STRUCTURING THE OUTPUT

section 0.4 from

Approximation Schemes - A Tutorial

by Petra Schuurman & Gerhard J. Woeginger

Structuring the output

1. Partition possibe solutions into groups of similar solutions.

2. For each group F 1. find the value APP) of an approximately opti-
mal solution within that group (APP(Z> < (1+ 5)OPT<Z>)

3. Take the best of APP() APP(2) APP()

Structuring the output

1. Partition possibe solutions into groups of similar solutions.

2. For each group FU): find the value APPWY) of an approximately
optimal solution within that group (APPW < (1+ 5)OPT<Z))

3. Take the best of APP(L) APP(2) APP()

Why would this give an approximation of the global optimum?
e [here is a group FI) st OPTW) = OPT.

e The solution vaue APP(") found for that group is a good
approximation of that optimum:

APPU) < (14 £)OPTW) = (1 4 £)OPT.

e T he best solution of all districts is at least as good:

min; APPU) < APPU") < (1 + £)OPT.

Structuring the output

1. Partition possibe solutions into groups of similar solutions.

2. For each group FU): find the value APPWY) of an approximately

optimal solution within that group (APP<Z> < (1+ g)OPT(Z))
3. Take the best of APP(L) APP(2) APP()

Why would this give an approximation of the global optimum?
3% - OPT!) = OPT A min; APPU) < APPUY) < (1 4+ £)OPTU),

How to make it work?
Polynomial number of groups (otherwise step 2 too slow),

but not too few (otherwise step 2 too difficult).

Example 1: makespan on two identical machines

Define problem Define groups Define single-group approx. algo.

Example 1: makespan on two identical machines

/ Define problem \/ Define groups \/ Define single-group approx. algo.

Given:

e two identical machines

en jobs J;(j =1,...,n) with processing times p,
Wanted:

e minimal makespan = time when the last job is done

Psum =total amount of work z?zlpj

Pmax :=time needed for longest job maxi_; p;

L = max{%]?sumapmax}

Example 1: makespan on two identical machines

/ Define problem \/ Define groups \/ Define single-group approx. algo.

Given:

e two identical machines

en jobs J;(j = 1,...,n) with processing times p,
Wanted:

e minimal makespan = time when the last job is done

psum :=total amount of work E?’:lpj

Pmax :=time needed for longest job maxi_; p;

L = max{%psum,pmax}

1
5Psum < I’
Pmax <

Example 1: makespan on two identical machines

/ Define problem \/ Define groups \/ Define single-group approx. algo.

Given:

e two identical machines

en jobs J;(j = 1,...,n) with processing times p,
Wanted:

e minimal makespan = time when the last job is done

psum :=total amount of work E?’:lpj

Pmax :=time needed for longest job maxi_; p;

L = max{%psum,pmax}

1
Pmax <

Example 1: makespan on two identical machines

/ Define problem \/ Define groups \/ Define single-group approx. algo.

Given:

e two identical machines

en jobs J;(j = 1,...,n) with processing times p,
Wanted:

e minimal makespan = time when the last job is done

psum :=total amount of work E?’:lpj

Pmax :=time needed for longest job maxi_; p;

L = max{%psum,pmax}

1

= <

2Psum =11 < OPT < psum
Pmax <

Example 1: makespan on two identical machines

/ Define problem \/ Define groups \/ Define single-group approx. algo.

Given:

e two identical machines

en jobs J;(j = 1,...,n) with processing times p,
Wanted:

e minimal makespan = time when the last job is done

psum :=total amount of work E?’:lpj

Pmax :=time needed for longest job maxi_; p;

L = max{%psum,pmax}

1]9 <
205UM =4 1, < OPT < psum < 2L
Pmax <

Example 1: makespan on two identical machines

Define problem y Define groups \(Define single-group approx. algo. \

Small jobs: jobs J; with p; < eL
Big jobs: jobs J; with p; > el

Groups: solution o1 and o9 lie in the same group if and only if

o1 puts every big job on the same machine as o9.

There are less than psym/(eL) < g% = 2/¢ big jobs
— less than 22/¢ ways to divide them among two machines

— number of groups is polynomial (in fact: constant) in n.

1]? <
205UM =1 1, < OPT < poum < 2L
Pmax <

Example 1: makespan on two identical machines

/ Define problem y Define groups y Define single-group approx. algo. _

Algorithm for a single group FU je. a given allocation of big jobs:
1. determine each machine’s workload of big jobs;

2.for j < 1ton: if p; < el, add it to machine with smaller workload

1]9 <
205UM =4 I, < OPT < psum < 2L
Pmax <

Example 1: makespan on two identical machines

/ Define problem y Define groups y Define single-group approx. algo. _

Algorithm for a single group FU je. a given allocation of big jobs:
1. determine each machine’s workload of big jobs;

2.for j < 1ton: if p; < el, add it to machine with smaller workload

Approximation ratio: consider machine M with higher load.

Case 1: M has small job(s)

Case 2: M has only big jobs 1
2Psum =T < OPT < poum < 2L

Pmax <

Example 1: makespan on two identical machines

/ Define problem y Define groups y Define single-group approx. algo. _

Algorithm for a single group FU je. a given allocation of big jobs:
1. determine each machine’s workload of big jobs;

2.for j < 1ton: if p; < el, add it to machine with smaller workload

Approximation ratio: consider machine M with higher load.

Case 1: M has small job(s): Last job assigned to M:

e had processing time < L

e was assigned when M had smaller workload < %psum

APPU) = workload of M < Ipsum +eL < (1+¢)L < (1 +¢)OPT

Case 2: M has only big jobs 1
2PSUm =1 < OPT < poum < 2L

Pmax <

Example 1: makespan on two identical machines

/ Define problem y Define groups y Define single-group approx. algo. _

Algorithm for a single group FU je. a given allocation of big jobs:
1. determine each machine’s workload of big jobs;

2.for j < 1ton: if p; < el, add it to machine with smaller workload

Approximation ratio: consider machine M with higher load.

Case 1: M has small job(s): Last job assigned to M:

e had processing time < L

e was assigned when M had smaller workload < %psum

APPU) = workload of M < lpsum + L < (1 +¢)L < (1 +¢)OPT

Case 2: M has only big jobs:

1
5Psum <
APPU) — workload M = OPT() . L < OPT < psum < 2L

Pmax <

Example 2: makespan on two different machines

/ Define problem \(Define groups \(Define single-group approx. algo. \

Given:

e two different machines, A and B

en jobs J;(j = 1,...,n) with processing times a; (if processed on A)
and b; (if processed on B)

Wanted:

e minimal makespan = time when the last job is done

psum :=minimum total amount of work =%_; min{a;, b;}

L= %psum

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

Define problem y Define groups \ Define single-group approx. algo. \

Small jobs: processing time < €L on the machine where they are done

Big jobs: processing time > L on the machine where they are done

Groups: solution o1 and o9 lie in the same group if and only if

they process the same big jobs on A and the same big jobs on B.

Each machine can do at most psym/(cL) < g% = 2/¢ big jobs

4/e

— less than n*/¢ selections of 4 /¢ big jobs on these machines possible

— number of groups is polynomial in n.

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

/ Define problem y Define groups y Define single-group approx. algo. \;

In a single group FU allocation of big jobs is fixed.
What to do with the remaining jobs?

Four types: ' a; > el
bj S el

aj>5L
bj>€L

tpsum = L < OPT < 2L = psum = =}_; min{a;, b;}

Example 2: makespan on two different machines

/ Define problem y Define groups y Define single-group approx. algo. \

In a single group FU) allocation of big jobs is fixed.
What to do with the remaining jobs?

Four types: ' a; > el
bj S el

a; > el do not exist
bj > el

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

/ Define problem y Define groups y Define single-group approx. algo. \

In a single group FU) allocation of big jobs is fixed.
What to do with the remaining jobs?

Four types: ' a; > el
bj S el

a; > el do not exist
bj > el

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

/ Define problem y Define groups y Define single-group approx. algo. \

In a single group FU) allocation of big jobs is fixed.
What to do with the remaining jobs?

Four types: ' a; > el
bj S el

on A a; > el do not exist
bj > el

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

/ Define problem y Define groups y Define single-group approx. algo. \

In a single group FU) allocation of big jobs is fixed.
What to do with the remaining jobs?

Four types: ' a; > el
bj S el

a; < el on A a; > el do not exist
b]' > el bj > e

— only need to schedule jobs that are small for both machines.

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

/ Define problem y Define groups y Define single-group approx. algo. \

For a certain group is given: schedule of all jobs big for A and/or B.

Define v, 3 := workload of A, B in that schedule.
To do: schedule for jobs J;(j = {1,...,k}) small for A and B.
ILP with variables x; € {0,1} (1 iff J; on A; 0 iff on B).

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

Define problem y Define groups y Define single-group approx. algo. \

For a certain group is given: schedule of all jobs big for A and/or B.

Define «, 5 := workload of A, B in that schedule.
To do: schedule for jobs J;(j = {1,...,k}) small for A and B.
ILP with variables x; € {0,1} (1 iff J; on A; 0 iff on B).

Minimize makespan, such that:

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

Define problem y Define groups y Define single-group approx. algo. \

For a certain group is given: schedule of all jobs big for A and/or B.

Define «, 5 := workload of A, B in that schedule.
To do: schedule for jobs J;(j = {1,...,k}) small for A and B.
ILP with variables x; € {0,1} (1 iff J; on A; 0 iff on B).

Minimize makespan, such that:

(1) a+ 2?21 ajri < makespan (A can make it in time)

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

Define problem y Define groups y Define single-group approx. algo. \

For a certain group is given: schedule of all jobs big for A and/or B.

Define «, 5 := workload of A, B in that schedule.
To do: schedule for jobs J;(j = {1,...,k}) small for A and B.
ILP with variables x; € {0,1} (1 iff J; on A; 0 iff on B).

Minimize makespan, such that:
(1) a+ 2521 ajrj < makespan (A can make it in time)

(2) B+ z§:1 aj(1l —x;) < makespan (B can make it in time)

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

Define problem y Define groups y Define single-group approx. algo. \

For a certain group is given: schedule of all jobs big for A and/or B.
Define «, 5 := workload of A, B in that schedule.

To do: schedule for jobs J;(j = {1,...,k}) small for A and B.
ILP with variables x; € {0,1} (1 iff J; on A; 0 iff on B).

Minimize makespan, such that:
(1) a+ 2521 ajrj < makespan (A can make it in time)

(2) B+ z§:1 aj(l —xj) < makespan (B can make it in time)
(3) z; €10,1} (each job on A or B)

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

/ Define problem y Define groups y Define single-group approx. algo. \;

For a certain group is given: schedule of all jobs big for A and/or B.

Define «, 5 := workload of A, B in that schedule.
To do: schedule for jobs J;(j = {1,...,k}) small for A and B.
;LP with variables x; € A (1 iff Jj on A; 0 iff on B).

Minimize makespan, such that:

(1) a+ z§:1 ajrj < makespan (A can make it in time)

(2) B+ z§:1 aj(l —xj) < makespan (B can make it in time)
Y A et b B A G

3) 0<z;<1 (each job on A or B, or “in between")

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

Define problem y Define groups y Define single-group approx. algo. \

Solution space is (k + 1)-dimensional convex polyhedron.

Optimal solution in vertex, i.e. > k+1 constraints fulfilled with equality.

E.g. (1), and (2), and at least k — 1 of (3)

— leaves at most one oy that isn't 0 or 1

Minimize makespan, such that:

(1) a+ zé?:l ajrj < makespan (A can make it in time)

(2) B+ z§:1 aj(l —xj) < makespan (B can make it in time)
/(77 S 5/‘ /"./(d'ois oN-A gr b

3) 0<z;<1 (each job on A or B, or “in between")

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

Example 2: makespan on two different machines

Define problem y Define groups y Define single-group approx. algo. \;

Solution space is (k + 1)-dimensional convex polyhedron.
Optimal solution in vertex, i.e. > k+1 constraints fulfilled with equality.
E.g. (1), and (2), and at least k — 1 of (3)

— |leaves at most one T that isn't 0 or 1

Put that one on any machine; schedule the rest according to LP solution.

Approx. factor: only 1 small job may be scheduled on wrong machine:

APPY) < makespan + L < OPTW 2L < (1 4 ¢)oPTW

/ %psum = L < OPT < 2L = psym = =}_1 min{a;, b; }

