Seminar Approximationsalgorithmen

Martin Nöllenburg (UKA), Ignaz Rutter (UKA), Alexander Wolff (TU/e)

Universität Karlsruhe (TH) Institut für Theoretische Informatik Lehrstuhl Algorithmik I

Technische Universiteit Eindhoven Faculteit Wiscunde en Informatica Vakgroep Algoritmiek

Baerenthal 11.-13. Juli 2008

Überblick

Organisatorisches

2 Themer

Vorstellung der Teilnehmer

Betreuer

- Martin: noellenburg@iti.uka.de, Büro 322
- Ignaz: rutter@iti.uka.de, Büro 322
- Alexander: awolff@win.tue.nl, Eindhoven

Vorstellung der Teilnehmer

Betreuer

- Martin: noellenburg@iti.uka.de, Büro 322
- Ignaz: rutter@iti.uka.de, Büro 322
- Alexander: awolff@win.tue.nl, Eindhoven

Welche Kenntnisse sind vorhanden?

- Name, Semester
- algorithmische Vorkenntnisse,
 z.B. Algorithmentechnik, Vorlesung
 Approximationsalgorithmen

Geplanter Ablauf

Woche	Datum	Aufgabe
16	heute	1. Besprechung
18	29.04.	15:45 Einführung Vortragsgestaltung
19	07. bzw. 08.05.	16:00-19:00 Präsentationsschulung (kww)
20	15.05.	11:30 Kurzvorträge
24	20.05.	15:45 Einführung wiss. Schreiben
26	27.06.	Vorstellung der Folien beim Betreuer
28	11.–13.07.	Blockseminar Baerenthal
31	01.08.	Abgabe Ausarbeitungen

Schein

- Schein
- Überblick über das Gebiet der Approximationsalgorithmen
- selbständiges Erarbeiten eines Themas
 - relevante Ergebnisse identifizieren
 - in den Kontext einordnen
 - Literaturrecherche

Die sinnliche Spur der Erinnerung

Wer lernen will, muss vor allem reden und be-greifen Der Mensch behält von dem was er liest 10 Prozent ... was er hört 20 ... was er sieht 30 ... was er sieht und hört 50 ... worüber wir selbst sprechen 70 ... was er selbst ausführt

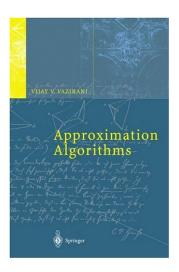
- Schein
- Überblick über das Gebiet der Approximationsalgorithmen
- selbständiges Erarbeiten eines Themas
 - relevante Ergebnisse identifizieren
 - in den Kontext einordnen
 - Literaturrecherche
- Vermittlung der Erkenntnisse in einem englischen Vortrag
- Diskussion und Kritik aller Themen
- schriftliche Aufbereitung der Ergebnisse

Anforderungen

- Teilnahme an den vorbereitenden Terminen
- Kurzvortrag: Thema vorstellen, ca. 5 Minuten
- Vortrag: Ergebnisse erläutern, 50 60 Minuten
 - Projektor, LaTEX, Powerpoint
 - Tafel & Kreide
- schriftliche Ausarbeitung
 - 5 10 Seiten in L^AT_EX
 - Übung für Studien- und Diplomarbeit

Blockwochenende 11.–13. Juli

- Jugendfreizeitstätte Baerenthal
 - ruhige Lage in den Nordvogesen
 - ca. 130 km von Karlsruhe
 - Unterbringung in Doppelzimmern
 - Vollpension
 - Freizeitmöglichkeiten
- Abfahrt: Freitag Nachmittag
- Vorträge: Samstag und Sonntag
- Rückfahrt: Sonntag nach dem Mittagessen
- Anfahrt in Fahrgemeinschaften
- Unterkunftskosten werden von der Fakultät bezahlt!


9/19

Überblick

Organisatorisches

2 Themen

Grundlage

- Approximation Algorithms
 - Vijay V. Vazirani
 - Springer Verlag
 - 2. Auflage 2003
- vorhanden in Infobib und UB

1. Set Cover

Kapitel: 2.1, 2.2, 13.1, 14, 15

Problem:

Geg: Universum U, Teilmengensystem $S \subseteq \mathcal{P}(U)$, Kosten $c : S \to \mathbb{O}^+$

Ges: $S' \subseteq S$ mit $\bigcup_{S \in S'} S = U$ und c(S') minimal

Stichworte:

- das Standardproblem für Approximationsalgorithmen
- fünf verschiedene Lösungsansätze

2. Maximum Satisfiability / Semidefinite Programming

Kapitel: 16, 26

Problem MAX-SQT:

Geg: Boolesche Formel φ in konjunktiver Normalform mit den Variablen x_1, \ldots, x_n und nicht-negative Gewichte w_c für die Klauseln.

Ges: Wahrheitsbelegung von x_1, \ldots, x_n die das Gesamtgewicht der mit *wahr* belegten Klauseln maximiert.

Seminidefinite Programming:

Spezielle lineare Programme mit der zusätzlichen Eigenschaft, dass die Lösung eine positiv semindefinite Matrix bilden.

Kann zu Lösung mancher quadratischer Programme verwendet werden.

Anwendungen: MAX-CUT und MAX-2SAT.

3. Multicut in Trees and General Graphs, Multiway Cut

Kapitel: 18, 19, 20

Problem Multicut:

- Geg: Graph G = (V, E), Kantengewichte $c_e \in \mathbb{R}_0^+$ für alle $e \in E$, Menge P von Paaren $\{(s_1, t_1), \dots (s_k, t_k)\}$
- Ges: $E' \subseteq E$ so dass in G' = (V, E') alle Paare in P getrennt sind und E' minimales Gewicht hat

Problem Multiway Cut:

- Geg: Graph G = (V, E), Kantengewichte $c_e \in \mathbb{R}_0^+$ für alle $e \in E$, Menge T von Terminalen $\{s_1, \dots, s_k\}$
- Ges: $E' \subseteq E$ so dass in G' = (V, E') alle Terminale in T getrennt sind und E' minimales Gewicht hat

4. Steiner Forest and Steiner Network

Kapitel: 22, 23

Problem Steiner Forest:

Geg: Gegeben Graph G = (V, E) und eine Kostenfunktion $c : \longrightarrow \mathbb{Q}^+$, sowie disjunkte Teilmengen S_1, \ldots, S_k von V.

Ges: Finde einen Teilgraph mit minimalen Kosten, so dass jedes Paar von Knoten aus derselben Menge S_i miteinander verbunden ist.

Problem Steiner Network:

Verallgemeinerung von Steiner Forest auf höheren Verbundenheitsgrad.

5. Facility Location and *k*-Median

Kapitel: 24, 25

Problem Facility Location:

Geg: Menge mögl. Standorte S und Städte C, Eröffnungskosten s_i für S_i , Verbindungskosten c_{ij} zwischen S_i und C_j

Ges: Standorte mit minimalen Gesamtkosten

Problem k-Median

Geg: S und C wie oben, $s_i = 0$ für alle S_i , Verbindungskosten c_{ij} zwischen S_i und C_i , $k \in \mathbb{N}$

Ges: max. k Standorte mit minimalen Verbindungskosten

6. Scheduling and Sparsest Cut

Kapitel: 17, 21

Problem Scheduling:

Geg: Jobs J, Maschinen M, Bearbeitungszeit p_{ij} für job i auf Maschine i

Ges: Schedule *S* mit minimalem *makespan* (maximale Laufzeit aller Maschinen)

Problem Sparsest Cut:

- spezielles multicommodity Flussproblem
- ergibt ein approximatives max-flow min-cut Theorem

7. Hardness of Approximation

Kapitel: 29

Inhalt:

Beweistechniken für Approximationsschwere.

Schwere der Approximation für eine Reihe von Problemen:

- Max-3Sat
- Steiner Baum
- CLIQUE
- Set Cover

Themenvergabe

- Set Cover
- Max Satisfiability / Semidefinite Programming
- Multicut / Multiway Cut
- Steiner Forest / Network
- Facility Location / k-Median
- Scheduling / Sparsest Cut
- Hardness of Approximation