Algorithmen für Routenplanung – Vorlesung 9

Daniel Delling

Lehrstuhl für Algorithmik I Institut für theoretische Informatik Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825

Forschungsuniversität · gegründet 1825

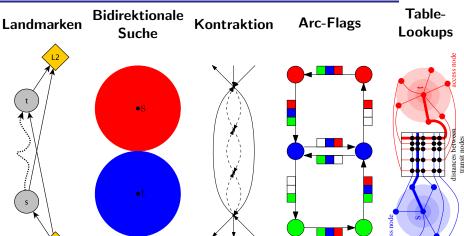
Letztes Mal: Dynamische Szenarien

Szenario:

- Unfall auf einer Straße
- Reisezeit ändert sich auf dieser Straße
- ≫ berechne schnellsten Weg bezüglich der aktualisierten Reisezeiten

Wiederholung Modellierung Dijkstra Funktionen Experimente Zusammenfassung

Vier Bausteine



< □ > < □

Thema Heute: Zeitabhängiges Szenario

Szenario:

- > Historische Daten für Verkehrssituation verfügbar
- Verkehrssituation vorhersagbar
- ≫ berechne schnellsten Weg bezüglich der erwarteten Verkehrssituation (zu einem gegebenen Startzeitpunkt)

Beobachtung:

- >> Kein konzeptioneller Unterschied mehr zu Public Transport
- Somit (eventuell) Techniken übertragbar

Herausforderung

Hauptproblem:

- >> Kürzester Weg hängt von Abfahrtszeitpunkt ab
- Eingabegröße steigt massiv an

Vorgehen:

- Modellierung
- Anpassung Dijkstra
- >> Anpassung der Basismodule

Heute:

Modellierung und Dijkstra

Daniel Delling - Algorithmen für Routenplanung - Vorlesung 9

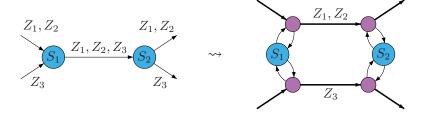
Eingabe:

- >> Durchschnittliche Reisezeit zu bestimmten Zeitpunkten
- >> Jeden Wochentag verschieden
- >> Sonderfälle: Urlaubszeit

Somit:

- » periodische stückweise lineare funktionen
- ≫ definiert durch Stützpunkte
- interpoliere linear zwischen Stützpunkten

Forschungsuniversität · gegründet 1825



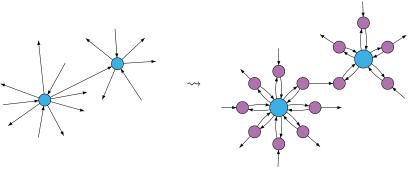
- \gg Teile Züge Z in Routen ein
- >> Für alle Routen, die eine Station bedienen, ein Extra-Knoten

Forschungsuniversität · gegründet 1825

< □ > < □

Flugnetzwerke

Nutzung des Eisenbahnansatzes nicht sinnvoll

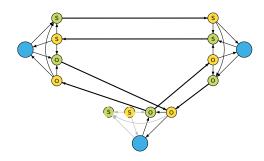


Graphen werden zu groß.

Flugnetzwerke

Modellierung:

- ≫ Check-in,
- ≫ check-out,
- ≫ transfer,
- >> zwischen Allianzen.



⇒ Zwei Knoten pro Allianz (Abflug und Ankunftsknoten)

← □ → ← ⑤

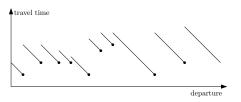
Public Transport Funktionen

Eingabe:

- » Reisezeit zu bestimmten Zeitpunkten
- ≫ Jeden Tag verschieden

Somit:

- » periodische stückweise lineare funktionen
- ≫ definiert durch Stützpunkte
- Wartezeit zur nächsten Verbindung plus Reisezeit



Diskussion

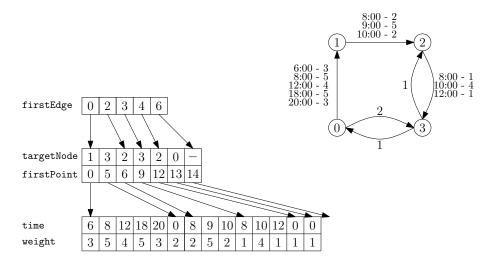
Eigenschaften:

- >> Topologie ändert sich nicht
- >> Kanten gemischt zeitabhängig und konstant
- >> variable (!) Anzahl Interpolationspunkte pro Kante

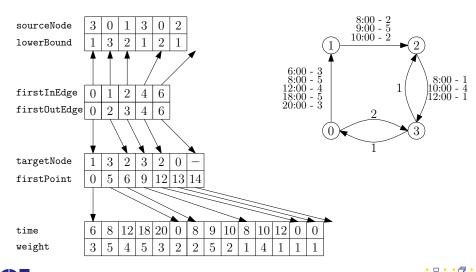
Beobachtungen:

- \gg FIFO gilt auf allen Kanten
- ≫ später wichtig

Datenstruktur



Datenstruktur



Zeit-Anfrage:

- \gg finde kürzesten Weg für Abfahrtszeit au
- ≫ analog zu Dijkstra?

Profil-Anfrage:

- >> finde kürzesten Weg für alle Abfahrtszeitpunkte
- ≫ analog zu Dijkstra?

Universität Karlsruhe (TH)

Forschungsuniversität · gegründet 1825

```
Time-DIJKSTRA(G = (V, E), s, \tau)
1 d_{\tau}[s] = 0
2 Q.clear(), Q.add(s,0)
3 while !Q.empty() do
       u \leftarrow Q.deleteMin()
       for all edges e = (u, v) \in E do
            tmp \leftarrow d_{\tau}[u] + len(e, \tau + d_{\tau}[u])
            if tmp < d_{\tau}[v] then
                d_{\tau}[v] \leftarrow tmp
                if v \in Q then Q.decreaseKev(v, d[v])
                else Q.insert(v, d[v])
10
```


Diskussion Zeit-Anfragen

Beobachtung:

- >> nur ein Unterschied zu Dijkstra
- ≫ Auswertung der Kanten

non-FIFO:

- ≫ im Kreis fahren kann sich lohnen
- \gg NP-schwer (wenn warten an Knoten nicht erlaubt ist)
- >> Transportnetzwerke sind FIFO modellierbar (notfalls Multikanten)

Profil-Anfragen

```
Profile-Search(G = (V, E), s)
1 d_*[s] = 0
2 Q.clear(), Q.add(s,0)
3 while !Q.empty() do
       u \leftarrow Q.deleteMin()
       for all edges e = (u, v) \in E do
           tmp \leftarrow d_*[u] \oplus len(e)
           if tmp \geq d_*[v] then
               d_*[v] \leftarrow \min\{tmp, d_*[v]\}
               if v \in Q then Q.decreaseKey(v, d[v])
               else Q.insert(v, d[v])
10
```


Universität Karlsruhe (TH)

Forschungsuniversität · gegründet 1825

< □ **▶** < ♠

Diskussion Profile-Anfragen

Beobachtungen:

- >> Operationen auf Funktionen
- priorität frei wählbar
- \gg Knoten können mehrfach besucht werden \Rightarrow label-correcting

somit:

- wie linken?
- ≫ wie Minimum bilden (mergen)?

Forschungsuniversität · gegründet 1825

Operationen

Funktion gegeben durch:

- Interpolationspunkte
- $\gg I^f := \{(t_1^f, w_1^f), \dots, (t_k^f, w_k^f)\}$

3 Operationen:

- Auswertung
- ≫ Link
- Minimumsbildung

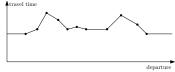
Beobachtung:

>> unterschiedlich für Straße und Schiene

Straße: Auswertung

Evaluation von $f(\tau)$:

- \gg suche Punkte mit $t_i \ge \tau$ und $t_{i+1} \le \tau$
- ⇒ dann Evaluation durch



$$f(\tau) = w_i + (\tau - t_i) * \frac{w_{i+1} - w_i}{t_{i+1} - t_i}$$

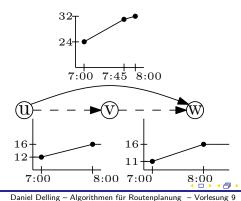
Problem:

- \gg finden von t_i und t_{i+1}
- > theoretisch:
 - \gg lineare Suche: O(|I|)
 - \gg binare Suche: $O(\log_2 |I|)$
- ≫ praktisch:
 - $\gg |I| < 30$: lineare Suche
 - \gg sonst: lineare Suche mit Startpunkt $\tau/\Pi * |I|$

Straße: Link

Linken zweier Funktionen f und g

- $\gg f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- >> zusätzliche Interpolationspunkte an t_i^{-1} mit $f(t_i^{-1}) + t_i^{-1} = t_i^g$
- \gg füge $(t_i^{-1}, f(t_i^{-1}) + w_i^g)$ für alle Punkte von g zu $f \oplus g$
- >> Durch linearen sweeping Algorithmus implementierbar



Straße: Diskussion Link

Laufzeit

- ≫ sweep Algorithmus
- $\gg O(|I^f| + |I^g|)$
- \gg zeitunabhängig: O(1)

Speicherverbrauch

 \gg gelinkte Funktion hat $\approx |I^f| + |I^g|$ Interpolationspunkte

Problem:

- >> während Profilsuche kann ein Pfad mehreren Tausend Kanten entsprechen...
- >> Shortcuts.....
- s es kommt noch schlimmer....

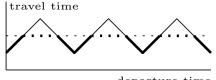
Straße: Merge

Minimum zweier Funktionen f und g

- \gg für alle (t_i^f, w_i^f) : behalte Punkt, wenn $w_i^f < g(t_i^f)$
- \gg für alle (t_i^g, w_i^g) : behalte Punkt, wenn $w_i^g < f(t_i^g)$
- >> Schnittepunkte müssen ebenfalls eingefügt werden

Vorgehen:

- linearer sweep
- >> evaluiere, welcher Abschnitt oben
- >> checke ob Schnittpunkt existiert



departure time

Straße: Diskussion Merge

Laufzeit

- ≫ sweep Algorithmus
- $\gg O(|I^f| + |I^g|)$
- \gg zeitunabhängig: O(1)

Speicherverbrauch

 \gg minimum-Funktion kann mehr als $|I^f|+|I^g|$ Interpolationspunkte haben

Problem:

- während Profilsuche werden Funktionen gemergt
- >> Laufzeit der Profilsuchen wird durch diese Operationen dominiert

Universität Karlsruhe (TH)

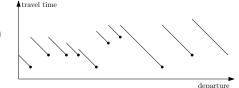
Forschungsuniversität · gegründet 1825

Public Transport: Auswertung

Evaluation von $f(\tau)$:

- \gg suche Punkte mit $t_i > \tau$ und $t_i \tau$ minimal
- ⇒ dann Evaluation durch

$$f(\tau) = w_i + (\tau - t_i)$$

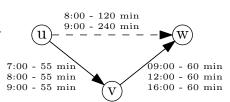


Problem:

- \gg finden von t_i und t_{i+1}
- >> theoretisch:
 - \gg lineare Suche: O(|I|)
 - \gg binäre Suche: $O(\log_2 |I|)$
- >> praktisch:
 - $\gg |I| < 30$: lineare Suche
 - \gg sonst: lineare Suche mit Startpunkt $\tau/\Pi * |I|$

Linken zweier Funktionen f und g

- \gg für jede Punkt (t_i^f, w_i^f) bestimme den Verbindungspunkt (t_j^g, w_j^g) mit $t_i^g t_i^f w_i^f \ge 0$ minimal
- \gg erste Verbindung, die man auf g erreichen kann
- \gg füge $(t_i^f,(t_j^g-t_i^f+w_j^g))$ hinzu
- \gg wenn zwei Punkte den gleichen Verbindungspunkt haben, behalte nur den mit größerem t_i^f
- wieder sweep-algorithmus



Laufzeit

- sweep Algorithmus
- $\gg O(|I^f| + |I^g|)$
- \gg zeitunabhängig: O(1)

Speicherverbrauch

 \gg gelinkte Funktion hat min $\{|I^f|, |I^g|\}$ Interpolationspunkte

Somit:

deutlich gutmütiger als Straßengraph-Funktionen

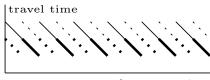
Public Transport: Merge

Minimum zweier Funktionen f und g

- \gg für alle (t_i^f, w_i^f) : behalte Punkt, wenn $w_i^f < g(t_i^f)$
- \gg für alle (t_j^{g}, w_j^{g}) : behalte Punkt, wenn $w_j^{g} < f(t_j^{g})$
- ≫ keine Schnittepunkte möglich(!)

Vorgehen:

≫ linearer sweep



departure time

Public Transport: Diskussion Merge

Laufzeit

- ≫ sweep Algorithmus
- $\gg O(|I^f| + |I^g|)$
- \gg zeitunabhängig: O(1)

Speicherverbrauch

- ≫ da keine Schnittpunkte
- \gg minimum-Funktion kann maximal $|I^f|+|I^g|$ Interpolationspunkte haben

Public Transport vs. Schiene

Laufzeit Operationen

- ≫ gleich für beide
- $\gg O(\log |I|)$ für Auswertung
- $\gg O(|I^f| + |I^g|)$ für linken und minimum

Speicherverbrauch

- ≫ Public Transport geringer
- ≫ link:

$$|I^{f \oplus g}| \leq \min\{|I^f|, |I^g|\} \quad \text{vs.} \quad |I^{f \oplus g}| \approx |I^f| + |I^g|$$

≫ merge:

$$|I^{\min\{f,g\}}| \le |I^f| + |I^g|$$
 vs. eventuell $|I^{\min\{f,g\}}| > (|I^f| + |I^g|)$

Profilsuchen

>> somit in Public Transport Netzen wahrscheinlich schneller

Straße:

- \gg Netzwerk Deutschland $|V| \approx 4.7$ Mio., $|E| \approx 10.8$ Mio.
- 5 Verkehrszenarien:
 - \gg Montag: $\approx 8\%$ Kanten zeitabhängig
 - \gg Dienstag Donnerstag: $\approx 8\%$
 - \gg Freitag: $\approx 7\%$
 - \gg Samstag: $\approx 5\%$
 - \gg Sonntag: $\approx 3\%$

Schiene:

- >> Europa Fernverbindungen
- ≫ 30156 Stationen, 1.8 Verbindungen
- $\gg |V| = 0.4 \text{ Mio.}, |E| = 1.4 \text{ Mio.}$

Einfluss Grad zeitabhängigkeit auf Zeitanfragen

	#delete mins sl	ow-down	time [ms] s	slow-down
kein	2,239,500	0.00%	1219.4	0.00%
Montag	2,377,830	6.18%	1553.5	27.40%
DiDo	2,305,440	2.94%	1502.9	23.25%
Freitag	2,340,360	4.50%	1517.2	24.42%
Samstag	2,329,250	4.01%	1470.4	20.59%
Sonntag	2,348,470	4.87%	1464.4	20.09%

Beobachtung:

- >> kaum Veränderung in Suchraum
- Anfragen etwas langsamer durch Auswertung

Profilsuchen Straße

Beobachtung:

- ⇒ nicht durchführbar durch zu großen Speicherbedarf (32 GB RAM)
- >> interpoliert:
 - ≫ Suchraum steigt um ca. 10%
 - >> Suchzeiten um einen Faktor von bis zu 2500
- also inpraktikabel

Forschungsuniversität · gegründet 1825

Profilsuchen Schiene

	#delete mins	time [ms]
Zeit-Anfragen	260 095	125
Profil-Anfragen	1919662	5 327

Beobachtung:

- ≫ delete mins steigen an (ungefähr Faktor 8)
- Query Zeit steigt an um Faktor 42
- >> Verlust für Operationen ist ca. 5

Zusammenfassung Zeitabhängige Netzwerke (Basics)

- >> Funktionen werden an Kanten gehangen
- Operationen werden teurer
 - $\gg O(\log |I|)$ für Auswertung
 - $\gg O(|I^f| + |I^g|)$ für linken und minimum
 - >> Straßennetzwerke: Speicherverbrauch explodiert
 - Eisenbahn gutartiger
- Zeit- und Profilanfragen
- >> Zeitanfragen:
 - » normaler Dijkstra
 - kaum langsamer (lediglich Auswertung)
- ≫ Profilanfragen
 - ⇒ in PTN gut nutzbar
 - Straßennetzwerke nicht zu handhaben
 - aber eigentlich wollen wir das haben

Literatur

Basics Time-Dependency:

≫ Delling 08,09

Anmerkung:

>> wird auf der Homepage verlinkt

