
STRUCTURING THE OUTPUT

section 0.4 from

Approximation Schemes - A Tutorial

by Petra Schuurman & Gerhard J. Woeginger

Structuring the output

1. Partition possibe solutions into groups of similar solutions.

2. For each group F (l): find the value APP(l) of an approximately opti-

mal solution within that group (APP(l) ≤ (1 + ε)OPT(l))

3. Take the best of APP(1), APP(2), APP(3),

Structuring the output

Why would this give an approximation of the global optimum?

• There is a group F (l∗) s.t. OPT(l∗) = OPT.

• The solution vaue APP(l∗) found for that group is a good

approximation of that optimum:

APP(l∗) ≤ (1 + ε)OPT(l∗) = (1 + ε)OPT.

• The best solution of all districts is at least as good:

minl APP(l) ≤ APP(l∗) ≤ (1 + ε)OPT.

1. Partition possibe solutions into groups of similar solutions.

2. For each group F (l): find the value APP(l) of an approximately

optimal solution within that group (APP(l) ≤ (1 + ε)OPT(l))

3. Take the best of APP(1), APP(2), APP(3),

Structuring the output

Why would this give an approximation of the global optimum?

∃l∗ : OPT(l∗) = OPT ∧minl APP(l) ≤ APP(l∗) ≤ (1 + ε)OPT(l∗).

How to make it work?

Polynomial number of groups (otherwise step 2 too slow),

but not too few (otherwise step 2 too difficult).

1. Partition possibe solutions into groups of similar solutions.

2. For each group F (l): find the value APP(l) of an approximately

optimal solution within that group (APP(l) ≤ (1 + ε)OPT(l))

3. Take the best of APP(1), APP(2), APP(3),

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Given:

• two identical machines

• n jobs Jj(j = 1, ..., n) with processing times pj

Wanted:

•minimal makespan = time when the last job is done

psum :=total amount of work ∑n
j=1 pj

pmax :=time needed for longest job maxn
j=1 pj

L := max{12psum, pmax}

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Given:

• two identical machines

• n jobs Jj(j = 1, ..., n) with processing times pj

Wanted:

•minimal makespan = time when the last job is done

psum :=total amount of work ∑n
j=1 pj

pmax :=time needed for longest job maxn
j=1 pj

L := max{12psum, pmax}

1
2psum ≤
pmax ≤

 L

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Given:

• two identical machines

• n jobs Jj(j = 1, ..., n) with processing times pj

Wanted:

•minimal makespan = time when the last job is done

psum :=total amount of work ∑n
j=1 pj

pmax :=time needed for longest job maxn
j=1 pj

L := max{12psum, pmax}

1
2psum ≤
pmax ≤

 L ≤ OPT

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Given:

• two identical machines

• n jobs Jj(j = 1, ..., n) with processing times pj

Wanted:

•minimal makespan = time when the last job is done

psum :=total amount of work ∑n
j=1 pj

pmax :=time needed for longest job maxn
j=1 pj

L := max{12psum, pmax}

1
2psum ≤
pmax ≤

 L ≤ OPT ≤ psum

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Given:

• two identical machines

• n jobs Jj(j = 1, ..., n) with processing times pj

Wanted:

•minimal makespan = time when the last job is done

psum :=total amount of work ∑n
j=1 pj

pmax :=time needed for longest job maxn
j=1 pj

L := max{12psum, pmax}

1
2psum ≤
pmax ≤

 L ≤ OPT ≤ psum ≤ 2L

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Small jobs: jobs Jj with pj ≤ εL

Big jobs: jobs Jj with pj > εL

Groups: solution σ1 and σ2 lie in the same group if and only if

σ1 puts every big job on the same machine as σ2.

There are less than psum/(εL) ≤ 2L
εL = 2/ε big jobs

→ less than 22/ε ways to divide them among two machines

→ number of groups is polynomial (in fact: constant) in n.

1
2psum ≤
pmax ≤

 L ≤ OPT ≤ psum ≤ 2L

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Algorithm for a single group F (l), i.e. a given allocation of big jobs:

1. determine each machine’s workload of big jobs;

2. for j ← 1 to n: if pj ≤ εL, add it to machine with smaller workload

1
2psum ≤
pmax ≤

 L ≤ OPT ≤ psum ≤ 2L

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Case 1: M has small job(s)

Case 2: M has only big jobs

Algorithm for a single group F (l), i.e. a given allocation of big jobs:

1. determine each machine’s workload of big jobs;

2. for j ← 1 to n: if pj ≤ εL, add it to machine with smaller workload

Approximation ratio: consider machine M with higher load.

1
2psum ≤
pmax ≤

 L ≤ OPT ≤ psum ≤ 2L

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Approximation ratio: consider machine M with higher load.

Case 1: M has small job(s): Last job assigned to M :

• had processing time ≤ εL

• was assigned when M had smaller workload ≤ 1
2psum

APP(l) = workload of M ≤ 1
2psum + εL ≤ (1 + ε)L ≤ (1 + ε)OPT

Case 2: M has only big jobs

Algorithm for a single group F (l), i.e. a given allocation of big jobs:

1. determine each machine’s workload of big jobs;

2. for j ← 1 to n: if pj ≤ εL, add it to machine with smaller workload

1
2psum ≤
pmax ≤

 L ≤ OPT ≤ psum ≤ 2L

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Case 2: M has only big jobs:

APP(l) = workload M = OPT(l)

Algorithm for a single group F (l), i.e. a given allocation of big jobs:

1. determine each machine’s workload of big jobs;

2. for j ← 1 to n: if pj ≤ εL, add it to machine with smaller workload

Approximation ratio: consider machine M with higher load.

Case 1: M has small job(s): Last job assigned to M :

• had processing time ≤ εL

• was assigned when M had smaller workload ≤ 1
2psum

APP(l) = workload of M ≤ 1
2psum + εL ≤ (1 + ε)L ≤ (1 + ε)OPT

1
2psum ≤
pmax ≤

 L ≤ OPT ≤ psum ≤ 2L

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

Given:

• two different machines, A and B

• n jobs Jj(j = 1, ..., n) with processing times aj (if processed on A)

and bj (if processed on B)

Wanted:

•minimal makespan = time when the last job is done

psum :=minimum total amount of work ∑n
j=1 min{aj, bj}

L := 1
2psum

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

Small jobs: processing time ≤ εL on the machine where they are done

Big jobs: processing time > εL on the machine where they are done

Groups: solution σ1 and σ2 lie in the same group if and only if

they process the same big jobs on A and the same big jobs on B.

Each machine can do at most psum/(εL) ≤ 2L
εL = 2/ε big jobs

→ less than n4/ε selections of 4/ε big jobs on these machines possible

→ number of groups is polynomial in n.

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

In a single group F (l) allocation of big jobs is fixed.

What to do with the remaining jobs?

Four types: aj ≤ εL

bj ≤ εL

aj > εL

bj ≤ εL

aj ≤ εL

bj > εL

aj > εL

bj > εL

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

do not exist

In a single group F (l) allocation of big jobs is fixed.

What to do with the remaining jobs?

Four types: aj ≤ εL

bj ≤ εL

aj > εL

bj ≤ εL

aj ≤ εL

bj > εL

aj > εL

bj > εL

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

do not exist

In a single group F (l) allocation of big jobs is fixed.

What to do with the remaining jobs?

Four types: aj ≤ εL

bj ≤ εL

aj > εL

bj ≤ εL

aj ≤ εL

bj > εL

aj > εL

bj > εL

on B

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

do not exist

In a single group F (l) allocation of big jobs is fixed.

What to do with the remaining jobs?

Four types: aj ≤ εL

bj ≤ εL

aj > εL

bj ≤ εL

aj ≤ εL

bj > εL

aj > εL

bj > εL

on B

on A

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

do not exist

In a single group F (l) allocation of big jobs is fixed.

What to do with the remaining jobs?

Four types: aj ≤ εL

bj ≤ εL

aj > εL

bj ≤ εL

aj ≤ εL

bj > εL

aj > εL

bj > εL

on B

on A

→ only need to schedule jobs that are small for both machines.

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

For a certain group is given: schedule of all jobs big for A and/or B.

Define α, β := workload of A, B in that schedule.

To do: schedule for jobs Jj(j = {1, ..., k}) small for A and B.

ILP with variables xj ∈ {0, 1} (1 iff Jj on A; 0 iff on B).

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

For a certain group is given: schedule of all jobs big for A and/or B.

Define α, β := workload of A, B in that schedule.

To do: schedule for jobs Jj(j = {1, ..., k}) small for A and B.

ILP with variables xj ∈ {0, 1} (1 iff Jj on A; 0 iff on B).

Minimize makespan, such that:

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

For a certain group is given: schedule of all jobs big for A and/or B.

Define α, β := workload of A, B in that schedule.

To do: schedule for jobs Jj(j = {1, ..., k}) small for A and B.

ILP with variables xj ∈ {0, 1} (1 iff Jj on A; 0 iff on B).

Minimize makespan, such that:

(1) α + ∑k
j=1 ajxj ≤ makespan (A can make it in time)

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

For a certain group is given: schedule of all jobs big for A and/or B.

Define α, β := workload of A, B in that schedule.

To do: schedule for jobs Jj(j = {1, ..., k}) small for A and B.

ILP with variables xj ∈ {0, 1} (1 iff Jj on A; 0 iff on B).

Minimize makespan, such that:

(1) α + ∑k
j=1 ajxj ≤ makespan (A can make it in time)

(2) β + ∑k
j=1 aj(1− xj) ≤ makespan (B can make it in time)

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

For a certain group is given: schedule of all jobs big for A and/or B.

Define α, β := workload of A, B in that schedule.

To do: schedule for jobs Jj(j = {1, ..., k}) small for A and B.

ILP with variables xj ∈ {0, 1} (1 iff Jj on A; 0 iff on B).

Minimize makespan, such that:

(1) α + ∑k
j=1 ajxj ≤ makespan (A can make it in time)

(2) β + ∑k
j=1 aj(1− xj) ≤ makespan (B can make it in time)

(3) xj ∈ {0, 1} (each job on A or B)

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

For a certain group is given: schedule of all jobs big for A and/or B.

Define α, β := workload of A, B in that schedule.

To do: schedule for jobs Jj(j = {1, ..., k}) small for A and B.

I LP with variables xj ∈ {0, 1} (1 iff Jj on A; 0 iff on B).

Minimize makespan, such that:

(1) α + ∑k
j=1 ajxj ≤ makespan (A can make it in time)

(2) β + ∑k
j=1 aj(1− xj) ≤ makespan (B can make it in time)

(3) xj ∈ {0, 1} (each job on A or B)

(3) 0 ≤ xj ≤ 1 (each job on A or B, or “in between”)

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Solution space is (k + 1)-dimensional convex polyhedron.

Optimal solution in vertex, i.e. ≥ k+1 constraints fulfilled with equality.

E.g. (1), and (2), and at least k − 1 of (3)

→ leaves at most one xj that isn’t 0 or 1

Minimize makespan, such that:

(1) α + ∑k
j=1 ajxj ≤ makespan (A can make it in time)

(2) β + ∑k
j=1 aj(1− xj) ≤ makespan (B can make it in time)

(3) xj ∈ {0, 1} (each job on A or B)

(3) 0 ≤ xj ≤ 1 (each job on A or B, or “in between”)

Example 2: makespan on two different machines

Define problem Define groups Define single-group approx. algo.

1
2psum = L ≤ OPT ≤ 2L = psum = ∑n

j=1 min{aj, bj}

Solution space is (k + 1)-dimensional convex polyhedron.

Optimal solution in vertex, i.e. ≥ k+1 constraints fulfilled with equality.

E.g. (1), and (2), and at least k − 1 of (3)

→ leaves at most one xj that isn’t 0 or 1

Put that one on any machine; schedule the rest according to LP solution.

Approx. factor: only 1 small job may be scheduled on wrong machine:

APP(l) ≤ makespan + εL ≤ OPT(l) + εL ≤ (1 + ε)OPT(l)

