GeoNet Seminar

Theta-Graph

Strukturen

- Motivation
- Definition von Theta-Graph
- Beispiel nach der Definition
- Eingenschafen von Theta-Graph
- Implemetierungsalgorithmus von Theta-Graph
- Beispiel nach des Algorithmus
- Definition des Spanners
- Theta-Graph ist Spanner
- Beweis
- Folgerung

Motivation

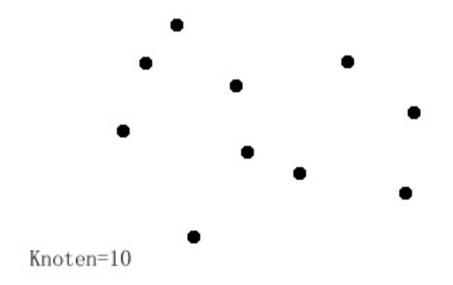
•Realisierung Spanner (approximativ vollständiger Graph)

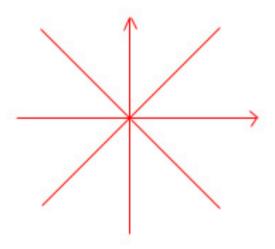
•Entwicklung der Approximationsalgorithmen oder in der Heuristik

Definition von Theta Gaph

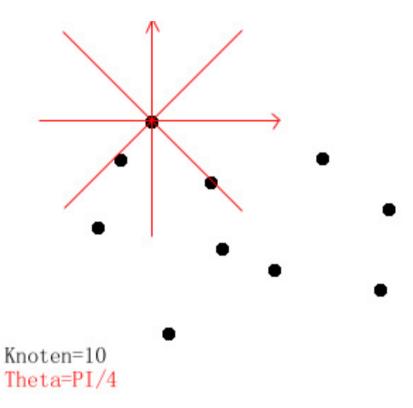
Theta-Graph

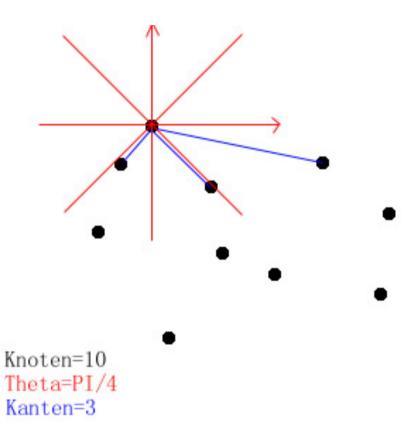
In Fläche um jeden Knote in Sektoren von Koordinatesystem mit dem örtlichfestgelegten Winkel und schließen den Knote an den nächsten Nachbar in jedem Sektor

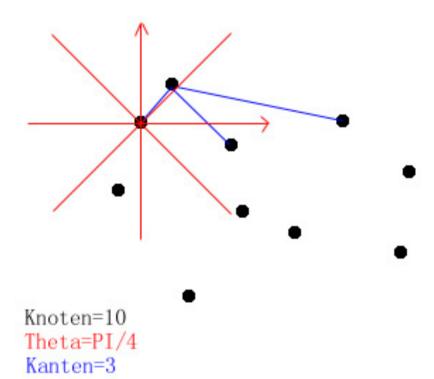


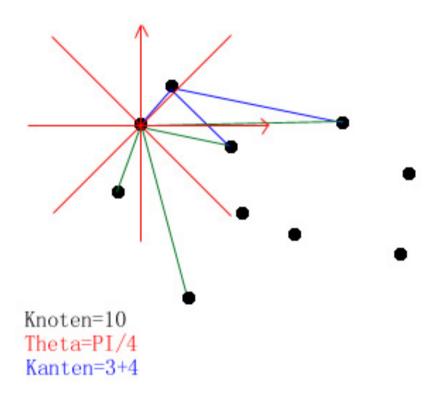


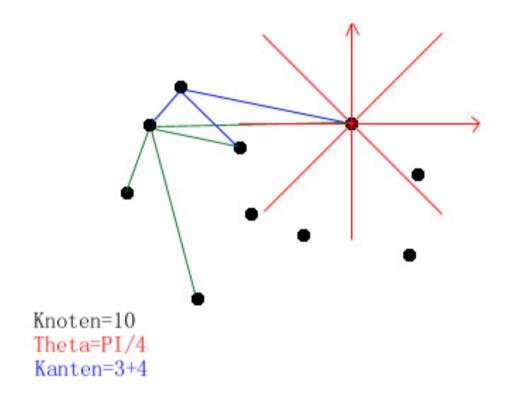
Theta=PI/4

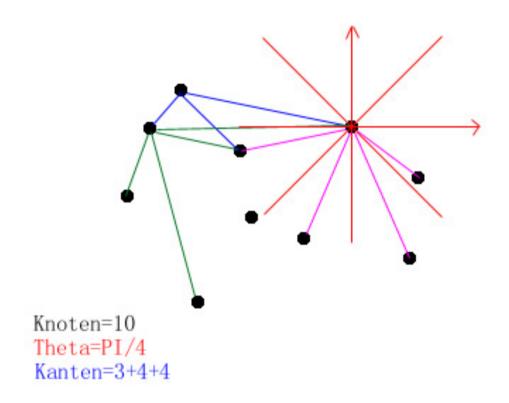


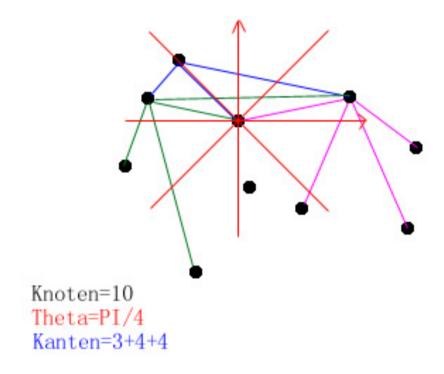


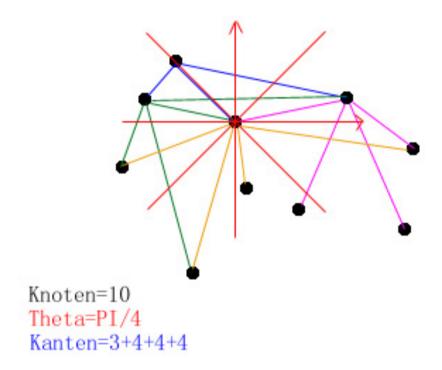


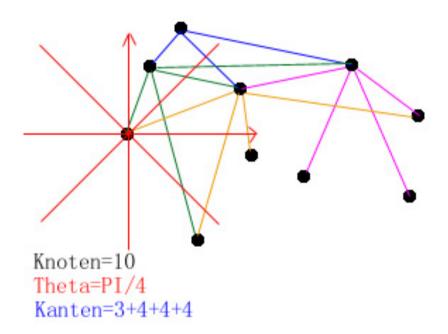


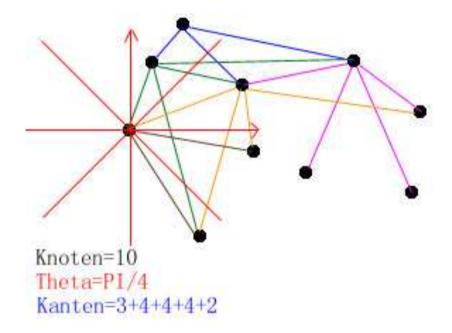


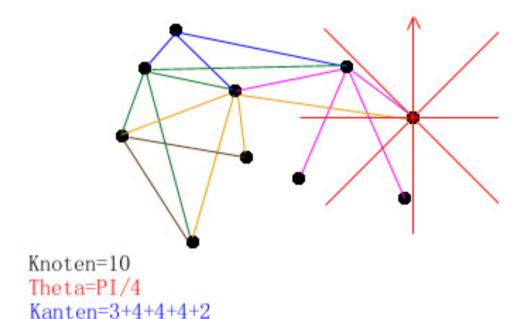




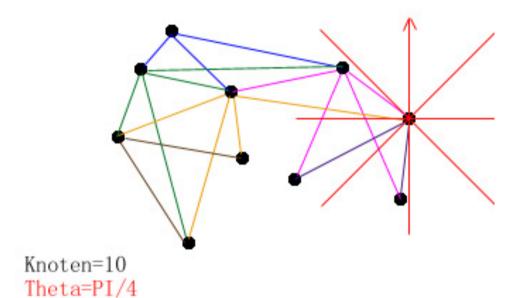


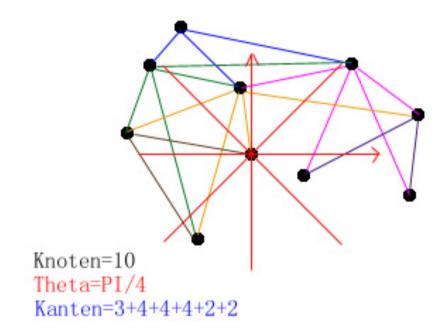


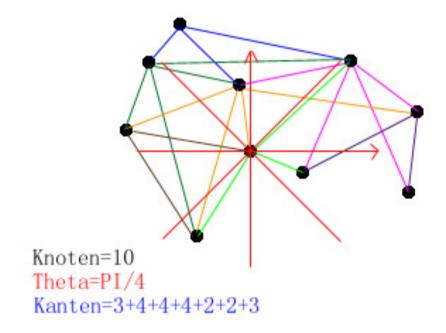


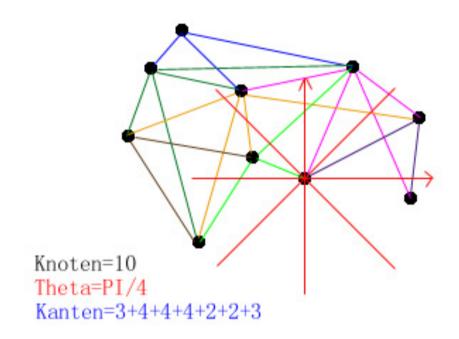


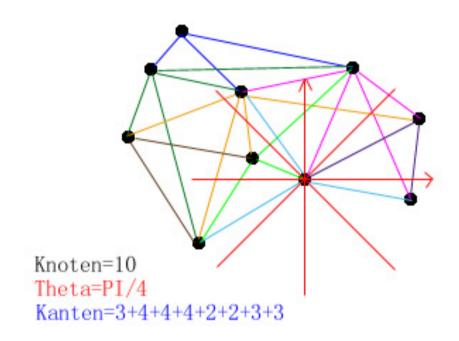
Kanten=3+4+4+4+2+2

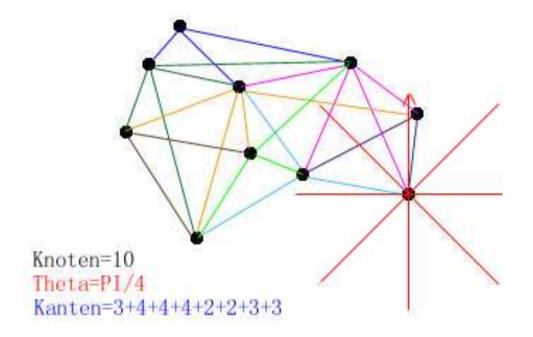


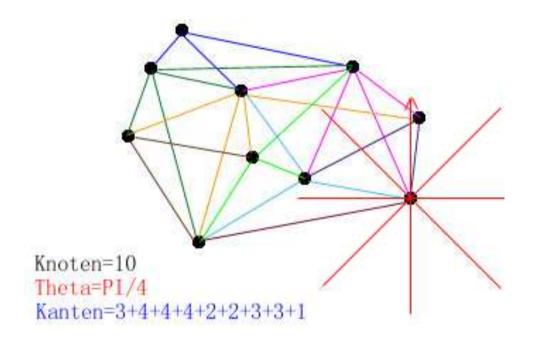


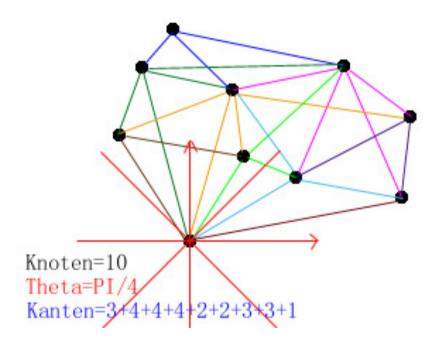


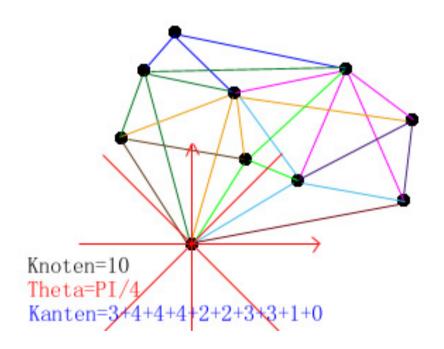


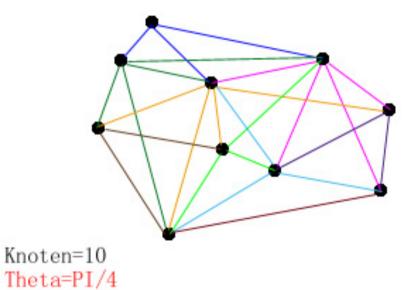












Kanten=3+4+4+4+2+2+3+3+1+0=26

Eingenschafen von Theta-Graph

- $\theta = \frac{2\pi}{k}$, wobei k ist eine Ganzzahl(k > 8)
- Jeder Knoten hat höchsten k Kanten
- Im allgemeinen hat ein Knoten Typ i Kanten

wobei
$$1 \le i \le k$$
 und $\frac{2\pi(i-1)}{k} \le \phi \le \frac{2\pi i}{k}$

der winkel ϕ von eine kante und x-coordinate ist.

Implemetierungsalgorithmus von Theta-Graph

Methode

Man findet alle Kanten nach Typ i (zuerste ist Typ1, dann ist Typ2, usw.) für jede Knote.

Defintion

Drei Ordnungen α, β, γ : In jeder Ordnung werden die Knoten durch die Einrichtung ihrer Projektionen auf die orientierte Linie georgernet, die durch den Nullpunkt einen Winkel von ϕ mit der X-Achse bildet.

Implemetierungsalgorithmus von Theta-Graph

Ordnung
$$\alpha$$
: $\phi = \frac{2\pi(i-1)}{k}$

Ordnung
$$\beta$$
: $\phi = \frac{2\pi(i-1)}{k} + \frac{\pi}{2}$

Ordnung
$$\gamma$$
: $\phi = \frac{2\pi i}{k} + \frac{\pi}{2}$

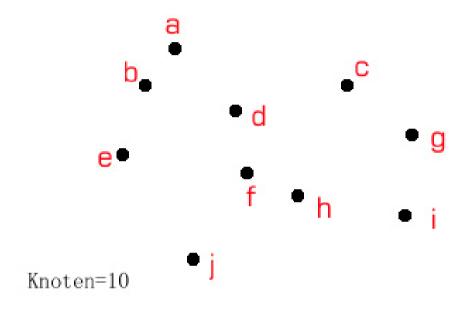
Implemetierungsalgorithmus von Theta-Graph

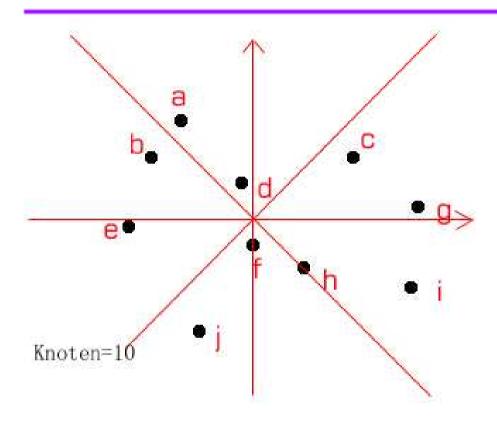
ImplemetierungsAlgrorithmus

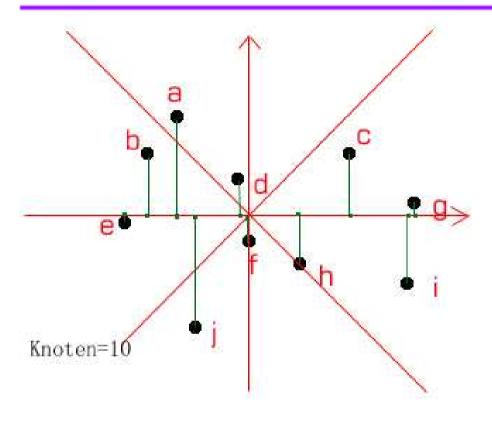
- 1) Insert point p into table T.
- 2) If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If $\alpha(r) > \alpha(p)$ then delete r from T else exit loop

Bemerkung:

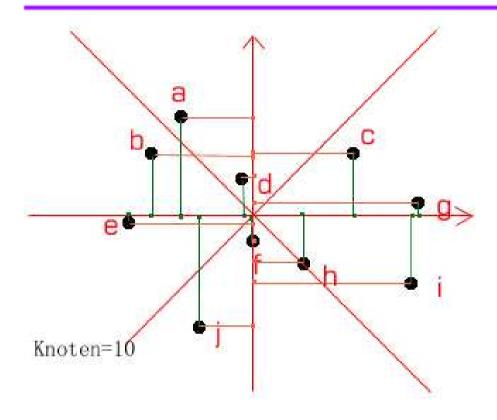
- 1) Abtastung in unaufsteigender Ordnung β
- 2) Am Anfang ist Tablle T leer
- 3) Nach Ordnung γ stecketet die neue Knote ein





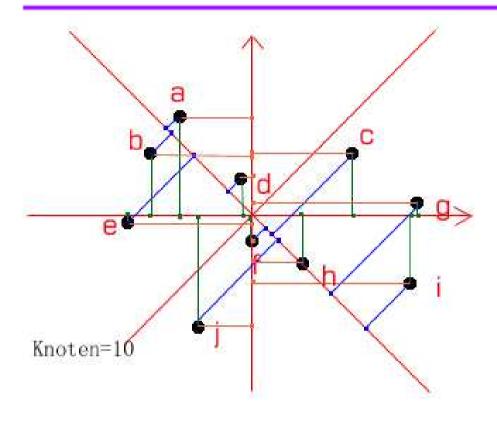


$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$



$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

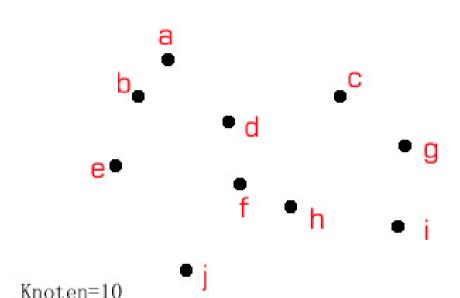
$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$



$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$



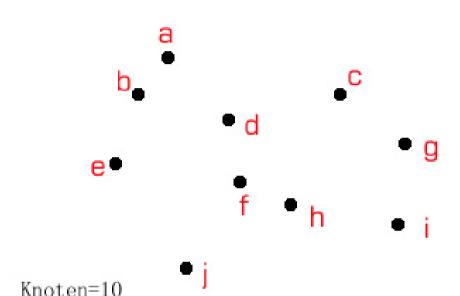
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
a	



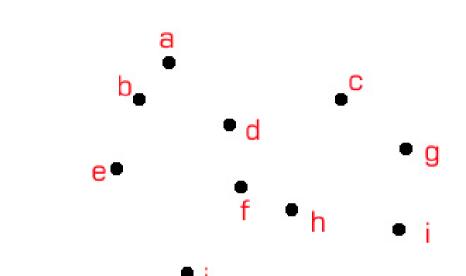
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

K	noten	Kanten(Typ 1)
a		



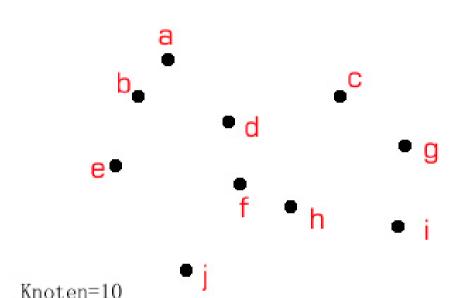
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
a	



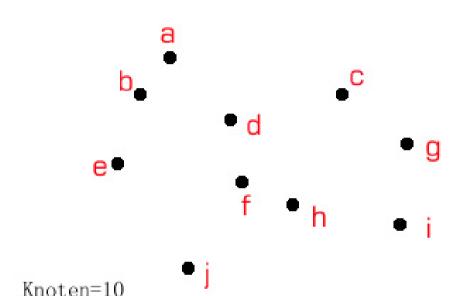
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
c a	



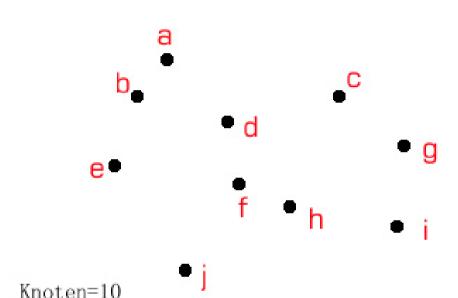
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
c a	



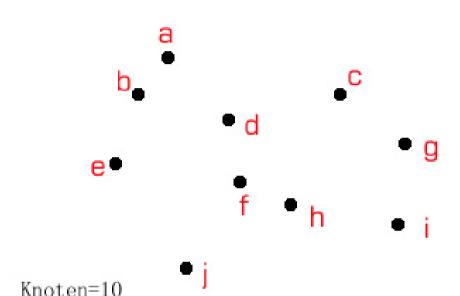
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
c a	



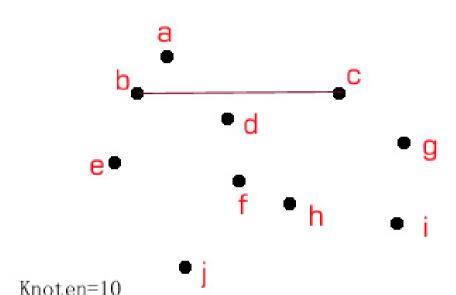
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
c b a	



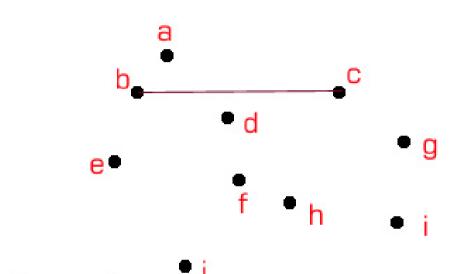
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α (r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
c b a	bc,



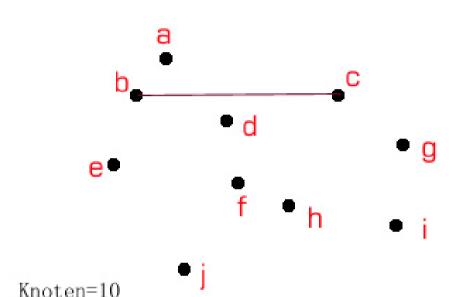
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
c b (a)	bc,



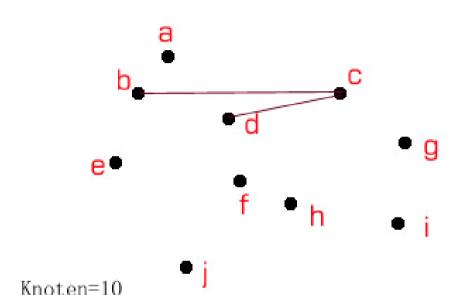
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
c d b (a)	bc,



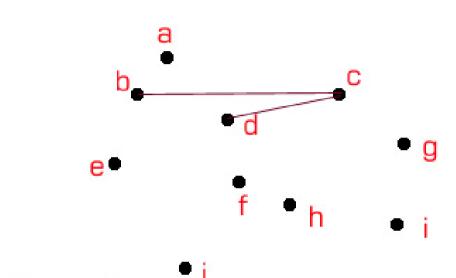
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
c d b (a)	bc,dc,



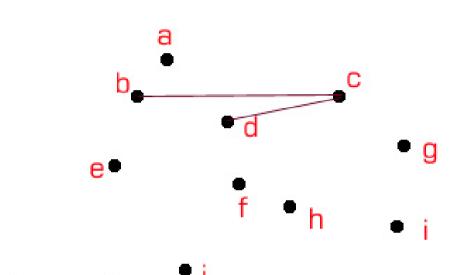
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
c d b (a)	bc,dc,



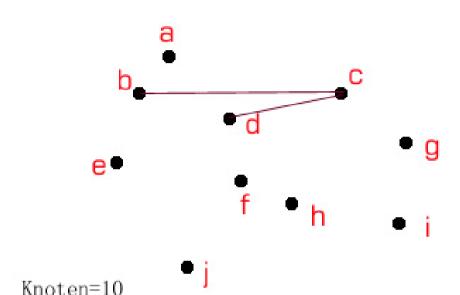
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α (r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
g c d b (a)	bc,dc,



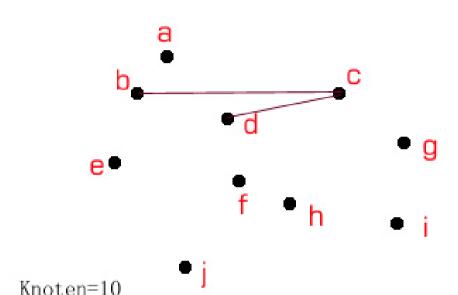
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
g c d b (a)	bc,dc,



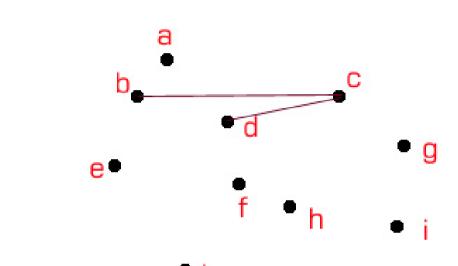
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
g c d b (a)	bc,dc,



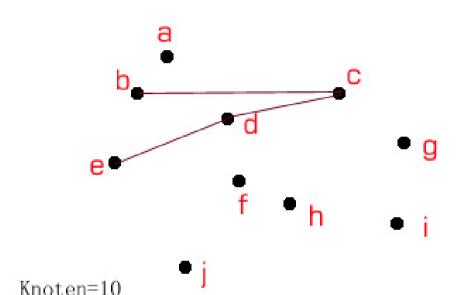
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If C(r) > C(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
g c d e b (a)	bc,dc,



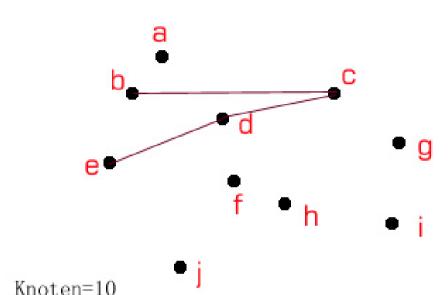
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If C(r) > C(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

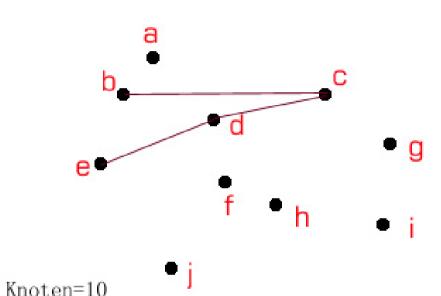
Knoten	Kanten(Typ 1)
g c d e b (a)	bc,dc,ed



- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$
$\beta = \{a,c,b,d,g,e,f,h,i,j\}$
$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$

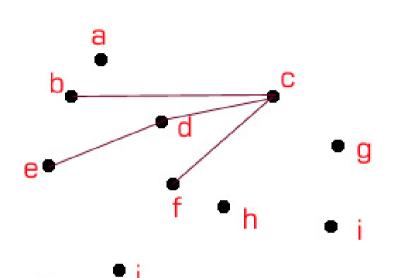
Knoten	Kanten(Typ 1)
g c d e (b) (a)	bc,dc,ed



- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$
$\beta = \{a,c,b,d,g,e,f,h,i,j\}$
$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$

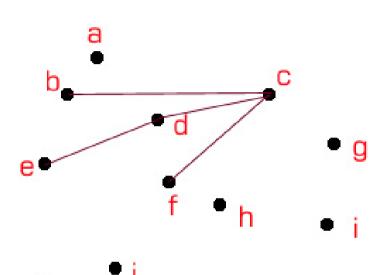
Knoten	Kanten(Typ 1)
g c f d e (b) (a)	bc,dc,ed



- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$
$\beta = \{a,c,b,d,g,e,f,h,i,j\}$
$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$

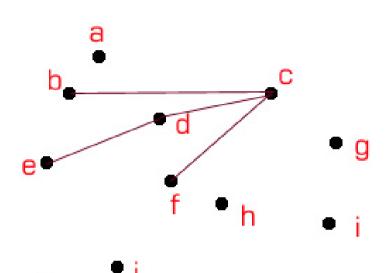
Knoten	Kanten(Typ 1)
g c f d e (b) (a)	bc,dc,ed,fc



- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$
$\beta = \{a,c,b,d,g,e,f,h,i,j\}$
$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$

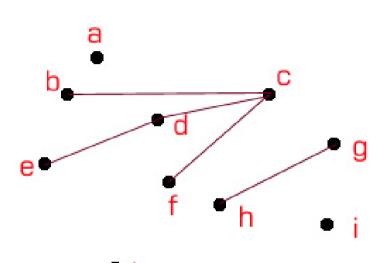
Knoten	Kanten(Typ 1)
g c f d e (b) (a)	bc,dc,ed,fc



- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$
$\beta = \{a,c,b,d,g,e,f,h,i,j\}$
$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$

Knoten	Kanten(Typ 1)
g h c f d e (b) (a)	bc,dc,ed,fc



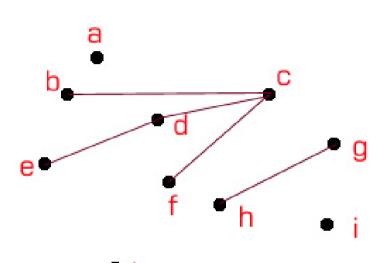
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
g h c f d e (b) (a)	bc,dc,ed,fc,hg



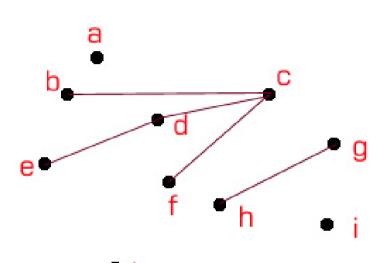
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
g h (c) f d e (b) (a)	bc,dc,ed,fc,hg



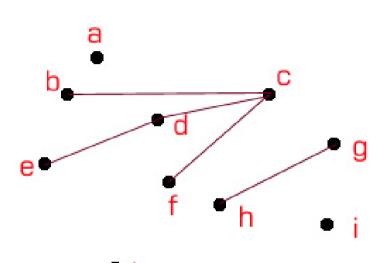
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α (r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
i g h (c) f d e (b) (a)	bc,dc,ed,fc,hg



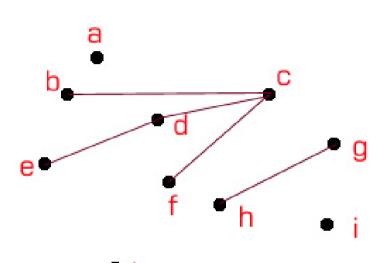
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
i g h (c) f d e (b) (a)	bc,dc,ed,fc,hg



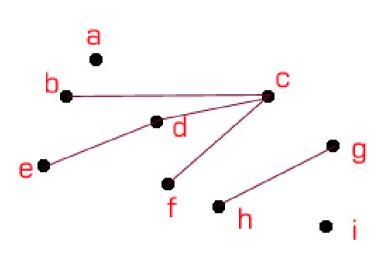
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
i (g) h (c) f d e (b) (a)	bc,dc,ed,fc,hg



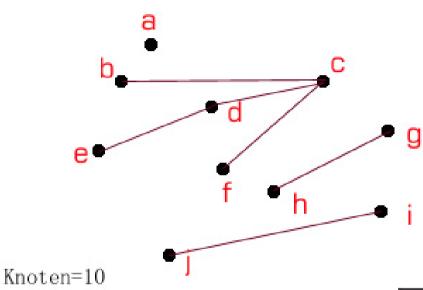
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
i (g) h j (c) f d e (b) (a)	bc,dc,ed,fc,hg



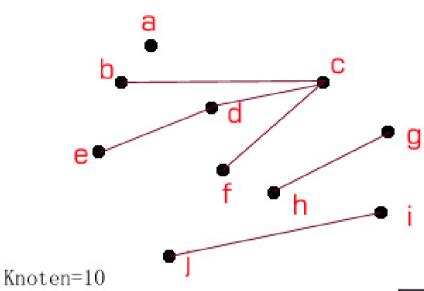
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T
 else exit loop

$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
i (g) h j (c) f d e (b) (a)	bc,dc,ed,fc,hg, jh



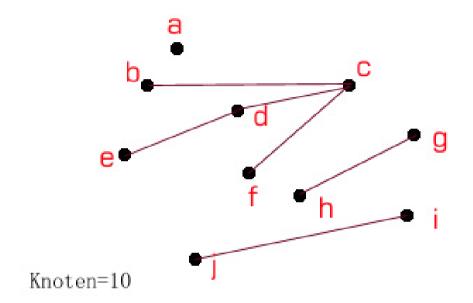
- 1) Insert point p into table T.
- If p has a predecessor q in T then report that pq is a type i edge.
- 3) Repeat Forver
 If p has a successor r in T then
 If α(r) > α(p) then delete r from T else exit loop

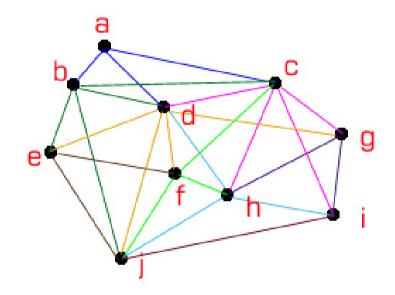
$$\alpha = \{e,b,a,j,d,f,h,c,i,g\}$$

$$\beta = \{a,c,b,d,g,e,f,h,i,j\}$$

$$\gamma = \{i,g,h,j,c,f,d,e,b,a\}$$

Knoten	Kanten(Typ 1)
i (g) h j (c) (f) (d) e (b) (a)	bc,dc,ed,fc,hg, jh





Vergleichen

Definition des Spanners

Difintion

```
p,q= zwei beliebige konten in graph G
d(p,q)=euklidische distanz
G(p,q)=länge eines kürzesten wegs in graph G
```

• Spanner

Spanner ist ein Subgraph von G und im Spanner ist der Maximalwert des Verhältnisse G(p,q) / d(p,q) in konstantem Rahmen.

Theta-Graph ist Spanner

Definition

 $\theta(p,q)$: Länge eines kürzesten Wegs von p bis q in theta-graph

m: die Anzahl von Knoten in $\theta(p,q)$

d(p,q): euklidische distanz

Lemma

Wenn es ein kürzesten Weg von p bis q in Theta-graph, $\theta = \frac{2 \pi}{k}$ (k ist eine Ganzzahl und k > 8) gibt, und der

Weg fährt über m Knoten durch, dann

$$\frac{\theta(p,q)}{d(p,q)} \le \frac{1}{\cos \theta} \left(\frac{\tan^m \theta - 1}{\tan \theta - 1} \right) + \tan^m \theta$$

- Methode
 - durch Induktionsbeweis
- Definition

```
s_n: n-te Knoten im Weg von p bis q in theta-
graph (0<=i<=m),davon s_0 = p
```

 $\theta(p,q)$: Länge eines kürzesten Wegs von p bis q in theta-graph

 $\theta'(p,q)$: Länge eines Wegs p bis q in thetagraph mit solche Beschränkung:

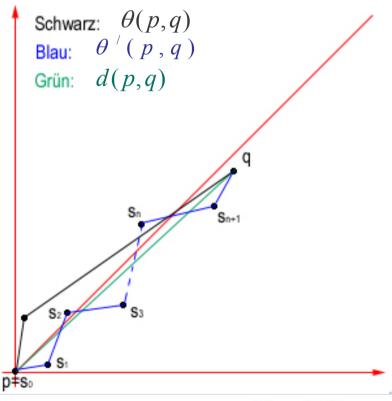
Beschränkung für $\theta'(p,q)$:

Wenn der Winkel ϕ von $s_n q$ und x-achse ist $\frac{2\pi(i-1)}{k} \le \phi \le \frac{2\pi i}{k}$

d.h $s_n q$ ist ein Kanten von Typ i ,dann ist die Kanten

von $S_n S_{n+1}$ auch Typ i

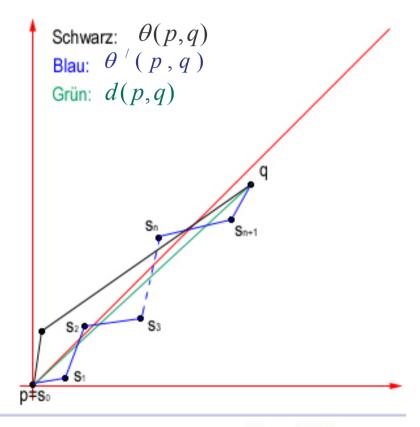
Offenbar: $\theta(p,q) \leq \theta'(p,q)$



Falls wir
$$\frac{\theta'(p,q)}{d(p,q)} \le \frac{1}{\cos \theta} \left(\frac{\tan^m \theta - 1}{\tan \theta - 1} \right) + \tan^m \theta$$

bewiesen haben, dann gilt auch

$$\frac{\theta(p,q)}{d(p,q)} \le \frac{1}{\cos\theta} \left(\frac{\tan^m \theta - 1}{\tan \theta - 1} \right) + \tan^m \theta$$



1) Wenn m=0 ist, dann ist $\theta'(p,q) = d(p,q)$;

2) Annahme:
$$\frac{\theta'(p,q)}{d(p,q)} \le \frac{1}{\cos \theta} \left(\frac{\tan^{m-1} \theta - 1}{\tan \theta - 1} \right) + \tan^{m-1} \theta$$
 ist richtig

Claim: Verhältnis $\frac{\theta'(p,q)}{d(p,q)}$ hat Maximumswert, genau dann wenn

- (a) q im x-achse ist
- (b) der Winkel von ps_1 und x-achse maximal α ($0 \le \alpha < \frac{2\pi}{k}$) hat

ШШ

$$\frac{\theta'(p,q)}{d(p,q)} \le \frac{1}{\cos \theta} \left(\frac{\tan^{m-1} \theta - 1}{\tan \theta - 1} \right) + \tan^{m-1} \theta$$

Setzt S_1 in p ein

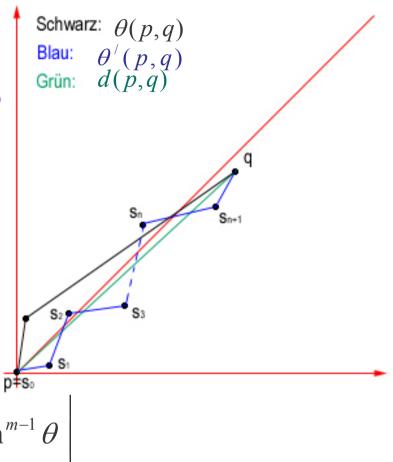
$$= > \frac{\theta'(s_1, q)}{d(s_1, q)} \le \frac{1}{\cos \theta} \left(\frac{\tan^{m-1} \theta - 1}{\tan \theta - 1} \right) + \tan^{m-1} \theta$$

$$=> \theta'(s_1, q) \le d(s_1, q) \left[\frac{1}{\cos \theta} \left(\frac{\tan^{m-1} \theta - 1}{\tan \theta - 1} \right) + \tan^{m-1} \theta \right]$$

$$\theta'(p,q) = \theta'(p,s_1) + \theta'(s_1,q)$$
 und $\theta'(p,s_1) = d(p,s_1)$

$$=> \theta'(p,q) \le d(p,s_1) + d(s_1,q) \left[\frac{1}{\cos \theta} \left(\frac{\tan^{m-1} \theta - 1}{\tan \theta - 1} \right) + \tan^{m-1} \theta \right]$$

GeoNet Seminar Theta-Graph

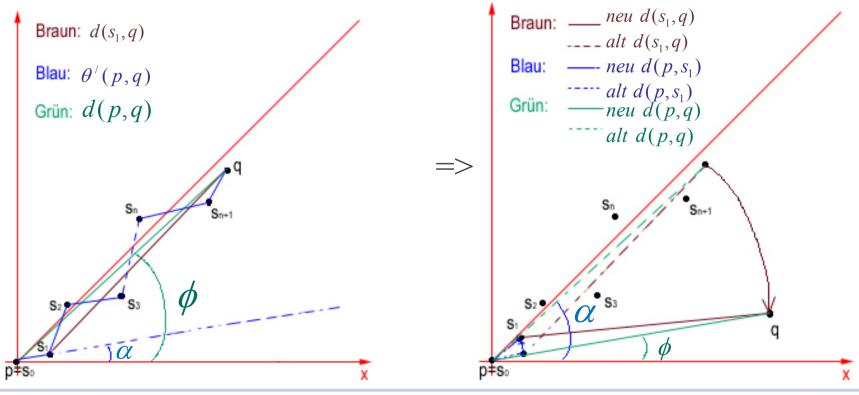


$$\theta'(p,q) \le d(p,s_1) + d(s_1,q) \left[\frac{1}{\cos \theta} \left(\frac{\tan^{m-1} \theta - 1}{\tan \theta - 1} \right) + \tan^{m-1} \theta \right]$$

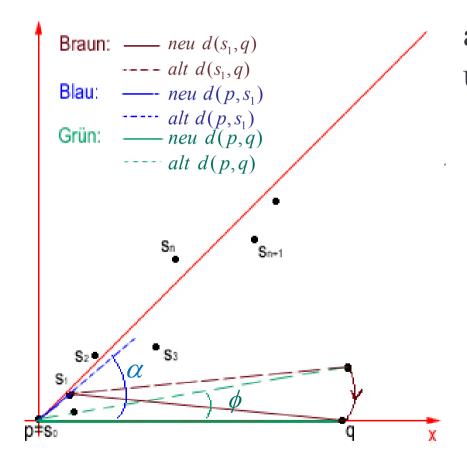
q und S_1 werden sich im beschränkte Rahmen

$$(0 \le \alpha < \frac{2\pi}{k})$$
 beweget, aber die Verhältnis $\frac{\theta'(p,q)}{d(p,q)}$ wird nicht weniger, d.h. $d(p,s_1)$ und $d(s_1,q)$ werden nicht weniger, und $d(p,q)$ wird sich nicht erhöht.

Falls $\alpha < \phi$ ist ,dann müssen wir α und ϕ umtauschen ,dann werden $d(p,s_1)$ und $d(s_1,q)$ nicht weniger ,und d(p,q) wird sich nicht erhöht,wenn q sich um s_1 ins x-achse dreht.



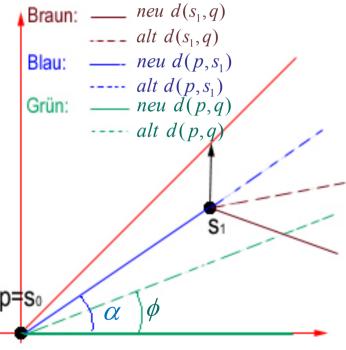
(a) q ist im x-achse



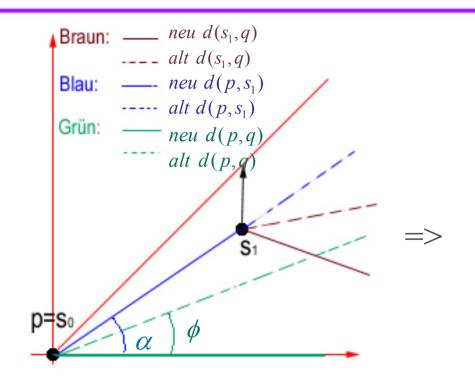
wenn q sich um s_1 ins xachse dreht, ändern $d(p,s_1)$ und $d(s_1,q)$ nicht,und $\alpha > \phi => d(p,q)$ wird sich
nicht erhöht.

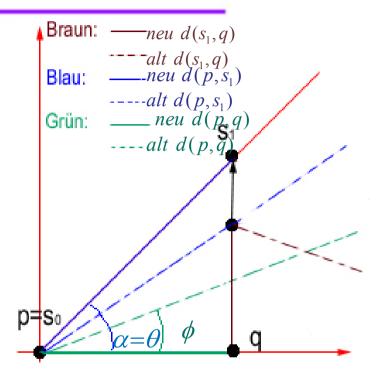
D.h wenn q im x-achse
ist,dann ist d(p,q)minimal.

(b) der Winkel α von und x-achse maximal $(0 \le \alpha < \frac{2\pi}{k})$ hat



Wenn s_1 sich entlang y-coordinate beweget ,dann α wird vergrössert aber $0 \le \alpha < \frac{2\pi}{k}$, $d(p,s_1)$ und $d(s_1,q)$ werden sich erhöht,aber d(p,q) ändert nicht D.h.wenn $\alpha \to \frac{2\pi}{k}$ ist ,dann ist $d(p,s_1)$ maximal. W





Nach Claim, ist
$$0 \le d(p, s_1) < \frac{d(p, q)}{\cos \theta}$$
 und $d(p, q)$ ist

minimal und $d(p, s_1)$ ist maximal.

$$\Rightarrow d(s_1,q) = d(p,q) \tan \theta$$

3)
$$\theta'(p,q) \le d(p,s_1) + d(s_1,q) \left[\frac{1}{\cos \theta} \left(\frac{\tan^{m-1} \theta - 1}{\tan \theta - 1} \right) + \tan^{m-1} \theta \right]$$

Setzt
$$0 \le d(p, s_1) < \frac{d(p, q)}{\cos \theta}$$
 und $d(s_1, q) = d(p, q) \tan \theta$ ein

$$=> \theta'(p,q) \le \frac{d(p,q)}{\cos \theta} + d(p,q) \tan \theta \left[\frac{1}{\cos \theta} \left(\frac{\tan^{m-1} \theta - 1}{\tan \theta - 1} \right) + \tan^{m-1} \theta \right]$$

$$=> \frac{\theta'(p,q)}{d(p,q)} \le \frac{1}{\cos\theta} + \tan\theta \left[\frac{1}{\cos\theta} \left(\frac{\tan^{m-1}\theta - 1}{\tan\theta - 1} \right) + \tan^{m-1}\theta \right]$$

$$=> \frac{\theta'(p,q)}{d(p,q)} \le \frac{1}{\cos\theta} + \tan\theta \left[\frac{1}{\cos\theta} \left(\frac{\tan^{m-1}\theta - 1}{\tan\theta - 1} \right) + \tan^{m-1}\theta \right]$$

$$=> \frac{\theta'(p,q)}{d(p,q)} \le \frac{1}{\cos\theta} + \left(\frac{\tan^m\theta - \tan\theta}{\cos\theta(\tan\theta - 1)}\right) + \tan^m\theta$$

$$=> \frac{\theta'(p,q)}{d(p,q)} \le \frac{(\tan\theta - 1)}{\cos\theta(\tan\theta - 1)} + \left(\frac{\tan^m\theta - \tan\theta}{\cos\theta(\tan\theta - 1)}\right) + \tan^m\theta$$

$$=> \frac{\theta'(p,q)}{d(p,q)} \le \frac{\tan\theta - 1 + \tan^m\theta - \tan\theta}{\cos\theta(\tan\theta - 1)} + \tan^m\theta$$

$$=> \frac{\theta'(p,q)}{d(p,q)} \le \frac{\tan^m\theta - 1}{\cos\theta(\tan\theta - 1)} + \tan^m\theta$$

$$=> \frac{\theta'(p,q)}{d(p,q)} \le \frac{\tan^m\theta - 1}{\cos\theta(\tan\theta - 1)} + \tan^m\theta$$

$$=> \frac{\theta'(p,q)}{d(p,q)} \le \frac{1}{\cos\theta(\tan\theta - 1)} + \tan^m\theta$$

Folgerung

Wenn im theta-graph ist $m \to \infty$ und k>8, dann ist $\tan \theta < 1$, deshalb ist Verhältnisse

$$\frac{\theta(p,q)}{d(p,q)} = \frac{1}{\cos\theta} \left(\frac{1}{1 - \tan\theta} \right) = \mathbf{B}$$

k	В
10	4.52
15	1.97
20	1.56
25	1.39
30	1.30
35	1.24
40	1.20

GeoNet Seminar

Schönen Dank