Vorlesung Graphenzeichnen:

Order in the Underground *or*How to Automate the Drawing of Metro Maps

Martin Nöllenburg

Lehrstuhl für Algorithmik I

26.06.2008

Martin Nöllenburg 1 42 Drawing Metro Maps

Outline

- Modeling the Metro Map Problem
 - What is a Metro Map?
 - Hard and Soft Constraints
- NP-Hardness: Bad News—Nice Proof
 - Rectilinear vs. Octilinear Drawing
 - Reduction from Planar 3-SAT
- MIP Formulation & Experiments
 - Mixed-Integer Programming Formulation
 - Experiments
 - Labeling

Martin Nöllenburg 2 42 Drawing Metro Maps

Outline

- Modeling the Metro Map Problem
 - What is a Metro Map?
 - Hard and Soft Constraints
- NP-Hardness: Bad News—Nice Proof
 - Rectilinear vs. Octilinear Drawing
 - Reduction from Planar 3-SAT
- MIP Formulation & Experiments
 - Mixed-Integer Programming Formulation
 - Experiments
 - Labeling

• schematic diagram for public transport

Total Control Control

- schematic diagram for public transport
- visualizes lines and stations

- schematic diagram for public transport
- visualizes lines and stations
- goal: ease navigation for passengers
 - "How do I get from A to B?"
 - "Where to get off and change trains?"

- schematic diagram for public transport
- visualizes lines and stations
- goal: ease navigation for passengers
 - "How do I get from A to B?"
 - "Where to get off and change trains?"
- distorts geometry and scale

- schematic diagram for public transport
- visualizes lines and stations
- goal: ease navigation for passengers
 - "How do I get from A to B?"
 - "Where to get off and change trains?"
- distorts geometry and scale
- improves readability

- schematic diagram for public transport
- visualizes lines and stations
- goal: ease navigation for passengers
 - "How do I get from A to B?"
 - "Where to get off and change trains?"
- distorts geometry and scale
- improves readability

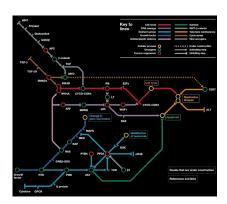
current maps designed manually

Martin Nöllenburg 5 42 Drawing Metro Maps

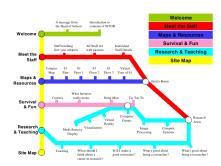
- current maps designed manually
- assist graphic designers to improve/extend maps

Martin Nöllenburg 5 42 Drawing Metro Maps

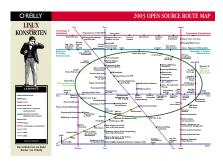
- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways



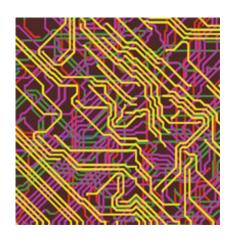
- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways
 - web page maps



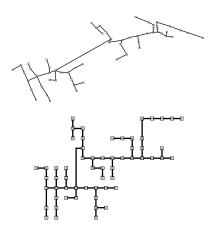
- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways
 - web page maps
 - product lines



- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways
 - web page maps
 - product lines
- VLSI: X-architecture



- current maps designed manually
- assist graphic designers to improve/extend maps
- metro map metaphor
 - metabolic pathways
 - web page maps
 - product lines
- VLSI: X-architecture
- drawing sketches [Brandes et al. '03]



The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

Goal: draw G and \mathcal{L} nicely.

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

Goal: draw G and \mathcal{L} nicely.

What is a nice drawing?

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

Goal: draw G and \mathcal{L} nicely.

What is a nice drawing?

 Look at real-world metro maps drawn by graphic designers and model their design principles as

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

Goal: draw G and \mathcal{L} nicely.

What is a nice drawing?

- Look at real-world metro maps drawn by graphic designers and model their design principles as
 - hard constraints must be fulfilled,

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

Goal: draw G and \mathcal{L} nicely.

- What is a nice drawing?
- Look at real-world metro maps drawn by graphic designers and model their design principles as
 - hard constraints must be fulfilled,
 - soft constraints should hold as tightly as possible.

(H1) preserve embedding of G

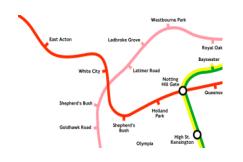
- (H1) preserve embedding of G
- (H2) draw all edges as octilinear line segments, i.e. horizontal, vertical or diagonal (45 degrees)

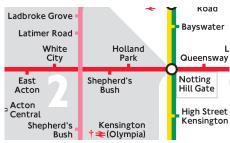
- (H1) preserve embedding of G
- (H2) draw all edges as octilinear line segments,i.e. horizontal, vertical or diagonal (45 degrees)
- (H3) draw each edge e with length $\geq \ell_e$

- (H1) preserve embedding of G
- (H2) draw all edges as octilinear line segments,i.e. horizontal, vertical or diagonal (45 degrees)
- (H3) draw each edge e with length $\geq \ell_e$
- (H4) keep edges d_{min} away from non-incident edges

Soft Constraints

(S1) draw metro lines with few bends





Soft Constraints

- (S1) draw metro lines with few bends
- (S2) keep total edge length small

Soft Constraints

- (S1) draw metro lines with few bends
- (S2) keep total edge length small
- (S3) draw each octilinear edge similar to its geographical orientation: keep its relative position

Outline

- Modeling the Metro Map Problem
 - What is a Metro Map?
 - Hard and Soft Constraints
- NP-Hardness: Bad News—Nice Proof
 - Rectilinear vs. Octilinear Drawing
 - Reduction from PLANAR 3-SAT
- MIP Formulation & Experiments
 - Mixed-Integer Programming Formulation
 - Experiments
 - Labeling

RECTILINEARGRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

Theorem (Tamassia SIAMJComp'87)

RECTILINEARGRAPHDRAWING can be solved efficiently.

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

Theorem (Tamassia SIAMJComp'87)

RECTILINEARGRAPHDRAWING can be solved efficiently.

Proof.

By reduction to a flow problem.

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

Theorem (Tamassia SIAMJComp'87)

RECTILINEARGRAPHDRAWING can be solved efficiently.

Proof.

By reduction to a flow problem.

Our Problem

METROMAPLAYOUT Decision Problem

Given a planar embedded graph *G* with max degree 8. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is octilinear?

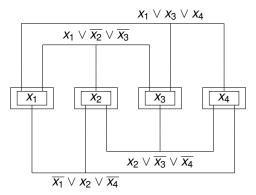
Theorem (Nöllenburg MSc'05)

METROMAPLAYOUT is NP-hard.

Proof.

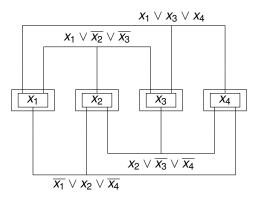
By Reduction from Planar 3-Sat to MetroMapLayout.

Outline of the Reduction



Input: planar 3-SAT formula $\varphi = (x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

Outline of the Reduction



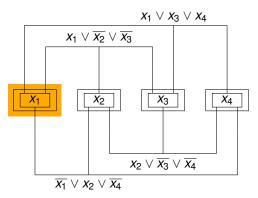
Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

Goal: planar embedded graph G_{φ} with:

 G_{φ} has a metro map drawing $\Leftrightarrow \varphi$ satisfiable.

Outline of the Reduction



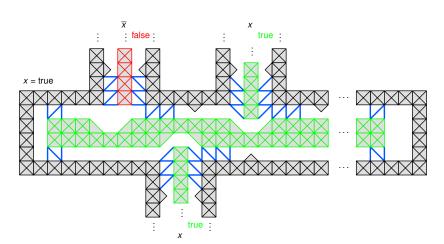
Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

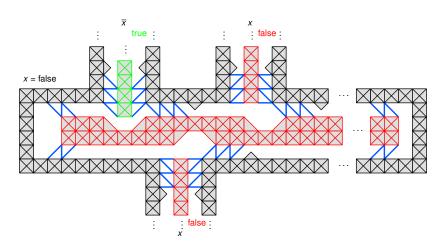
Goal: planar embedded graph G_{φ} with:

 G_{φ} has a metro map drawing $\Leftrightarrow \varphi$ satisfiable.

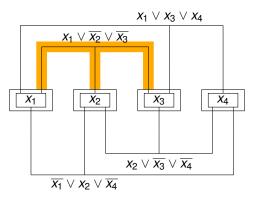
Variable Gadget



Variable Gadget



Outline of the Reduction

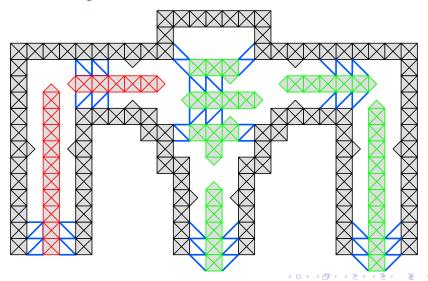


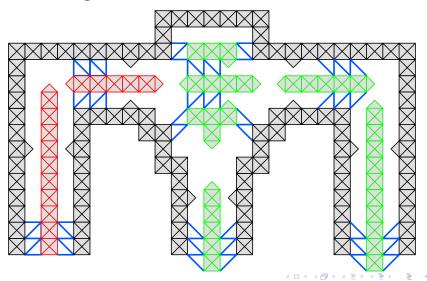
Input: planar 3-SAT formula $\varphi =$

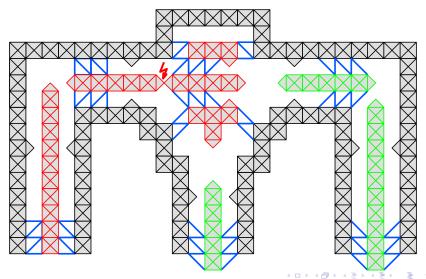
 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

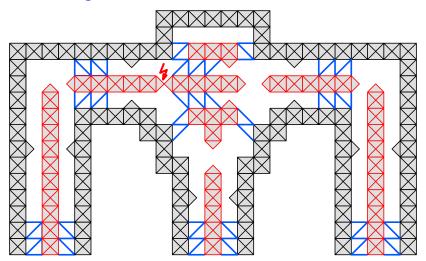
Goal: planar embedded graph G_{φ} with:

 G_{φ} has a metro map drawing $\Leftrightarrow \varphi$ satisfiable.

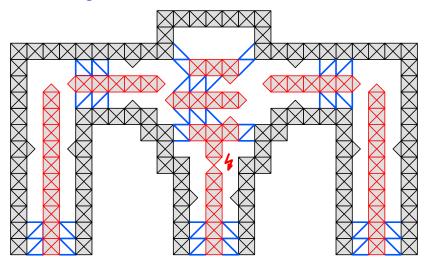




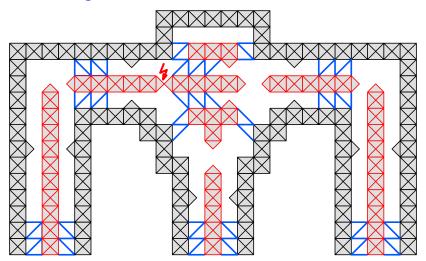




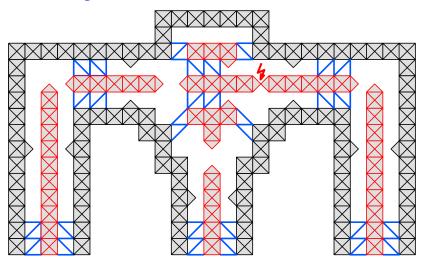
Martin Nöllenburg 15 42 Drawing Metro Maps



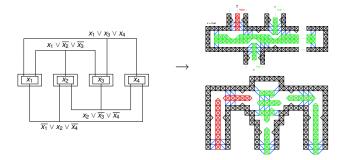
Martin Nöllenburg 15 42 Drawing Metro Maps



Martin Nöllenburg 15 42 Drawing Metro Maps



Summary of the Reduction



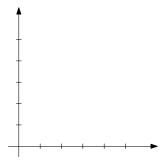
- Indeed we have:
 - φ satisfiable \Rightarrow corresponding MM drawing of G_{φ}
 - ullet G_{arphi} has MM drawing \Rightarrow satisfying truth assignment of arphi

Martin Nöllenburg 16 42 Drawing Metro Maps

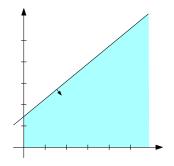
Outline

- Modeling the Metro Map Problem
 - What is a Metro Map?
 - Hard and Soft Constraints
- NP-Hardness: Bad News—Nice Proof
 - Rectilinear vs. Octilinear Drawing
 - Reduction from Planar 3-SAT
- MIP Formulation & Experiments
 - Mixed-Integer Programming Formulation
 - Experiments
 - Labeling

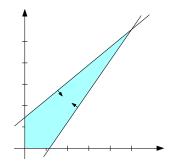
- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables



- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
 - example: maximize x + 2ysubject to $y \le 0.9x + 1.5$ y > 1.4x - 1.3



- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
 - example: $maximize \ x + 2y$ $subject \ to$ $y \le 0.9x + 1.5$ y > 1.4x - 1.3

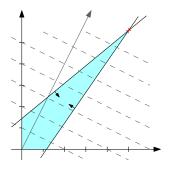


- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
 - example:

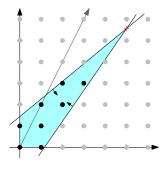
```
maximize x + 2y subject to
```

$$y \le 0.9x + 1.5$$

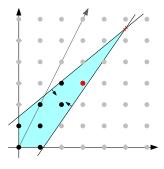
$$y > 1.4x - 1.3$$



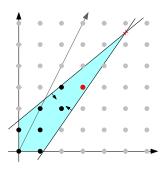
- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
- Mixed-Integer Programming (MIP)
 - allows also integer variables
 - NP-hard in general
 - still practical method for many hard optimization problems



- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
- Mixed-Integer Programming (MIP)
 - allows also integer variables
 - NP-hard in general
 - still practical method for many hard optimization problems



- Linear Programming: efficient optimization method for
 - linear constraints
 - linear objective function
 - real-valued variables
- Mixed-Integer Programming (MIP)
 - allows also integer variables
 - NP-hard in general
 - still practical method for many hard optimization problems



Theorem (Nöllenburg & Wolff GD'05)

The problem MetroMapLayout can be formulated as a MIP s.th.

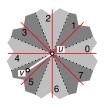
hard constraints → linear constraints soft constraints → objective function

Definitions: Sectors and Coordinates

Sectors

- for each vtx. *u* partition plane into sectors 0–7
 - here: sec(u, v) = 5 (input)

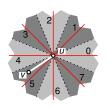
Definitions: Sectors and Coordinates



Sectors

- for each vtx. u partition plane into sectors 0–7
 - here: sec(u, v) = 5 (input)
- number octilinear edge directions accordingly
 - e.g. dir(u, v) = 4 (output)

Definitions: Sectors and Coordinates



Sectors

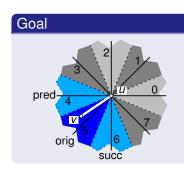
- for each vtx. *u* partition plane into sectors 0–7
 - here: sec(u, v) = 5 (input)
- number octilinear edge directions accordingly
 - e.g. dir(u, v) = 4 (output)

$y = z_1$

Coordinates

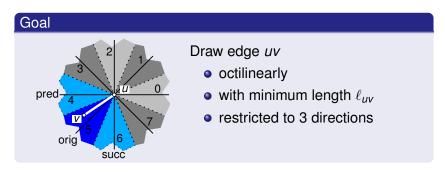
assign z_1 - and z_2 -coordinates to each vertex v:

•
$$z_1(v) = x(v) + y(v)$$

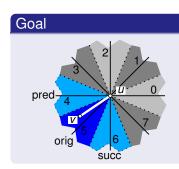


Draw edge *uv*

- octilinearly
- ullet with minimum length ℓ_{uv}
- restricted to 3 directions



How to model this using linear constraints?



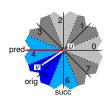
Draw edge uv

- octilinearly
- ullet with minimum length ℓ_{uv}
- restricted to 3 directions

How to model this using linear constraints?

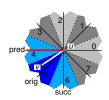
Binary Variables

$$\alpha_{\text{pred}}(u, v) + \alpha_{\text{orig}}(u, v) + \alpha_{\text{succ}}(u, v) = 1$$



Predecessor Sector

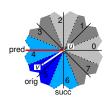
$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{ extsf{pred}}(u,v))+\ell_{uv} \end{array}$$



Predecessor Sector

$$\begin{array}{lcl} y(u) - y(v) & \leq & M(1 - \alpha_{\mathsf{pred}}(u, v)) \\ -y(u) + y(v) & \leq & M(1 - \alpha_{\mathsf{pred}}(u, v)) \\ x(u) - x(v) & \geq & -M(1 - \alpha_{\mathsf{pred}}(u, v)) + \ell_{uv} \end{array}$$

How does this work?



Predecessor Sector

$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{ extsf{pred}}(u,v))+\ell_{uv} \end{array}$$

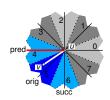
How does this work?

Case 1:
$$\alpha_{\text{pred}}(u, v) = 0$$

$$y(u) - y(v) \leq M$$

$$-y(u) + y(v) \leq M$$

$$x(u) - x(v) \geq \ell_{uv} - M$$



Predecessor Sector

$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{ extsf{pred}}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{ extsf{pred}}(u,v))+\ell_{uv} \end{array}$$

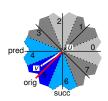
How does this work?

Case 2:
$$\alpha_{\mathsf{prev}}(u, v) = 1$$

$$y(u) - y(v) \leq 0$$

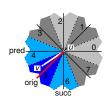
$$-y(u) + y(v) \leq 0$$

$$x(u) - x(v) \geq \ell_{uv}$$



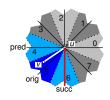
Original Sector

$$egin{array}{lll} z_2(u) - z_2(v) & \leq & M(1 - lpha_{
m orig}(u,v)) \ - z_2(u) + z_2(v) & \leq & M(1 - lpha_{
m orig}(u,v)) \ z_1(u) - z_1(v) & \geq & -M(1 - lpha_{
m orig}(u,v)) + 2\ell_{uv} \end{array}$$



Original Sector

$$egin{array}{lll} z_2(u) - z_2(v) & \leq & M(1 - lpha_{
m orig}(u,v)) \ - z_2(u) + z_2(v) & \leq & M(1 - lpha_{
m orig}(u,v)) \ z_1(u) - z_1(v) & \geq & -M(1 - lpha_{
m orig}(u,v)) + 2\ell_{uv} \end{array}$$



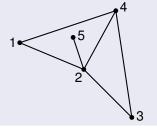
Successor Sector

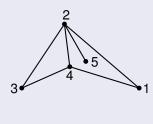
$$egin{array}{lll} x(u)-x(v) & \leq & M(1-lpha_{ exttt{SUCC}}(u,v)) \ -x(u)+x(v) & \leq & M(1-lpha_{ exttt{SUCC}}(u,v)) \ y(u)-y(v) & \geq & -M(1-lpha_{ exttt{SUCC}}(u,v))+\ell_{uv} \end{array}$$

Definition

Two planar drawings of *G* have the same *embedding* if the induced orderings on the neighbors of each vertex are equal.

Same Embedding

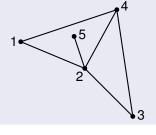


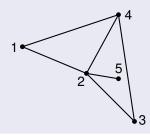


Definition

Two planar drawings of *G* have the same *embedding* if the induced orderings on the neighbors of each vertex are equal.

Different Embeddings



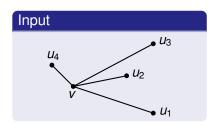


Constraints (Example)

- $N(v) = \{u_1, u_2, u_3, u_4\}$
- circular input order: $u_1 < u_2 < u_3 < u_4 < u_1$

All but one of the following inequalities must hold

$$dir(v, u_1) < dir(v, u_2) < dir(v, u_3) < dir(v, u_4) < dir(v, u_1)$$

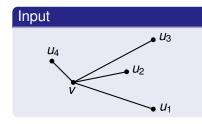


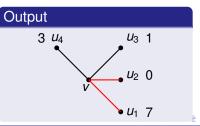
Constraints (Example)

- $N(v) = \{u_1, u_2, u_3, u_4\}$
- circular input order: $u_1 < u_2 < u_3 < u_4 < u_1$

All but one of the following inequalities must hold

$$dir(v, u_1) \not< dir(v, u_2) < dir(v, u_3) < dir(v, u_4) < dir(v, u_1)$$





Observation

For octilinear, straight edge e_1 non-intersecting edge e_2 must be placed

Observation

For octilinear, straight edge e_1 non-intersecting edge e_2 must be placed

Observation

For octilinear, straight edge e_1 non-intersecting edge e_2 must be placed

N

Observation

For octilinear, straight edge e_1 non-intersecting edge e_2 must be placed

Observation

For octilinear, straight edge e_1 non-intersecting edge e_2 must be placed

Observation

For octilinear, straight edge e_1 non-intersecting edge e_2 must be placed

Observation

For octilinear, straight edge e_1 non-intersecting edge e_2 must be placed

Observation

For octilinear, straight edge e_1 non-intersecting edge e_2 must be placed

Observation

For octilinear, straight edge e_1 non-intersecting edge e_2 must be placed

 east, northeast, north, northwest, west, southwest, south, or southeast

Constraints

- model as MIP with binary variables
- need planarity constraints for each pair of non-incident edges

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

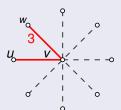
 $\frac{\text{minimize}}{\text{minimize}} \lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Line Bends (S1)



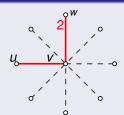
- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Line Bends (S1)



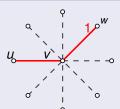
- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Line Bends (S1)



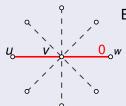
- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Line Bends (S1)



- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Line Bends (S1)



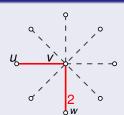
- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Line Bends (S1)



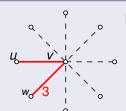
- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Line Bends (S1)



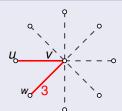
- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

Objective Function

- corresponds to soft constraints (S1)–(S3)
- weighted sum of individual cost functions

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

Line Bends (S1)



- draw as straight as possible
- increasing cost bend(u, v, w) for increasing acuteness of ∠(uv, vw)

$$\mathsf{cost}_{\mathsf{bends}} = \sum_{L \in \mathcal{L}} \ \sum_{uv,vw \in L} \mathsf{bend}(u,v,w)$$

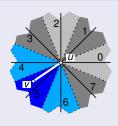
Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Relative Position (S3)



only three directions possible

Martin Nöllenburg 27 42 Drawing Metro Maps

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Relative Position (S3)

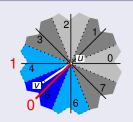


- only three directions possible
- charge 1 if edge deviates from original sector

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Relative Position (S3)



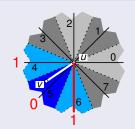
- only three directions possible
- charge 1 if edge deviates from original sector

Martin Nöllenburg 27 42 Drawing Metro Maps

Total Edge Length (S2)

$$\mathsf{cost}_{\mathsf{length}} = \sum_{\mathit{uv} \in \mathit{E}} \mathsf{length}(\overline{\mathit{uv}})$$

Relative Position (S3)



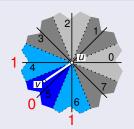
- only three directions possible
- charge 1 if edge deviates from original sector

Martin Nöllenburg 27 42 Drawing Metro Maps

Total Edge Length (S2)

$$cost_{length} = \sum_{uv \in E} length(\overline{uv})$$

Relative Position (S3)



- only three directions possible
- charge 1 if edge deviates from original sector

$$cost_{relpos} = \sum_{uv \in E} relpos(uv)$$

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity
- soft constraints:

minimize $\lambda_{\text{bends}} \cos t_{\text{bends}} + \lambda_{\text{length}} \cos t_{\text{length}} + \lambda_{\text{relpos}} \cos t_{\text{relpos}}$

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity
- soft constraints:

```
minimize \lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}
```

models MetroMapLayout as MIP

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity
- soft constraints:

```
minimize \lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{relpos}} \operatorname{cost}_{\text{relpos}}
```

- models MetroMapLayout as MIP
- in total $O(|V|^2)$ constraints and variables

- hard constraints:
 - octilinearity
 - minimum edge length
 - (partially) relative position
 - preservation of embedding
 - planarity
- soft constraints:

```
\label{eq:loss_total_length} \mbox{minimize } \lambda_{\mbox{bends}} \mbox{cost}_{\mbox{bends}} + \lambda_{\mbox{length}} \mbox{cost}_{\mbox{length}} + \lambda_{\mbox{relpos}} \mbox{cost}_{\mbox{relpos}}
```

- models MetroMapLayout as MIP
- in total $O(|V|^2)$ constraints and variables

- metro graphs have many degree-2 vertices
- want to optimize line straightness

- metro graphs have many degree-2 vertices
- want to optimize line straightness

- metro graphs have many degree-2 vertices
- want to optimize line straightness

- metro graphs have many degree-2 vertices
- want to optimize line straightness

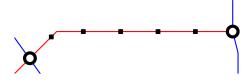
- metro graphs have many degree-2 vertices
- want to optimize line straightness

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints



- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints

- metro graphs have many degree-2 vertices
- want to optimize line straightness
 - Idea 1 collapse all degree-2 vertices
 - low flexibility
 - Idea 2 keep two joints
 - higher flexibility
 - more similar to input

- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95–99% of constraints

- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95–99% of constraints

Observation 1

- consider only pairs of edges incident to the same face
- still $O(|V|^2)$ constraints

- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95-99% of constraints

Observation 1

- consider only pairs of edges incident to the same face
- still $O(|V|^2)$ constraints

Observation 2

in practice no or only few crossings due to soft constraints

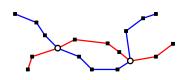
- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95-99% of constraints

Observation 1

- consider only pairs of edges incident to the same face
- still O(|V|²) constraints

Observation 2

in practice no or only few crossings due to soft constraints



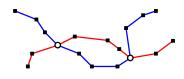
- $O(|V|^2)$ planarity constraints (for each pair of edges...)
- in practice 95-99% of constraints

Observation 1

- consider only pairs of edges incident to the same face
- still $O(|V|^2)$ constraints

Observation 2

in practice no or only few crossings due to soft constraints



Speed-Up Techniques: Callback Functions

- MIP optimizer CPLEX offers advanced callback functions
- add required planarity constraints on the fly

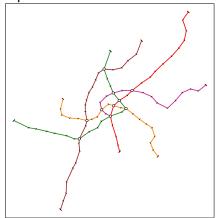
Algorithm

- start solving MIP without planarity constraints
- for each new solution s
 - interrupt CPLEX
 - if s is not planar
 - add planarity constraints for edges that intersect in s
 - reject s

else

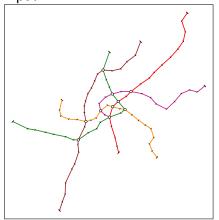
- accept s
- ontinue solving the MIP (until optimal)

Martin Nöllenburg 31 42 Drawing Metro Maps

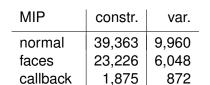


Input	V	<i>E</i>	fcs.	$ \mathcal{L} $
normal	90	96	0	
reduced	44	50	8	5

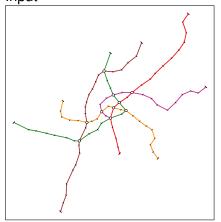
Input



Input	<i>V</i>	<i>E</i>	fcs.	$ \mathcal{L} $
normal reduced	90 44	96 50	8	5



Input

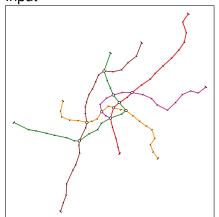


Input	<i>V</i>	<i>E</i>	fcs.	$ \mathcal{L} $
normal reduced	90 44	96 50	8	5

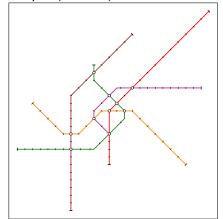
MIP	constr.	var.
normal	39,363	9,960
faces	23,226	6,048
callback*	1,875	872

*) 21 seconds w/o proof of opt.

Input

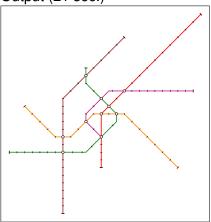


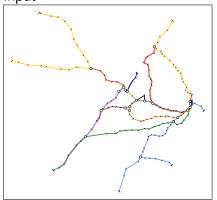
Output (21 sec.)



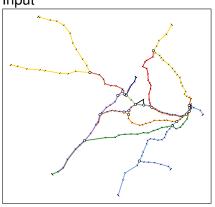
Official maps

Output (21 sec.)



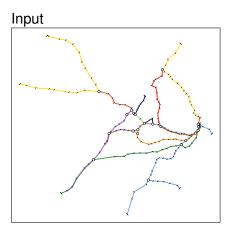


Input	<i>V</i>	<i>E</i>	fcs.	$ \mathcal{L} $
normal reduced	174 67	183 76	11	10



Input	<i>V</i>	E	fcs.	$\mid \mathcal{L} \mid$
normal reduced	174 67	183 76	11	10

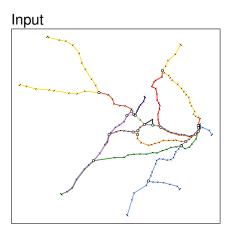
MIP	constr.	var.
normal	93,620	23,389
faces	52,568	13,437
callback	4,147	6,741



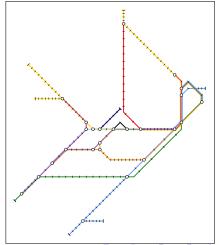
Input	<i>V</i>	<i>E</i>	fcs.	$\mid \mathcal{L} \mid$
normal reduced	174 67	183 76	11	10

MIP	constr.	var.
normal	93,620	23,389
faces	52,568	13,437
callback*	4,147	6,741

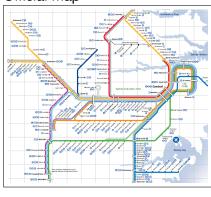
*) 33 seconds w/o proof of opt. constr. of 4 edge pairs added



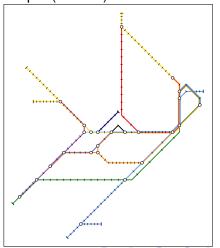
Output (33 sec.)



Official map

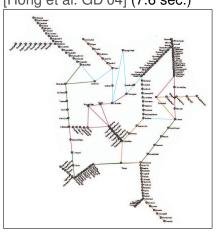


Output (33 sec.)

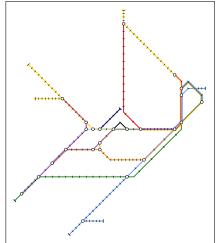


Sydney: Related Work

[Hong et al. GD'04] (7.6 sec.)

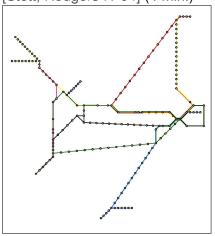


Our output (33 sec.)

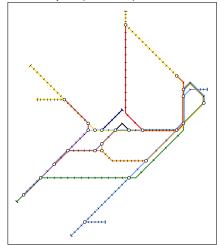


Sydney: Related Work

[Stott, Rodgers IV'04] (4 min.)

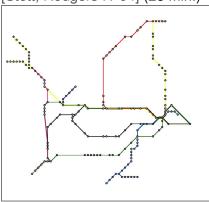


Our output (33 sec.)

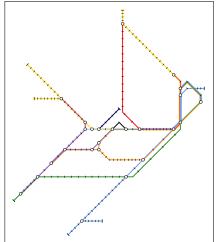


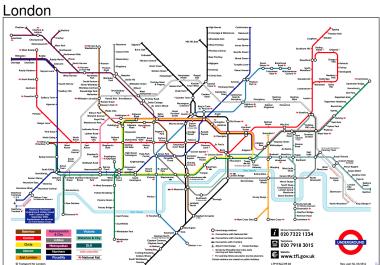
Sydney: Related Work

[Stott, Rodgers IV'04] (28 min.)

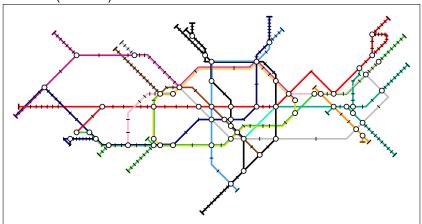


Our output (33 sec.)

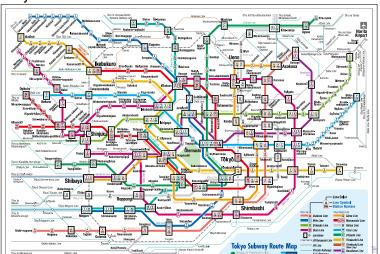




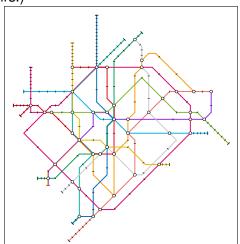
London (16 min.)



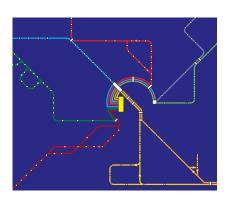
Tokyo



Tokyo (4:50 hrs.)



 unlabeled metro map of little use in practice



- unlabeled metro map of little use in practice
- labels
 - occupy space
 - may not overlap

- unlabeled metro map of little use in practice
- labels
 - occupy space
 - may not overlap
- static map labeling is NP-hard

[Tollis, Kakoulis '01]

- unlabeled metro map of little use in practice
- labels
 - occupy space
 - may not overlap
- static map labeling is NP-hard

[Tollis, Kakoulis '01]

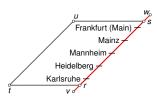
 want to combine layout and labeling for better results

Model labels as special metro lines:

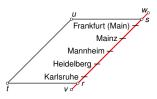
 put all labels between a pair of interchange stations into one parallelogram,

- put all labels between a pair of interchange stations into one parallelogram,
- allow parallelograms to change sides,

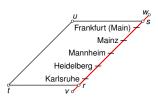
- put all labels between a pair of interchange stations into one parallelogram,
- allow parallelograms to change sides,

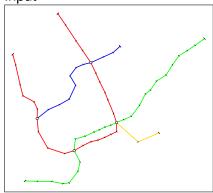


- put all labels between a pair of interchange stations into one parallelogram,
- allow parallelograms to change sides,
- bad news: a lot more planarity constraints

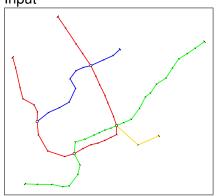


- put all labels between a pair of interchange stations into one parallelogram,
- allow parallelograms to change sides,
- bad news: a lot more planarity constraints
- good news: callback method helps





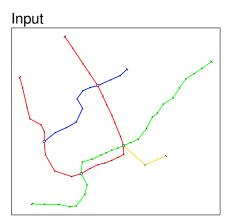
Input	<i>V</i>	<i>E</i>	fcs.	$ \mathcal{L} $
normal reduced	65 20	66 21	3	4
labeled	62	74	14	



Input	V	<i>E</i>	fcs.	$ \mathcal{L} $
normal reduced labeled	65 20 62	66 21 74	3 14	4

 \downarrow

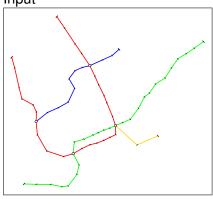
MIP	constr.	var.
normal	86,493	21,209
faces	32,208	8,049
callback	4,400	8,049



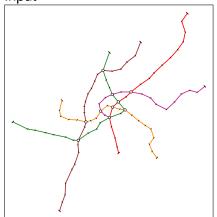
Input	V	<i>E</i>	fcs.	$ \mathcal{L} $
normal reduced labeled	65 20 62	66 21 74	3 14	4

MIP	constr.	var.
normal	86,493	21,209
faces	32,208	8,049
callback*	4,400	8,049

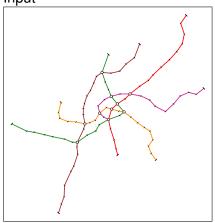
*) 17 minutes w/o proof of opt. constr. of 60 edge pairs added



Output (17 min.)



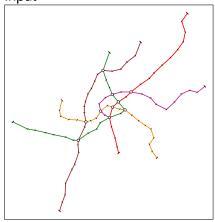
Input	<i>V</i>	<i>E</i>	fcs.	$\mid \mathcal{L} $
normal reduced	90 44	96 50	8	5
labeled	98	117	21	



Input	V	<i>E</i>	fcs.	$ \mathcal{L} $
normal reduced labeled	90 44 98	96 50 117	8 21	5

 \downarrow

MIP	constr.	var.
normal	219,064	53,538
faces	51,160	12,834
callback	9,144	12,834

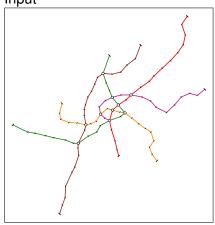


Input	<i>V</i>	<i>E</i>	fcs.	$\mid \mathcal{L} \mid$
normal reduced labeled	90 44 98	96 50 117	8 21	5

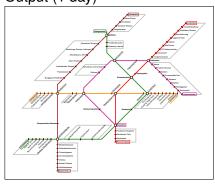
 \downarrow

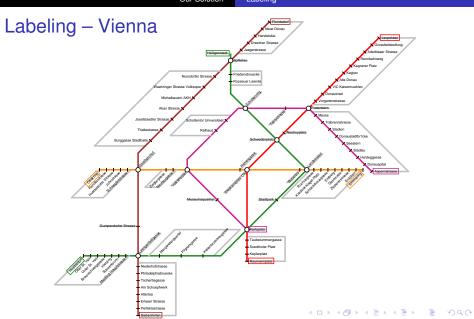
MIP	constr.	var.
normal	219,064	53,538
faces	51,160	12,834
callback*	9,144	12,834

*) 1 day w/o proof of opt. constr. of 160 edge pairs added

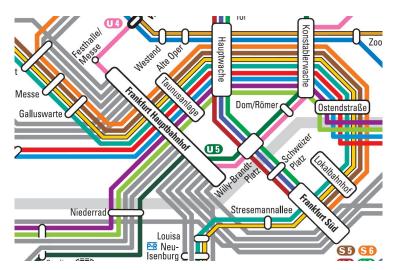


Output (1 day)





To Do: Rectangular Stations & Multi-Edges



Martin Nöllenburg 40 42 Drawing Metro Maps

Summary (Metro Maps)

- METROMAPLAYOUT is NP-hard.
- Formulated and implemented MIP.
- Results comparable to manually designed maps.
- Reduced MIP size & runtime drastically.
- Combined layout and labeling.
- Our MIP can draw any kind of sketch "nicely".

Summary (Metro Maps)

- METROMAPLAYOUT is NP-hard.
- Formulated and implemented MIP.
- Results comparable to manually designed maps.
- Reduced MIP size & runtime drastically.
- Combined layout and labeling.
- Our MIP can draw any kind of sketch "nicely".

To Do

- rectangular stations
- multi-edges
- user interaction (e.g. fixing certain edge directions)

Thank you for the attention.

Any questions?