Teil III: Routing - Inhalt I

Geometric Routing

Compass & Face Routing Bounded & Adaptive Face Routing Nicht $\Omega(1)$ UDG

Algorithmen für Sensor- und Ad Hoc-Netze

Lehrstuhl für Algorithmil

Geometric Routing

Voraussetzungen

- ► Kommunikationsgraph ist zshgd. Unit Disk Graph
- **■** Einbettung in die Ebene (→ Geometrisches Netzwerk)
 - Jeder Knoten kennt seine Koordinaten
 - Bezeichne euklidischen Abstand zwischen u und v als d(u, v)
- ▶ Koordinaten des Zielknotens t sind dem Startknoten s bekannt
- Algorithmen sind verteilt und lokal
- Algorithmen arbeiten auf planarem zshgd. Teilgraph
 - Schnitt mit Gabriel Graph
 - Schnitt mit Relative Neighbourhood Graph
 - **...**

4□ > 4□ > 4□ > 4□ > 4□ > 900

Geometric Routing Literatur

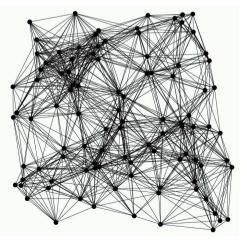
- E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian Conference on Computational Geometry, 51-54, August 1999.
- Fabian Kuhn, Roger Wattenhofer und Aaron Zollinger: Asymptotically Optimal Geometric Mobile Ad-Hoc Routing. Dial-M'02, September 2002.

Universität Karlsruhe (TH)

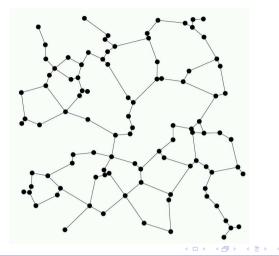
Algorithmen für Sensor- und Ad Hoc-Netze

Geometric Routing

Unit Disk Graph (UDG)



UDG ∩ Relative Neighbourhood Graph (RNG)



Universität Karlsruhe (TH)

Algorithmen für Sensor- und Ad Hoc-Netze

Lehrstuhl für Algorithmik http://illwww.ira.uka.de

Geometric Routing

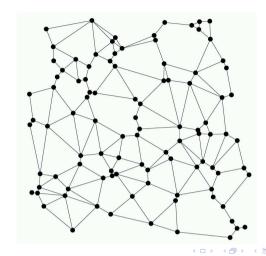
Kosten

- ► Verschiedene Kostenfunktionen abhängig vom euklidischen Abstand d:
 - ightharpoonup Konstant: $c_k(d) := 1$
 - ightharpoonup Euklidisch: $c_d(d) := d$
 - ▶ Energie: $c_E(d) := d^2$ (evtl. auch höhere Exponenten)
- Nosten einer Kante: $c_x(u,v) := c_x(d(u,v))$
- ➤ Kosten des Algorithmus: Summe der Kantengewichte über alle gesendeten Nachrichten

Algorithmen für Sensor- und Ad Hoc-Netze

Nosten der Route: Summe aller Kanten auf der Route

UDG ∩ **Gabriel Graph (GG)**



Universität Karlsruhe (TH)

Algorithmen für Sensor- und Ad Hoc-Netze

Lehrstuhl für Algorithmik

Geometric Routing

$\Omega(1)$ -Modell

Definition 9

Im $\Omega(1)$ -Modell wird vorausgesetzt, dass es eine Konstante d_0 gibt, so dass je zwei Knoten mindestens Abstand d_0 haben.

Lemma 10

Für Unit Disk Graphen im $\Omega(1)$ -Modell sind die drei Kostenmodelle Konstant, Euklidisch und Energie eines Weges $p=(e_1,\ldots,e_k)$ bis auf einen konstanten Faktor gleich. (Beweis s. Übung)

Gabriel Graph: Kürzeste Wege im $\Omega(1)$ -Modell

Lemma 11

 $\operatorname{Im} \Omega(1)$ Modell ist ein kürzester Weg im Schnitt des Unit Disk Graph mit dem Gabriel Graph höchstens um einen konstanten Faktor länger ist als ein kürzester Weg im Unit Disk Graph, für alle drei oben genannten Kostenmodelle. (Beweis s. Übung)

Bemerkung

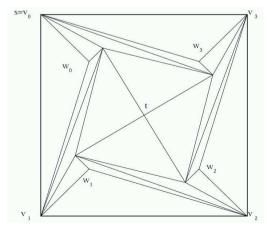
Teilgraphen mit dieser Eigenschaft nennt man Spanner. Im Allgemeinen, also ohne die Voraussetzung eines $\Omega(1)$ Modells, ist der Schnitt eines UDG mit dem Gabriel Graph kein Spanner bzgl. der konstanten und euklidischen Kosten.

Universität Karlsruhe (TH)

Lehrstuhl für Algorithmil

Geometric Routing Compass & Face Routing

Greedy Compass Routing Nachricht muss nicht immer ankommen



4□ > 4□ > 4□ > 4□ > 4□ > 900

Lehrstuhl für Algorithm http://il1www.ira.uka.

Greedy Compass Routing

Algorithmus CR (für jeden Knoten v)

- 1. Sei e die Kante, deren Richtung am wenigsten von \overline{vt} abweicht
- 2 Sende Nachricht über e

Universität Karlsruhe (TH)

Algorithmen für Sensor- und Ad Hoc-Netze

Geometric Routing Compass & Face Routing

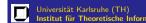
Face Routing

Algorithmus FR

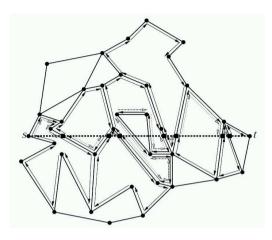
- 1. Sei f die Facette, die \overline{st} bei s schneidet
- 2. Solange t noch nicht erreicht wurde
- Traversiere die Kanten von f3.
- Merke die Kante e_f , deren Schnitt p mit \overline{st} 4. am nächsten an t ist

Algorithmen für Sensor- und Ad Hoc-Netze

- Traversiere die Kanten von f bis e_f erreicht ist 5.
- Sei f die Facette, die \overline{st} bei p schneidet 6.



Face Routing - Beispiel



←□▶ ←□▶ ←□▶ ←□▶ □□ ♥○

lgorithmen für Sensor- und Ad Hoc-Netze

Lehrstuhl für Algorithmik http://i11www.ira.uka.de

Geometric Routing Compass & Face Routing

42

Diskussion

- Greedy Routing
 - Keine Garantie, dass Route gefunden wird
 - Effizient, falls Route gefunden wird
- ▶ Face Routing
 - Route wird garantiert gefunden
 - lacktriangle Alle Kanten auf Facetten, die \overline{st} schneidet, werden traversiert
- ▶ Verbessere Face Routing
 - Traversiere weniger Kanten
- ightharpoonup Betrachte allgemeine UDG (ohne $\Omega(1)$ -Modell Einschränkung)
- ► Kombiniere Greedy- und Face Routing

Face Routing – Korrektheit & Kosten

Lemma 12

Beim Face Routing Algorithmus wird das Ziel t stets erreicht. Dabei werden höchstens O(n) Kanten traversiert.

Algorithmen für Sensor- und Ad Hoc-Netze

Lehrstuhl für Algorithmik http://i11www.ira.uka.de

Geometric Routing Bounded & Adaptive Face Routing

Bounded Face Routing Voraussetzungen

- Sei p^* ein kürzester s-t-Weg mit Kosten $c_d(p^*)$
- ▶ Sei $\widehat{c_d}$ obere Schranke für kürzesten s-t-Weg, also $c_d(p^*) \leq \widehat{c_d}$
- ightharpoonup Wir nehmen an, $\widehat{c_d}$ sei dem Routing-Algorithmus bekannt
- - $\mathbf{u} \in \mathcal{E}$ g.d.w. $d(s,u) + d(u,t) \leq \widehat{c_d}$
- \Rightarrow Jeder Weg über Punkt außerhalb von ${\mathcal E}$ ist länger als $\widehat{c_d}$
- \Rightarrow p^* ist komplett in ${\mathcal E}$ enthalten

Bounded Face Routing Algorithmus

Algorithmus BFR($\widehat{c_d}$)

- ▶ Wie Face Routing mit folgenden Änderungen:
 - ightharpoonup Traversiere die Facette nur innerhalb von \mathcal{E}
 - ightharpoonup Beim ersten Verlassen von \mathcal{E} traversiere die Facette in umgekehrter Richtung
 - ightharpoonup Beim zweiten Verlassen von \mathcal{E}
 - Falls kein besserer Schnittpunkt p als im vorigen Schritt gefunden kehre zurück zu s

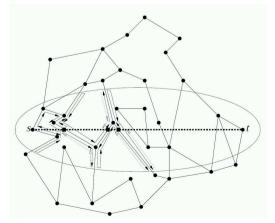
Universität Karlsruhe (TH)

Algorithmen für Sensor- und Ad Hoc-Netze

Lehrstuhl für Algorithmil

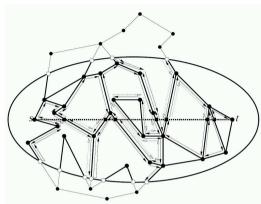
Geometric Routing Bounded & Adaptive Face Routing

Boudend Face Routing Beispiel 2: Nachricht kehrt zu s zurück



4 □ ト ← □ ト ← 亘 ト → 亘 → り へ ○

Boudend Face Routing Beispiel 1: Nachricht erreicht *t*



Universität Karlsruhe (TH)

Algorithmen für Sensor- und Ad Hoc-Netze

Geometric Routing Bounded & Adaptive Face Routing

Bounded Face Routing - Korrektheit & Kosten

Lemma 13

Sei G ein Graph im $\Omega(1)$ -Modell. Falls $c_d(p^*) \leq \widehat{c_d}$, so erreicht eine Nachricht beim Bounded Face Routing immer das Ziel t. Wenn das Ziel nicht erreicht wird, so kehrt die Nachricht zu s zurück. In jedem Fall werden höchstens $O(\widehat{c_d}^2)$ Kanten traversiert.

Adaptive Face Routing

Algorithmus AFR

- 1. Setze $\widetilde{c_d} := 2d(s,t)$
- 2. Führe BFR $(\widetilde{c_d})$ aus
- 3. Falls t noch nicht erreicht wurde
- Setze $\widetilde{c_d} := 2\widetilde{c_d}$
- Gehe zu 1

Geometric Routing Bounded & Adaptive Face Routing

Untere Schranke für geometrisches Routing Lemma

Lemma 15

Seien c die Kosten einer optimalen Route. Dann hat jeder verteilte geometrische Routing Algorithmus im Worst-case Kosten von $\Omega(c^2)$ für jedes der drei betrachteten Kostenmodelle.

4□ > 4□ > 4□ > 4□ > 4□ > 900

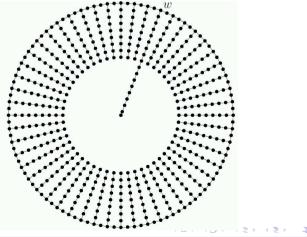
Lemma 14

Im $\Omega(1)$ -Modell erreicht der Face Routing Algorithmus stests das Ziel t und traversiert höchstens $O(c_d^2(p^*))$ Kanten.

Adaptive Face Routing - Korrektheit & Kosten

Geometric Routing Bounded & Adaptive Face Routing

Untere Schranke für geometrisches Routing Beweisskizze



Adaptive Face Routing - Ergebnis

Verallgemeinerung des $\Omega(1)$ -Modells I

Satz 16

Seien c die Kosten einer optimalen Route. In zusammenhängenden planaren Teilgraphen eines Unit Disk Graphen im $\Omega(1)$ -Modell ist Adaptive Face Routing stest erfolgreich für die drei betrachteten Kostenfunktionen c_k , c_d und c_E mit Worst-Case Kosten von $\Theta(c^2)$.

Universität Karlsruhe (TH)

Algorithmen für Sensor- und Ad Hoc-Netze

Lehrstuhl für Algorithmi

Geometric Routing Nicht $\Omega(1)$ UDG

Verallgemeinerung des $\Omega(1)$ -Modells II

Lemma 18

Sei ein Unit Disk Graph G im $\Omega(1)$ -Modell gegeben mit Konstante d_0 . Dann ist G ein Bounded Unit Disk Graph der Ordnung $4/d_0^2 + 4/d_0 + 1$.

Definition 17

Sei G ein Unit Disk Graph. Falls der Grad jedes Knoten durch eine vorgegebene Zahl k beschränkt ist, heisst G Bounded Unit Disk Graph (BUDG) der Ordnung k.

Geometric Routing Nicht $\Omega(1)$ **UDG**

AFR auf Bounded Unit Disk Graphen

Satz 19

Seien c die Kosten einer optimalen Route. In zusammenhängenden planaren Teilgraphen eines Bounded Unit Disk Graphen ist Adaptive Face Routing stest erfolgreich für die drei betrachteten Kostenfunktionen c_k , c_d und c_E mit Worst-Case Kosten von $\Theta(c^2)$. (ohne Beweis)

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9<</p>

Linear beschränkte Kostenfunktionen

Definition 20

Eine Kostenfunktion c(d) heisst linear beschränkt falls

$$\lim_{d \to 0} \frac{c(d)}{d} = 0.$$

Nicht linear beschränkte Kostenfunktionen heissen superlinear.

Bemerkung

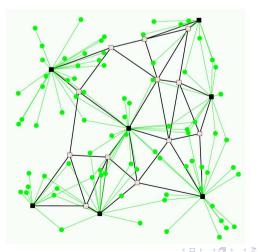
Die konstante und euklidische Kostenfunktionen sind linear beschränkt, die Energiekosten sind superlinear.

Universität Karlsruhe (TH)

Algorithmen für Sensor- und Ad Hoc-Netze

Geometric Routing Nicht $\Omega(1)$ UDG

AFR-Backbone - Beispiel



Allgemeine Unit Disk Graphen

- ▶ Verwende einen "Backbone" Graph welcher
 - **▶** Bounded Unit Disk Graph.
 - Spanner bzgl. linear beschränkten Kostenfunktionen und
 - Connected Dominating Set ist.

Algorithmus AFR-Backbone

- 1. Falls s kein Dominator schicke Nachricht an Dominator
- 2. Führe AFR auf planarem Teilgraph des Backbone aus
- 3. Falls Dominator v mit $d(v,t) \leq 1$ erreicht ist
- Schicke Nachricht direkt zu t

Universität Karlsruhe (TH)

Algorithmen für Sensor- und Ad Hoc-Netze

Geometric Routing Nicht $\Omega(1)$ **UDG**

AFR mit Backbone auf allgemeinen UDG

Satz 21

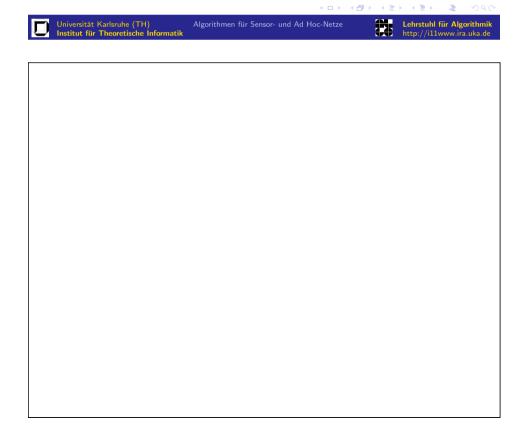
Seien c die Kosten einer optimalen Route. In zusammenhängenden Unit Disk Graphen ist der Algorithmus AFR-Backbone stest erfolgreich für linear beschränkte Kostenfunktionen mit Worst-Case Kosten von $\Theta(c^2)$.

(ohne Beweis)

Superlineare Kostenfunktionen Satz

Satz 22

Sei p^* die optimale Route bzgl. einer superlinearen Kostenfunktion $c(\cdot)$. Dann gibt es keinen geometrischen Ad-hoc Algorithmus, dessen Kosten beschränkt sind durch eine Funktion von $c(p^*)$.



Superlineare Kostenfunktionen Beweisskizze

