

Bastian Katz - Algorithmen für Ad-hoc- und Sensometze

Universität Karlsruhe (TH)
Karlsruher Institut für Technologie

Lehestuhl für Algorithmik I

Wir bauen uns einen Synchronisator

Jede Nachricht des synchronen Algorithmus wird bestätigt

>> hat ein Knoten eine Nachricht empfangen, schickt er eine

Hat ein Knoten für alle Nachrichten, die er in Runde i erzeugt

hat, eine Bestätigung erhalten, schickt er eine Nachricht

Hat ein Knoten SAFE-i von allen Nachbarn empfangen,

Synchronisator α braucht keinerlei Vorbereitung. Was, wenn wir

uns vorher Strukturen zur Synchronisation aufbauen können?

Wurzel sendet stattdessen START-(i+1) an Kinder

 \gg warte auf START-(i+1)-Signal und setze Zähler auf i+1

Berechne einen beliebigen gerichteten Spannbaum T

>> warte, bis alle Kinder SAFE-i gesendet haben

>> verschicke alle Nachrichten aus Runde i

Zutaten: Synchronizator α

Bestätigung

SAFE-i an alle Nachbarn

springt der Zähler auf i + 1

Andere Synchronisatoren?

Komplexität Synchronisator α

Definition: Zeitkomplexität eines Synchronisators

Ein Synchronisator hat Zeitkomplexität T. wenn nach iT Zeiteinheiten alle Knoten einen Zähler von mindestens i haben. Bei der Nachrichtenkomplexität zählen Bestätigungen nicht mit!

Satz

Mit Synchronisator α hat Zeitkomplexität O(1) und Nachrichtenkomplexität O(m)/Runde.

- Bew. Zeitkomplexität durch Induktion für T = 3:
 - \gg gilt für i = 0>> haben alle Knoten Zähler i, dauert es maximal 2 ZE, bis alle
 - Knoten SAFE-i gesendet haben...
- ≫ pro Runde verschickt jeder Knoten u Θ(deg u) Nachrichten. **SINE**

Bastian Katz - Algorithmen für Ad-hoc- und Sensometze

Synchronisator β

Wenn der Zähler auf i springt

» warte auf Bestätigungen

>> sende SAFE-i an Vorgänger

>> Wurzel wartet nicht

Komplexität Synchronisator β

Satz (ohne Beweis)

Synchronisator β hat Zeitkomplexität $O(D_T)^a$ und Nachrichtenkomplexität O(n)/Runde.

^aD_T: Durchmesser/größte Entfernung im Baum

- >> Bessere Nachrichtenkomplexität, aber viel schlechtere Zeitkomplexität.
- >> Dafür: Irgendeinen Baum kann man auch asynchron verteilt bestimmen (ohne Beweis)!

Kann man das heste aus heiden Welten hekommen? TIPP-

- $\gg \alpha$ wartet nur auf Nachbarn, das geht schnell
- » β synchronisiert im Baum, das kostet weniger Nachrichten.

Bastian Katz - Algorithmen für Ad-hoc- und Sensometze

Universität Karlsruhe (TH)

Idee Synchronisator γ

Partitioniere das Netz in kleine Gruppen!

- > In jeder Gruppe wähle einen Baum und eine Wurzel aus
- >> zu ie zwei benachbarten Gruppen wähle eine Brückenkante aus

Wie synchronisieren wir uns jetzt?

Synchronisator \(\gamma \)

lassen sich alle Knoten wie in

eigenen Cluster alle fertig sind

Synchronisator β bestätigen, dass im

Knoten mit Brückenkanten senden ein

wie in Synchronisator β lassen sich alle

bestätigen, dass NB-SAFE-i über alle

Signal NB-SAFE-i über Brückenk.

Brückenkanten empfangen wurde

Universität Karlsruhe (TH)

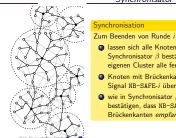
Synchronisator \(\gamma \)

Lehrstuhl für Algorithmik I

Synchronisation

Zum Beenden von Runde i

- lassen sich alle Knoten wie in Synchronisator β bestätigen, dass im eigenen Cluster alle fertig sind
- Knoten mit Brückenkanten senden ein Signal NB-SAFE-i über Brückenk.
- wie in Synchronisator β lassen sich alle bestätigen, dass NB-SAFE-i über alle Brückenkanten empfangen wurde



Bastian Katz - Algorithmen für Ad-hö

Synchronisator \(\gamma \)

Synchronisation

Zum Reenden von Runde i

- lassen sich alle Knoten wie in Synchronisator β bestätigen, dass im eigenen Cluster alle fertig sind
- Knoten mit Brückenkanten senden ein Signal NB-SAFE-i über Brückenk.
- wie in Synchronisator β lassen sich alle bestätigen, dass NB-SAFE-i über alle Brückenkanten empfangen wurde

Synchronisator γ

Synchronisation

Zum Reenden von Runde i

- lassen sich alle Knoten wie in Synchronisator β bestätigen, dass im eigenen Cluster alle fertig sind
- Knoten mit Brückenkanten senden ein Signal NB-SAFE-i über Brückenk.
- \bigcirc wie in Synchronisator β lassen sich alle bestätigen, dass NB-SAFE-i über alle Brückenkanten empfangen wurde

Bild: Roger Wattenhofer - > < 5 Bastian Katz - Algorithmen für Ad-hoc- und Sensometze

Universität Karlsruhe (TH)

Lehrstuhl für Algorithmik I Institut für theoretische Informatik

Synchronisator \(\gamma \)

Bastian Katz - Algorithmen für Ad-hoc- und Sensornetze Universität Karlsruhe (TH)

Karlsruher Institut für Technologie

14/32

Synchronisator \(\gamma \)

Synchronisation

Zum Beenden von Runde i

- lassen sich alle Knoten wie in Synchronisator β bestätigen, dass im eigenen Cluster alle fertig sind
- Knoten mit Brückenkanten senden ein Signal NB-SAFE-i über Brückenk.
- wie in Synchronisator β lassen sich alle bestätigen, dass NB-SAFE-i über alle Brückenkanten empfangen wurde

Rild: Roger Wattenhofer D > 4

Synchronisation

Zum Beenden von Runde i lassen sich alle Knoten wie in

- Synchronisator β bestätigen, dass im eigenen Cluster alle fertig sind Knoten mit Brückenkanten senden ein
- Signal NB-SAFE-i über Brückenk.
- wie in Synchronisator β lassen sich alle bestätigen, dass NB-SAFE-i über alle Brückenkanten empfangen wurde

SIT

Synchronisator γ

Synchronisation

Zum Reenden von Runde i

- lassen sich alle Knoten wie in Synchronisator β bestätigen, dass im eigenen Cluster alle fertig sind
- Knoten mit Brückenkanten senden ein Signal NB-SAFE-i über Brückenk.
- \bigcirc wie in Synchronisator β lassen sich alle bestätigen, dass NB-SAFE-i über alle Brückenkanten empfangen wurde

Bastian Katz - Algorithmen für Ad-hoc- und Sensometze

Universität Karlsruhe (TH)

Analyse Synchronisator \(\gamma \)

Satz

Ist k der maximale Abstand eines Knotens zur Wurzel in seinem Cluster und gibt es insgesamt mc Brückenkanten, dann hat Synchronisator γ Zeitkomplexität O(k) und benötigt $O(n+m_C)$ Nachrichten pro Runde.

- >> über jede Baumkante gehen 4, über jede Brückenkante 2 Nachrichten
- >> Zeitkomplexität ergibt sich vor allem aus der Synchronisation in der Gruppe
- \gg genau betrachtet sind α und β nur Sonderfälle von γ » α: Jeder Knoten ist seine eigene Gruppe
- » β: Alle Knoten sind in derselben Gruppe

Ist das nun besser? Gibt es gute Gruppierung?

Bastian Katz - Algorithmen für Ad-hoc- und Sensornetz

Universität Karlsruhe (TH)

15/32

16/32

Gute Partitionen

Satz

Jeder Graph lässt sich so partitionieren, dass $k \leq \log_2 n$ und $m_C \leq n$.

- Wähle bel, unmarkierten Knoten v aus
- lasse Radius r wachsen, so lange sich Menge der unmarkierten Knoten in r-Hop-Nachbarschaft von v noch verdoppelt
- markiere unmarkierte Knoten in r-Hop-Nachbarschaft
- a falls es unm. Knoten gibt, gehe zu 1

Satz

Gute Partitionen

Lehrstuhl für Algorithmik I

Jeder Graph lässt sich so partitionieren, dass $k \leq \log_2 n$ und $m_C \leq n$.

- Wähle bel, unmarkierten Knoten v aus
- lasse Radius r wachsen, so lange sich Menge der unmarkierten Knoten in r-Hop-Nachbarschaft von v noch verdoppelt
- markiere unmarkierte Knoten in r-Hop-Nachbarschaft
- a falls es unm. Knoten gibt, gehe zu 1

Gute Partitionen

Satz

Jeder Graph lässt sich so partitionieren, dass $k \leq \log_2 n$ und $m_C \leq n$.

- Wähle bel. unmarkierten Knoten v aus
- lasse Radius r wachsen, so lange sich Menge der unmarkierten Knoten in r-Hop-Nachbarschaft von v noch verdoppelt
- markiere unmarkierte Knoten in r-Hop-Nachbarschaft
- falls es unm. Knoten gibt, gehe zu 1

Gute Partitionen

Satz

Jeder Graph lässt sich so partitionieren, dass $k \leq \log_2 n$ und $m_C \leq n$.

- Wähle bel. unmarkierten Knoten v aus
- lasse Radius r wachsen, so lange sich Menge der unmarkierten Knoten in r-Hop-Nachbarschaft von v noch verdoppelt
- markiere unmarkierte Knoten in r-Hop-Nachbarschaft
- falls es unm. Knoten gibt, gehe zu 1

Bastian Katz - Algorithmen für Ad-hoc- und Sensometze

Universität Karlsruhe (TH)

Lehrstuhl für Algorithmik I

Universität Karlsruhe (TH)

16/32

Bastian Katz - Algorithmen für Ad-hoc- und Sensornetz

Gute Partitionen

Satz

Jeder Graph lässt sich so partitionieren, dass $k \le \log_2 n$ und $m_C \le n$.

- Wähle bel, unmarkierten Knoten v aus
- lasse Radius r wachsen, so lange sich Menge der unmarkierten Knoten in r-Hop-Nachbarschaft von v noch verdoppelt
- markiere unmarkierte Knoten in r-Hop-Nachbarschaft
- a falls es unm. Knoten gibt, gehe zu 1

Bemerkungen

- So eine Partition kann man auch verteilt im asynchronen Modell berechnen
 - >> damit ist Synchronisation mit logarithmischem Zeitoverhead realistisch!
 - $\gg O(n)$ Zeit und $O(m + n \log n)$ Nachrichten fürs Setup (o.B.) >> lohnen sich die Initialisierungskosten?
 - was passiert in dynamischen Netzen?
- >> Viele synchrone Algorithmen müssten nicht immer alle Knoten synchronisieren
 - >> in solchen Situationen kann man mit speziellen Synchronisatoren viel Ressourcen sparen

17/32

Zeitsynchronisation: Motivation

Viele Anwendungen brauchen nicht nur vage Runden, sondern echte Zeitstempel, um

- >> zum richtigen Moment aufzuwachen
- gemessene Daten richtig zeitlich einordnen zu können
- gemeinsame Schedules einzuhalten

Zeitsvnchronisation ist notwendig, um

- >> Offset (einmalig?) und
- >> Drift (permanent?)

ehrstuhl für Algorithmik

auszugleichen. Beispiel: TinvNode: Drift bis zu 30-50us/s

Universität Karlsruhe (TH)

>> DCF77 in Frankfurt

- >> Synchronisation wie Funkuhren
- » braucht speziellen Empfänger
- > Laufzeit zertört Genauigkeit!
- S GPS
 - >> nur bei freier Sicht
 - >> nur mit spezieller Hardware
 - dafür für bessere zeitliche Auflösung ausgelegt

Bastian Katz - Algorithmen für Ad-hoc- und Sensornetz

19/32

Lehrstuhl für Algorithmik

Universität Karlsruhe (TH)

Einzelne Knoten (Beacons) senden eine kurze Nachricht, ieder Knoten merkt sich dann die Ankunftszeit gemäß der eigenen Uhr.

- >> Knoten können austauschen, wann sie das Signal empfangen haben und daraus ihren gegenseitigen Offset berechnen
- » Pakete können dann sogar Multi-Hop geleitet werden, wenn je zwei kommunizierende Knoten einen gemeinsames Signal gehört haben
 - Sehr einfaches Protokoll, regelmäßige Signale reichen aus keine wirklich gemeinsame Zeit
- Auflösung begrenzt durch Signallaufzeit! Bastian Katz - Algorithmen für Ad-hoc- und Sensometze

Sender/Empfänger-Synchronisation

Idee: Nutze Roundtrip-Zeit, um Signallaufzeit δ und (aktuellen) Offset # auszurechnen:

$$\delta = \frac{(t_4 - t_1) - (t_3 - t_2)}{2} \quad \theta = \frac{(t_1 - t_2) + (t_3 - t_4)}{2}$$

Damit man wirklich nur die Signallaufzeit misst: Zeitstempel so spät wie möglich in das Paket einfügen, und beim Empfangen eines Paketes direkt den Zeitstempel ermitteln.

 \gg Es geht nicht um exaktes δ , sondern um die Vermeidung von Effekten, die die beiden Übertragungen asymmetrisch lang machen!

ehrstuhl für Algorithmik I

Baum-basierte Multi-Hop-Synchronisierung

Typische Struktur für Multi-Hop Synchronisierung

>> Spanne Baum auf

Lehrstuhl für Algorithmik

- » synchronisiere in regelmäßigen Abständen gegen die Zeit der Wurzel
 - >> entweder einfach durch Fluten der Zeiten
 - > durch paarweisen Abgleich im Baum

Baum-basierte Multi-Hop-Synchronisierung

Typische Struktur für Multi-Hop Synchronisierung

- >> Spanne Baum auf
- » synchronisiere in regelmäßigen Abständen gegen die Zeit der Wurzel
 - >> entweder einfach durch Fluten der Zeiten
 - >> durch paarweisen Abgleich im Baum

Was, wenn das Netz eigentlich gar kein Baum ist?

» nahe Knoten liegen in Baum weit auseinander und sind schlecht synchronisiert!

Bastian Katz - Algorithmen für Ad-hoc- und Sensornetz Universität Karlsruhe (TH)

Was wir wollen

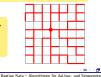
..Gute" Bäume für Synchronisation

Um große Fehler zwischen nahen Knoten zu vermeiden, bräuchten wir Bäume mit geringem Stretch, z. B. einen der

$$\max_{u,v \in V} \frac{d_T(u,v)}{d_G(u,v)}$$

minimiert.

Das ist nicht nur schwer zu optimieren, sondern auch unbefriedigend: Im m x m-Gitter ist der minimale Stretch m. (o.B.)



ehrstuhl für Algorithmik I

Lehrstuhl für Algorithmik I

- Geringen Zeitunterschied zwischen beliebigen Knoten
 - >> besser als durch Bäume bekommt man das nicht hin Knoten mit Abstand d sind im schlimmsten Fall O(d) auseinander. wenn sich die kleinen Fehler alle in eine Richtung aufsummieren
- Nachbarn sollen einen möglichst kleinen Zeitunterschied hahen
 - » das ist oft viel wichtiger!
 - >> mit Räumen ist das nicht zu schaffen!
- Uhren sollten nicht rückwärts springen
 - >> dann käme die Ordnung völlig durcheinander
- Uhren sollen sich immer vorwärts bewegen

>> sonst wäre eine stehende Uhr eine gute Uhr..

Universität Karlsruhe (TH) Karlsruher Institut für Technologie

Gradientensynchronisation

Idee

Nutze ein lokales Protokoll, das zur Synchronisation aus den Werten der Nachbarn einen vernünftigen Wert für die eigene Uhr ableitet.

Modell

Jede Uhr bewegt sich mit einer Geschwindigkeit zwischen $1 - \epsilon$ und $1 + \epsilon$.

Was wäre eine gute Strategie, um geringen globale Unterschiede mit geringen lokalen Unterschieden zu kombinieren?

Bastian Katz - Algorithmen für Ad-hoc- und Sensometz

Lehrstuhl für Algorithmik

Universität Karlsruhe (TH)

Zeitsvnchronisation MAX

Wenn einer der Nachbarn eine höhere Zeit sendet, passe die eigene Uhr an

Satz

MAX kann einen lokalen Unterschied von bis zu D erzeugen!

- >> betrachte Pfad mit D Knoten
 - \gg alle haben Geschwindigkeit 1, nur der linke hat $1+\epsilon$ >> wenn lange Zeit alle Signale Laufzeit 1 haben, hat irgendwann
 - ieder Knoten Abstand 1 nach links und rechts! » Kette von schnellen Nachrichten verbreitet die höchste Zeit!
 - ⇒ Unterschied von D zwischen Nachbarn!

Universität Karlsruhe (TH)

26/32

Zeitsvnchronisation MAX

Wenn einer der Nachbarn eine höhere Zeit sendet, passe die eigene Uhr an.

Satz

MAX kann einen lokalen Unterschied von bis zu D erzeugen!

- hetrachte Pfad mit D Knoten
 - \gg alle haben Geschwindigkeit 1, nur der linke hat $1+\epsilon$
 - >> wenn lange Zeit alle Signale Laufzeit 1 haben, hat irgendwann jeder Knoten Abstand 1 nach links und rechts!
 - » Kette von schnellen Nachrichten verbreitet die höchste Zeit!
 - ⇒ Unterschied von D zwischen Nachbarn!

Mehr schlechte Ideen

- >> MTN: Wähle Minimum
 - >> Halt! Das dürfen wir nicht! Uhren müssen vorwärts laufen!
- >> AVERAGE: Bilde Durchschnitt der umgebenden Knoten >> noch viel schlimmer! Unterschied zwischen Nachbarn bis zu
 - $\Theta(D)$, globale Unterschiede bis zu $\Theta(D^2)$! (ohne Beweis)

BOUND-B: Warum sollte das besser sein?

Wähle Maximum umgebender Knoten, aber höchstens

Minimum + RI

>> Durch Sychronisation kann man keinen aktiven Fehler machen!

- » kein Knoten kann sich durch Synchronisation von langsamerem Nachharn entfernen!
- >> aber durch Warten auf aufschließende Knoten

- >> wenn die Kette lang genug ist haben wir irgendwann genau Abstand B zwischen Nachbarn
- >> ab dem Moment driftet der schnellste Knoten, ohne dass der zweite aufholen kann
- ⇒ Skip wächst auf bis zu Θ(D) an, so weit kann der Knoten ganz links hinterherhängen!

Bemerkungen

- $\gg \sqrt{D}$ ist noch nicht optimal!
- \gg seit 2004 ist eine untere Schranke von $\Omega(\log D/\log\log D)$ bekannt
 - >> das heißt ja noch nicht, dass es so gut geht, aber
- ≫ seit 2008 Lenzen et al. Algorithmus mit O(log D) Zeitunterschied zwischen Nachbarn
 - >> das scheint optimal zu sein

BOUND-

Genauere Analyse: Unterschied zwischen Nachbarn durch Warten kann durch O(D/B) beschränkt werden. (Machen wir nicht)

 \Rightarrow Setze $B = \sqrt{D}$ für einen Unterschied von höchstens \sqrt{D} !

Satz (o.B.)

BOUND- \sqrt{D} synchronisiert benachbarte Knoten bis auf einen Unterschied von höchstens \sqrt{D} .

Bastian Katz - Algorithmen für Ad-hoc- und Sensornetz

Universität Karlsruhe (TH)

Zum Mitnehmen

- >> Synchronisation erlaubt uns, synchrone Algorithmen auch im Asynchronen Kommunikationsmodell auszuführen
 - Synchrone Algorithmen sind besser zu verstehen
 - >> aber Synchronisation kostet Zeit und Energie
 - Mit höherem Initialen Aufwand billigere Synchronisation
 - >> angepasste asynchrone Algorithmen trotzdem überlegen
- >> Zeitsynchronisation ist oft notwendig, aber nicht ganz leicht >> lokale Uhren driften ab und starten asynchron

 - > externe Zeitgeber sind nicht immer denkbar
 - >> Perfekte Synchronisation geht nicht
 - » schon lokal vernünftige Synchronisation ist eine harte Nuss

- B. Awerbuch: Complexity of network synchronization. In: Journal of the ACM, 32(4):804–823, 1985
- T. Locher and R. Wattenhofer: Oblivious Gradient Clock Synchronization. In: 20th Int'l Symp. on Distributed Computing (DISC'06), 2006

Bastian Katz - Algorithmen für Ad-hoc- und Sensornetze

bastian Ratz = Algorithmen für Ad-noc- und 3

