
Introduction to Spring Embedder Layouts

Achievement: You can do anything you set your mind to when you have vision, determination, and an endless supply of expendable labor.

Overview

- Motivation
- Spring Embedder
- Variations

Problem: Finding General Layouts

Problem: How can we determine layouts for general graphs without

Problem: Finding General Layouts

Problem: How can we determine layouts for general graphs without

- having structural properties
- preprocessing (to find structural properties)
- solving NP-hard problems

that are

Problem: Finding General Layouts

Problem: How can we determine layouts for general graphs without

- having structural properties
- preprocessing (to find structural properties)
- solving NP-hard problems

that are

- robust
- flexible
- easy to understand.

Solution: Physical Analogies

in physics:

- models consist of object and interactions (among them)
- stable configurations (instances) are those with minimal energie levels

Solution: Physical Analogies

in physics:

- models consist of object and interactions (among them)
- stable configurations (instances) are those with minimal energie levels

for layout algorithms:

- nodes correspond to (physical) objects
- edges correspond to interactions
- (good?) layouts correspond to stable configurations

Spring-Embedder

spring model:

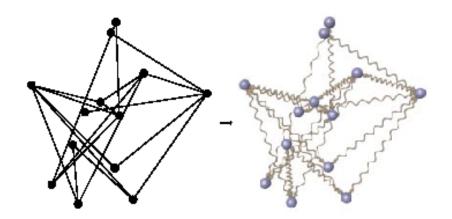
- node are small balls with electrical charge (same sign)
- edges are springs with given constant (ideal length)
- nodes repel each others (repulsive force)
- edges cannot be arbitrary long (attractive force)

Spring-Embedder (2)

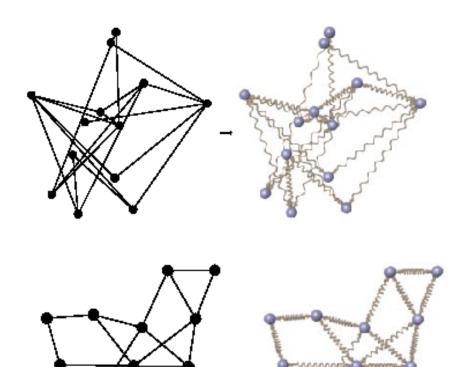
- \bullet coordinates p_v for each node v
- lengths l_e for each edge e

$$f_{\mathsf{rep}}(u,v) := \frac{c_1}{\|p_v - p_u\|^2} \cdot \overrightarrow{p_u p_v}$$

$$f_{\mathsf{spring}}(u,v) := c_2 \cdot \log \frac{\|p_u - p_v\|}{l_e} \cdot \overrightarrow{p_u p_v} \qquad \text{for } (u,v) = e \in E$$


Spring-Embedder (3)

algorithmic approach:


- choose a random placement (for each node)
- iterate
 - calculate for each node v its force vector F(v)
 - move each node \boldsymbol{v} according to its force vector

$$p_v \leftarrow p_v + \delta \cdot F(v)$$

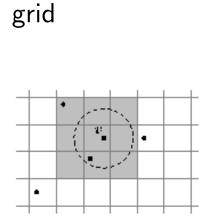
Spring-Embedder (4)

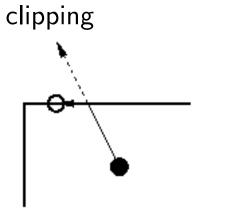
Spring-Embedder (4)

Carling and the second

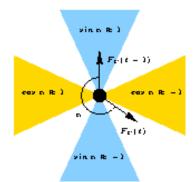
Variation [Fruchtermann, Reingold]

• repulsive force:


$$f_{\mathsf{rep}}(u,v) := \frac{l_{uv}^2}{\|p_u - p_v\|} \cdot \overrightarrow{p_u p_v}$$


• attractive force:

$$f_{\mathsf{attr}}(u,v) := \frac{\|p_u - p_v\|^2}{l_e} \cdot \overrightarrow{p_v p_u} \qquad \text{for } (u,v) = e \in E$$


advantage: 'spring' force is super linear in *l* (better convergence)

Variations

rotation

- time dependency
- gravitational forces
- approximation of forces
- multi-level approaches