
Finding, Counting and Listing all Triangles in
Large Graphs, An Experimental Study?

Thomas Schank and Dorothea Wagner

University of Kalrsruhe, Germany

Abstract. A rigorous experimental study of algorithms for counting
and listing all triangles in large existing networks as well as generated
graphs is presented. In the past, this fundamental graph problem has
been studied intensively from a theoretical point of view. Recently, tri-
angle counting has also become a widely used tool in network analysis.
Due to the very large size of networks like the Internet, WWW or social
networks, the efficiency of algorithms for triangle counting and listing is
an important issue. The main intention of this work is to evaluate the
practicability of triangle counting and listing in very large graphs with
various degree distributions. We give a surprisingly simple enhancement
of a well known algorithm that performs best, and makes triangle listing
and counting in huge networks feasible.

1 Introduction

Counting the number of triangles in a graph is a fundamental problem with
various applications. The problem has been studied before from a theoretic
point of view. It can be seen as a special case of counting given length cy-
cles [AYZ97]. Actually, it is a basic ingredient for counting complete subgraphs of
given size [KKM00] or other certain small subgraphs, so-called motifs [MSOI+02].
On the other hand, counting triangles is a basic issue in network analysis. Due to
the increasing interest in analyzing large networks like the Internet, the WWW
or social networks, the computation of network indices based on counting tri-
angles has become an often used tool in network analysis. For example, the
so-called clustering coefficient [WS98] is frequently quoted as an important in-
dex for measuring the concentration of clusters in graphs respectively its ten-
dency to decompose into communities [EKM+04]. The local clustering coeffi-
cient of a node v is defined as the likeliness that two neighbors u and w of v
are also connected, while the clustering coefficient of a graph is just the normal-
ized sum of the clustering coefficient of its nodes. Accordingly, its computation
involves counting the number of triangles. Similarly the transitivity coefficient
of a graph [HP57,HK79], which is just three times the number of triangles di-
vided by the number of triples (paths of length two) in the graph is sometimes
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considered. It was used in [NSW02] for analyzing e.g. the movie actor network
considered also in our experimental study. Actually, in [NSW02] it was claimed
to be equal to the clustering coefficient which has been disproved [BR02,SW04].
The theoretically most efficient algorithms for counting triangles are based on
fast matrix multiplication [CW90]. However fast matrix multiplication is more
of theoretic interest. Moreover, algorithms based on matrix multiplication can
be only used for triangle counting but not for listing. Alternative approaches
can be seen as straight forward iteration over the nodes or edges of the graph
like the procedure presented in [BM01], and can also be easily modified to list
all triangles.

This paper now presents an intensive experimental evaluation of various al-
gorithms for counting and listing all triangles in a graph. To the best of our
knowledge, these algorithms have not been studied comparatively from an ex-
perimental point before. Real world graphs as well as generated graphs are con-
sidered. The main intention of this work is to evaluate the practicability of
triangle counting and listing in very large graphs with various degree distribu-
tions. Besides the experimental study, we give an enhancement of a well known
algorithm which turns out to perform very well regarding execution time.

2 Definitions and Properties

Let G = (V,E) be an undirected, simple graph with a set of nodes V and a set
of edges E. We use the symbol n for the number of nodes and the symbol m
for the number of edges. The degree d(v) := |{u ∈ V : ∃{v, u} ∈ E}| of node v
is defined to be the number of nodes in V that are adjacent to v. The maximal
degree of a graph G is defined as dmax(G) = max{d(v) : v ∈ V }. An n-clique is
a complete graph with n nodes. Unless otherwise declared we assume graphs to
be connected.

A triangle ∆ = (V∆, E∆) of a graph G = (V,E) is a three node subgraph
with V∆ = {u, v, w} ⊂ V and E∆ = {{u, v}, {v, w}, {w, u}} ⊂ E. We use the
symbol δ(G) to denote the number of triangles in graph G. Note that an n-clique
has exactly

(
n
3

)
triangles and asymptotically δclique ∈ Θ(n3). In dependency to

m we have accordingly δclique ∈ Θ(m3/2) and by concentrating as many edges
as possible into a clique we get the following lemma:

Lemma 1. There exists a graph Gm with m edges, such that

δ(Gm) ∈ Θ(m3/2).

3 Algorithms

We call an algorithm a counting algorithm if it outputs the number of triangles
δ(v) for each node v and a listing algorithm if it outputs the three participating
nodes of each triangle. A listing algorithm requires at least one operation per
triangle. For the running time we get worst case lower bounds of Ω(n3) in terms
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of n and Ω(m3/2) in terms of m by Lemma 1. A very simple algorithm with
running time

(
n
3

)
is to check for edges between nodes of every three element

subset of V . There exists a counting algorithm that beats the Ω(n3) bound for
listing algorithms. If A(G) is the adjacency matrix of graph G, then the diagonal
elements of A(G)3 contain two times the number of triangles of the corresponding
node. This immediately leads to a counting algorithm with running time Θ(n3)
respectively Θ(nγ), where γ is the matrix multiplication exponent . It is currently
known that γ ≤ 2.376 [CW90].

An algorithm with running time Ω(m3/2) has been proposed by Itai and
Rodeh [IR78]. A counting algorithm that beats the Ω(m3/2) bound was given
by Alon, Yuster and Zwick [AYZ97]. We will discuss its corresponding listing
version among the following algorithms which we evaluate experimentally.

Algorithm “node-iterator” Algorithm node-iterator iterates over all nodes
and tests for each pair of neighbors if they are connected by an edge. The asymp-
totic running time is given by the expression∑

v∈V

(
d(v)
2

)
(1)

and bounded by O(nd2
max). This is already a considerable improvement over

O(n3).

Algorithm “ayz” and “listing-ayz” The counting algorithm due to Alon,
Yuster and Zwick [AYZ97] combines the techniques of the algorithms node-
iterator and matrix-multiplication. Informally the algorithm splits the node set
into low degree vertices Vlow = {v ∈ V : d(v) ≤ β} and high degree vertices
Vhigh = V \ Vlow where β = mγ−1/γ+1. The standard method node-iterator is
performed on the low degree nodes and (fast) matrix multiplication on the in-
duced subgraph of Vhigh. The running time is in O(m2γ/(γ+1)) [AYZ97]. We can
derive a listing algorithm listing-ayz with running time in O(m3/2) by using
node-iterator also for the induced subgraph of Vhigh, in this case β =

√
m.

Algorithm node-iterator-core The following modification of node-iterator
is based on the concept of cores. The k-core of a graph is the largest node induced
subgraph with minimum degree at least k. The core number c(v) of a node v is
the maximum k of all cores it belongs to. The core number of a graph c is the
maximal core number of all of its nodes.

The algorithm node-iterator-core takes a node with currently minimal de-
gree, computes its triangles in the same fashion as in node-iterator and then
removes the node from the graph. The running time is bounded by∑

v∈V

(
c(v)
2

)
. (2)
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Analogous to algorithm node-iterator we can bound the running time by
O(nc2). Note that after removing all nodes v with c(v) ≤

√
m the remaining

graph is a subgraph of the node induced subgraph Vhigh of listing-ayz. Hence, this
algorithm is an improvement to listing-ayz and the running time is in O(m3/2),
too.

Algorithm “edge-iterator” The algorithm edge-iterator iterates over all edges
and compares the adjacency data structure of both incident nodes. For an edge
{u, w} the nodes {u, v, w} induce a triangle if and only if node v is present in
both adjacency data structures Adj(u) and Adj(w).

If the adjacency data Adj(v) is given in a sorted array, we can compare
the two adjacencies for an edge {u, w} in d(u) + d(w) time. The sorting can
be achieved with a preprocessing step in

∑
v∈V d(v) ln d(v) time. We will have

to see in the experimental section how this preprocessing influences the overall
execution time. For now we will disregard the preprocessing in the running time
which can then be expressed with∑

{u,w}∈E

d(u) + d(w). (3)

As with the previous algorithms we can give some less accurate bounds for
the running time which are: O(mdmax) ⊂ O(mn). Comparing O(mdmax) with
O(nd2

max) of node-iterator suggests that edge-iterator is an improvement to node-
iterator . However, this is not true! Consider the following amortized analysis: We
split the costs d(u) + d(w) for an edge {u, w} in d(u) and d(w) units and assign
d(u) to node u and d(w) to node w. In the outer loop each node v is passed d(v)
times. Hence, the running time captured by Eq. 3 can be equivalently expressed
with ∑

v∈V

d(v)2. (4)

Corollary 1. Disregarding preprocessing algorithm edge-iterator has the same
asymptotic time complexity as algorithm node-iterator.

The algorithm edge-iterator is equivalent to an algorithm introduced by
Batagelj and Mrvar [BM01]. It has been implemented within the software pack-
age Pajek [BM98].

Algorithm “edge-iterator-hashed” This algorithm is based on edge-iterator.
If we use a hashed container for the adjacencies we can ask for every node of
the smaller container whether it is present in the larger container in O(1) time.
This leads to a running time asymptotic to∑

{u,w}∈E

min{d(u), d(w)}. (5)
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Algorithm “forward” This is a refinement of algorithm edge-iterator. Instead
of an adjacency data structure Adj(v) containing all neighbors of v, a dynamic
data structure A(v) is used for which always |A(v)| ≤ |Adj(v)|. See Alg. 1 for
the pseudo code and Figure 1 for an example.

Algorithm 1: forward

Input: ordered list of vertices (1, . . . , n), Adjacencies Adj(v)

Data: Node Data: A(v);

for v ∈ V do
A(v)← ∅

for s ∈ (1, . . . , n) do
for t ∈ Adj(s) do

if s < t then
foreach v ∈ A(s) ∩A(t) do

output triangle {v, s, t} ;

A(t)←− A(t) ∪ {s};

edge A(b) A(c) A(d) A(e) triangles

1 (a, b) a
2 (a, c) a a
3 (a, d) a a a
4 (a, e) a a a a

5 (b, c) a, b a a a {a, b, c}
6 (b, d) a, b a a, b a

7 (d, e) a, b a a, b a, d {a, d, e}

1

2

3

4

5

6

7
a b c d e

Fig. 1. Example for algorithm forward .

As Figure 1 suggest, the algorithm is conveniently regarded on the directed
graph induced by the ordering of the nodes. The size of the data structure A(v)
is then bounded by the in-degree of node v, and the running time is bounded by
the expression ∑

{u,w}∈E

din(u) + din(w). (6)

As a heuristic to minimize Eq. 6 the nodes are considered in decreasing
order of their degrees, which implies a preprocessing in O(n log n). This ordering
suffices to achieve the O(m3/2) bound.

Lemma 2. The running time of algorithm forward is in O(m3/2).
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Proof. Similar to algorithm edge-iterator we can bound the running time by
O(max{din}m). We now show that din(v) ∈ O(

√
m) for all nodes v ∈ V . Assume

that there exists a node v with d(v) >
√

m. Consider the vertices v1, . . . , vn in
decreasing order of their degrees and let k be the index where d(vk) >

√
m but

d(vk+1) ≤
√

m. From this it follows that k
√

m ≤
∑

i≤k d(vi). On the other hand
the handshaking lemma gives

∑
i≤k d(vi) ≤

∑
i≤n d(vi) = 2m. It follows that

k ≤ 2
√

m and we can conclude that din(vi) ≤ 2
√

m for i ≤ k, too.

Algorithm “forward-hashed” We can combine the methods of forward with
edge-iterator-hashed which gives us an improved asymptotic running time∑

{u,w}∈E

min{din(u), din(w)}. (7)

3.1 Overview of the Algorithms

Figure 2 shows an overview of the presented algorithms with their guaranteed
running time. The interesting listing algorithms will be experimentally compared
in the next section.

listing-ayz

node-iterator

matrix-multiplication

edge-iterator

forward

core

ayz using fast

matrix-

multiplication

listing algorithms

fast matrix-

multiplication

(n
3

)

counting algorithms

forward-hashed

hashed

O
(
n3

)

O(mdmax)

O
(
m3/2

)

O
(
n3

)

O (nγ)

O
(
m

2γ
γ+1

)

Fig. 2. An overview of the presented algorithms. The running times do not include
preprocessing.
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4 Implementation and Experiments

The algorithms are implemented in C++ using the STL and compiled with the
gnu g++ compiler version 3.4 with Options “-g -O2”. The experiments were
carried out on a 64-bit machine with two AMD Opteron Processors clocked at
2.20GHz. The implemented algorithms only used one of the processors and were
terminated if they used more than 6GB of memory. The execution times of the
implemented algorithms were measured in seconds using the getrusage function.

The graphs are represented using node pointers of std::vector type for the
nodes and their adjacency data structure. The algorithms node-iterator , listing-
ayz and node-iterator-core use hashing for testing edge existence in constant
time. The hash function combines two random numbers of size size t with XOR,
one for each node. The gnu cxx::hash map was used as a hash container. Cre-
ating the random bits is not contained in the execution time of the experiments,
whereas filling the container is included. We also compared the performance
between a hashed container and a balanced binary tree. There seems to be no
substantial asymptotic difference, but the hashed container performed generally
better (see Appendix C).

A straight forward implementation of node-iterator-core as mentioned in
Section 3 requires multiple linked data structures which turned out to consume
too much memory. We used an equivalent static algorithm instead. The algo-
rithms edge-iterator and forward require to find common nodes in two adjacency
data structures. For that purpose the used std::vector containers are sorted in
a preprocessing step using the std::sort function. The sorting is included in the
execution time of the algorithms. The generation of the ordering for forward is
also included in the execution time.

4.1 Experiments

The implemented algorithms are evaluated on several networks originating from
real world as well as on generated graphs. We will show some selected results
here (a more complete listing can be found in Appendix A). The algorithms are
tested in two ways. On the one hand we list the execution time of the algorithms.
Additionally we give the number of triangle operations, which in essence captures
the asymptotic running time of the algorithm without preprocessing. The kind
of operation considered as a triangle operation differs for the various algorithms
but in all cases it represents the number of triangle tests, e.g. for the algorithm
node-iterator the number of triangle operations is equal to

∑
v∈V

(
d(v)
2

)
and for

the edge-iterator equal to
∑

v∈V d(v)2.

Road Network Germany This network is based on the roads in Germany.
Hence, it is very sparse, almost planar, has very low average and maximum
degree and in consequence a very low deviation from the average degree, see Ta-
ble 1(b). The std. deviation from the average degree is an interesting measure.
The square of it gives an indication how much improvement is possible for the
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more refined algorithms compared to the two standard algorithms node-iterator
and edge-iterator . The performance of the algorithms is listed in Table 1(a). As
expected algorithm edge-iterator has the highest asymptotic effort in the num-
ber of triangle operations. However, in terms of execution time it outperforms
all the other algorithms. The two algorithms edge-iterator-hashed and forward-
hashed , which use hashed data structures for every node, perform badly. (See
also Appendix A.6 for a visualization of the results.)

algorithm triangle execution time
operations in seconds

node-iterator 10752498 13.73

listing-ayz 10752498 13.95

node-iterator-core 1244194 11.99

edge-iterator 33398998 4.27

edge-iterator-hashed 14476855 55.47

forward 1786531 9.03

forward-hashed 1426197 43.97

(a) Algorithm Performance

nodes 4799875

edges 5947001

dmax 7

dmin 1

davr 2.5

d stddeviation 0.90

core number 3

triples 10752498

triangles 172699

transitivity 0.048

clustering coefficient 0.050

(b) Graph Properties

Table 1. Road Network of Germany

Movie Actor Network 2004 This graph is constructed from The Internet
Movie Database of the year 2004. Each node represents an actor. Two actors
share a link if and only if they ever played together in a movie. This network
has a more interesting structure compared to the network of Section 4.1. The
degree distribution is somewhat skewed with a std. deviation of 183 from the
average degree, see Table 2(b). The performance of the algorithms is shown
in Table 2(a). The algorithms node-iterator-core and forward-hashed are very
efficient with respect to the number of triangle operations. As in Section 4.1 the
algorithm listing-ayz is no improvement to algorithm node-iterator , since

√
m =

5252 is higher than the maximum degree. Again edge-iterator performs relatively
well in execution time considering highest number of triangle operations. The
implementation of algorithm forward performs best in execution time. (See also
Appendix A.2 for a more visual representation of Table 2. See Appendix A.1
and A.3 for related networks.)

4.2 Generated Gn,m Graphs

To show how the performance of the algorithms evolves for graphs of increasing
size, we generated a series of random graphs. Figure 3 shows the results on
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algorithm triangle execution t.
operations in seconds

node-iterator 13452269555 4649.05

listing-ayz 13452269555 5285.50

node-iterator-core 1725685526 610.61

edge-iterator 26959701660 174.04

edge-iterator-hashed 7460874664 1377.73

forward 5423623560 64.48

forward-hashed 1745104092 504.26

(a) Algorithm Performance

nodes 667609

edges 27581275

dmax 4605

dmin 1

davr 82.6

d stddeviation 183.18

core number 1005

triples 13452269555

triangles 1176613576

transitivity 0.262

clustering coefficient 0.796

(b) Graph Properties

Table 2. Movie Actor Network 2004
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Fig. 3. Generated Gn,m Graphs

generated graphs where m edges are inserted randomly between n nodes. We do
not allow loops or multiple links in our Gn,m graphs. In this case we consider
graphs where the relation of the parameters n and m is chosen such that the
average degree equals 50.

Figure 3(a) shows the number of triangle operations versus the number of
edges. Since Gn,m graphs are very unlikely to have high degree nodes, algorithm
listing-ayz and node-iterator perform equally well with respect to the number of
triangle operations. The algorithms node-iterator-core and forward-hashed do
most efficiently limit the number of triangle operations. They are very close to
the optimum, i.e. the number of triangles.
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Figure 3(b) shows the execution time in seconds versus the number of edges.
Again the algorithm edge-iterator performs best together with forward . Both
algorithms are very simple and do not use complicated data structures. In con-
trast the use of hashing slows down the execution time of the corresponding
algorithms. The plots of algorithms using hashing show some notable pikes.
They are caused by automatic rehashing of the container.

4.3 Generated Graphs with High Degree Nodes

The Gn,m graphs like in Section 4.2 tend to have no high degree nodes and to
have a very low deviation from the average degree in general. However, many
real world networks show a different behavior, see Section 4.1 (and also Ap-
pendix A.10) for an example. The famous power law distributions in the degree
found in many networks [FFF99] actually hint that skewed degree distributions
are very common.

We use a very simple modification of the Gn,m model to achieve high degree
nodes. As in Section 4.2 we first generate a prime graph Gn,m0 which we extend
to a graph Gn,m,h. For each node 1 ≤ i ≤ h we add links to randomly selected
nodes until the degree of the i-th node is n

2
h−i
h . For the results shown in Figure 4

we set the parameter h =
√

n.
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Fig. 4. Generated Graphs with High Degree Nodes

Now, the number of triangle operations is obviously not linear in the graph
size, see Figure 4(a). Again the algorithms node-iterator-core and forward-
hashed perform best in limiting the asymptotic effort. However they are only
in second and third place in the execution time. Algorithm forward performs
clearly best.
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5 Conclusion

The two known standard algorithms node-iterator and edge-iterator are asymp-
toticly equivalent (Lemma 1). However, the algorithm edge-iterator can be im-
plemented with a much lower constant overhead (Figure 3(b)). It works very
well for graphs where the degrees do not differ much from the average degree
(Figure 3(b), Table 1).

If the degree distribution is skewed refined algorithms are required. The al-
gorithms node-iterator-core and forward-hashed are most efficient in reducing
the number of triangle operations (Table 1(a), 2(a), Figure 3(a), 4(a)). However,
they require advanced data structures which experimentally result in a high
constant overhead(Table 1(a), 2(a), Figure 3(b), 4(b)). The algorithm forward
experimentally shows to be a good compromise. Its execution time is close to the
one of algorithm edge-iterator for networks with low deviation from the average
degree (Table 1(a), Figure 3(b)). However, it clearly performs best for graphs
with notably skewed degree distributions (Table 2(a), Figure 4(b)). In general
algorithm forward achieves the best execution times. Altogether, we have shown
that listing and counting triangles can be performed in reasonable time even for
huge graphs.
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Appendix

A Experiments on ”real world” Networks

We list experiments on several ”real world” networks, meaning that the graph
corresponds to some database or existing network. If the original network is di-
rected we consider its underlying undirected network. Potential multiple edges
and loops have also been removed. The first row shows some graph properties
in the table on the left. The plot on the right shows the nodes with their cor-
responding degree. The middle row captures the running of the algorithm in
seconds. The numeric values are shown in the table on the left. The right hand
side shows a visualization. The last row shows the triangle operations of the
algorithms as numeric values on the left and visualized on the right.
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A.1 Movie Actor Network 2002

This graph is constructed from The Internet Movie Database of the year 2002.
Each node represents an actor. Two actors share a link if and only if they ever
played together in a movie.

Graph Properties
nodes 382219
edges 15038083
dmax 3956
dmin 1
davr 78.7

d stddeviation 163.33
core number 365

triples 6266209411
triangles 346813199

transitivity 0.166
clustering coefficient 0.785
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algorithm seconds
1 node-iterator 1976.85
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3 node-iterator-core 219.00
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1 node-iterator 6266209411
2 listing-ayz 6242906011
3 node-iterator-core 663016021
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A.2 Movie Actor Network 2004

This is essentially the same as in Sec. A.1 but the database is from the year 2004
.

Graph Properties
nodes 667609
edges 27581275
dmax 4605
dmin 1
davr 82.6

d stddeviation 183.18
core number 1005

triples 13452269555
triangles 1176613576

transitivity 0.262
clustering coefficient 0.796
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Triangle Operations
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A.3 Movie Actor Network 2004 (no porn)

This is based on the same data like Sec. A.2, but movies were removed if the tile
was hinting to pornographic content.

Graph Properties
nodes 366131
edges 7711904
dmax 2440
dmin 1
davr 42.1

d stddeviation 94.30
core number 173

triples 1944966433
triangles 87296640

transitivity 0.135
clustering coefficient 0.765
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Triangle Operations
algorithm operations
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2 listing-ayz 1944966433
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4 edge-iterator 3905356674
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6 forward 666275428
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A.4 Notre Dame Actors

This network is also constructed from the The Internet Movie Database. How-
ever, a node represents an actor or a movie. An edge {a,m} exist if and only if
an actor a played in a movie m. This network is bipartite and consequently has
no triangles. The underlying database is from the year 1999 or earlier.

Graph Properties
nodes 520223
edges 1470404
dmax 646
dmin 0
davr 5.7

d stddeviation 11.20
core number 14

triples 39484087
triangles 0

transitivity 0.000
clustering coefficient 0.000
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Triangle Operations
algorithm operations
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A.5 Authors

The network is based on the Computer Science Bibliography at the University
of Trier. Two scientists are connected if they are co-author of a publication. The
underlying database is from the year 2004.

Graph Properties
nodes 307971
edges 831557
dmax 248
dmin 1
davr 5.4

d stddeviation 8.44
core number 114

triples 14633230
triangles 1665486

transitivity 0.341
clustering coefficient 0.760
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Triangle Operations
algorithm operations

1 node-iterator 14633230
2 listing-ayz 14633230
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4 edge-iterator 30929574
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6 forward 4104865
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A.6 Road Network Germany

Graph Properties
nodes 4799875
edges 5947001
dmax 7
dmin 1
davr 2.5

d stddeviation 0.90
core number 3

triples 10752498
triangles 172699

transitivity 0.048
clustering coefficient 0.050
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Triangle Operations
algorithm operations

1 node-iterator 10752498
2 listing-ayz 10752498
3 node-iterator-core 1244194
4 edge-iterator 33398998
5 edge-iterator-hashed 14476855
6 forward 1786531
7 forward-hashed 1426197  0
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A.7 Google Contest 2002

This network is from the Google contest of the year 2002.

Graph Properties
nodes 394510
edges 480259
dmax 1160
dmin 1
davr 2.4

d stddeviation 9.32
core number 13

triples 17834734
triangles 43888

transitivity 0.007
clustering coefficient 0.228
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Triangle Operations
algorithm operations

1 node-iterator 17834734
2 listing-ayz 14544261
3 node-iterator-core 166977
4 edge-iterator 36629986
5 edge-iterator-hashed 1342042
6 forward 209924
7 forward-hashed 118037  0
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A.8 HEP Literature

Citation data from KDD Cup 2003, a knowledge discovery and data mining
competition. The graph is based on a publication data base on High Energy
Particle Physics. Two publications are linked if one of them cites the other.

Graph Properties
nodes 27240
edges 341923
dmax 2411
dmin 0
davr 25.1

d stddeviation 44.87
core number 37

triples 35665330
triangles 1423613

transitivity 0.120
clustering coefficient 0.330
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Triangle Operations
algorithm operations
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A.9 Router Network

Internet routers (nodes) and their connections (edges) collected by the Cooper-
ative Association for Internet Data Analysis (CAIDA). The data is from 2004.
Unfortunately the link has either been moved or the data completely removed.

Graph Properties
nodes 192244
edges 609066
dmax 1071
dmin 1
davr 6.3

d stddeviation 14.14
core number 32

triples 22468727
triangles 455062

transitivity 0.061
clustering coefficient 0.202
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Triangle Operations
algorithm operations
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4 edge-iterator 46155586
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6 forward 3853533
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A.10 Notre Dame WWW

Each node represents a web page within the nd.edu domain. An edge between
to web pages exist if one of them was linking the other.

Graph Properties
nodes 325729
edges 1090108
dmax 10721
dmin 1
davr 6.7

d stddeviation 42.82
core number 155

triples 304881174
triangles 8910005

transitivity 0.088
clustering coefficient 0.466
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algorithm operations
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4 edge-iterator 611942564
5 edge-iterator-hashed 31373326
6 forward 18742108
7 forward-hashed 9473218  0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0  1  2  3  4  5  6  7  8

 1 
 2 
 3 
 4 
 5 
 6 
 7 

23



A.11 US Patents

The network Patents is based on the The NBER U.S. Patent Citations Data
File, version 2001.

Graph Properties
nodes 3774768
edges 16518947
dmax 793
dmin 1
davr 8.8

d stddeviation 10.49
core number 64

triples 335781273
triangles 7515023

transitivity 0.067
clustering coefficient 0.092
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Triangle Operations
algorithm operations
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A.12 Wordnet

This network is based on a dictionary.

Graph Properties
nodes 82670
edges 120399
dmax 543
dmin 0
davr 2.9

d stddeviation 7.74
core number 5

triples 2707088
triangles 5266

transitivity 0.006
clustering coefficient 0.056

 0

 100

 200

 300

 400

 500

 600

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

no
de

 d
eg

re
e

node index 

degree

Running Times

algorithm seconds
1 node-iterator 0.58
2 listing-ayz 0.49
3 node-iterator-core 0.16
4 edge-iterator 0.07
5 edge-iterator-hashed 0.42
6 forward 0.07
7 forward-hashed 0.44  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5  6  7  8

 1 
 2 
 3 
 4 
 5 
 6 
 7 

Triangle Operations
algorithm operations

1 node-iterator 2707088
2 listing-ayz 2223834
3 node-iterator-core 59299
4 edge-iterator 5654974
5 edge-iterator-hashed 497430
6 forward 106790
7 forward-hashed 56875  0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0  1  2  3  4  5  6  7  8

 1 
 2 
 3 
 4 
 5 
 6 
 7 

25



B Experiments on Generated Graphs

We use several series of generated graphs to see how the execution times and the
number of triangle operations evolve. The basic graphs Gn,m are generated by
adding m randomly chosen links between the n nodes. We do not allow loops or
multiple links. In this kind of graphs nodes with high degrees are very unlikely.
To achieve high degree nodes we extend a prime graph Gn0,m0 to a graph Gn,m,h

by selecting h nodes for which we add links to randomly selected nodes until the
degree of the i-th node is n

2
h−i
h . Again, we do not allow loops or multiple links.
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B.1 Sparse Gn,m

The graphs are generated according to the Gn,m model. The relation between n
and m was chosen such that the graphs have an average degree of 50.

triangle operations (y-axis) versus number of edges (x-axis)
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B.2 Sparse Gn,m overlayed with Θ(ln n) high degree nodes

First a graph Gn,m0 with average degree of 50 is generated. This prime graph is
extended to a Gn,m,h graph with parameter h = 3 lnn.

triangle operations (y-axis) versus number of edges (x-axis)
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B.3 Sparse Gn,m overlayed with Θ(
√

n) high degree nodes

The graphs are constructed like in Section B.1, but here the parameter h is set
to
√

n.

triangle operations (y-axis) versus number of edges (x-axis)
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B.4 Dense Gn,m

The graphs are generated according to the Gn,m model. The relation between n
and m was chosen such that the graphs have a fixed density m/

(
n
2

)
of 0.01.

triangle operations (y-axis) versus number of edges (x-axis)
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B.5 Dense Gn,m0 overlayed with Θ(ln m0) high degree nodes

The prime graphs Gn0,m0 are generated like in Section B.4 and extended with
parameter h = lnm0.

triangle operations (y-axis) versus number of edges (x-axis)

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07

edge-iterator
node-iterator

listing-ayz
edge-iterator-hashed

forward
node-iterator-core

forward-hashed
# triangles

execution time in seconds (y-axis) versus number of edges (x-axis)

 0

 1000

 2000

 3000

 4000

 5000

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07

node-iterator
listing-ayz

edge-iterator-hashed
node-iterator-core

forward-hashed
forward

edge-iterator

31



B.6 Dense Gn,m0 overlayed with Θ(
√

m0) high degree nodes

The same procedure as in Section B.5 is used, but here the parameter h is set
to
√

m0.

triangle operations (y-axis) versus number of edges (x-axis)
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C Hashing versus Balanced Trees

We investigate the performance between hashed containers and balanced tree
containers for storing the edges. The template from gnu cxx::hash map was
used for the hashed container. We store two pointers from the incident nodes
of an edge. The hashing function combines two random bit fields of size size t
(one for each node) with the XOR operation. The tree container is based on the
template std::set, which is an implementation of a red and black tree. An edge is
coded with the lexicographic ordering of the two addresses of the incident node
pointers. The results are shown in the Figure below. The graphs are constructed
in the same way as the ones used in Section B.3.

Hashing versus Balanced Trees: Execution time in seconds (y-axis) depending
on the number of edges (x-axis)
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D Orderings for the forward Algorithm

We ordered the nodes with high degree first for the forward Algorithm. Here we
compare the performance for the proposed ordering to the ordering with high
degrees last and also to a random node ordering. The graphs are constructed in
the same way as the ones used in Section B.6.
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E Statistical Experiments of the Execution Times

The algorithms show some unsteady behavior in the experiments for the execu-
tion times. The obvious pikes for the algorithms using a hashed container for the
edges are caused by rehashing of the container. But there are other influences
like the variations in the structure of the generated graph or other processes
running on the same machine. To investigate these influences we generated for
each algorithms 100 graphs with the same procedure as in Section B.3. The sizes
of the graphs are chosen such that the average execution time is not far from 60
seconds. The results are shown in the tabular below.

execution time in seconds
100 graphs, one execution per graph 100 executions on one graph
min mean max std. deviation min mean max std. deviation

node-iterator 58.83 66.94 83.18 6.15 59.48 61.92 76.96 2.80

listing-ayz 59.46 64.79 80.86 4.78 62.72 69.15 81.39 5.33

node-iterator-core 58.85 66.36 80.57 5.36 58.98 66.12 79.99 5.07

edge-iterator 59.72 60.62 61.18 4.06 59.78 60.60 61.22 0.25

edge-iterator-hashed 58.68 60.59 68.13 1.93 59.95 66.08 72.88 2.71

forward 56.11 60.08 67.49 3.18 57.74 61.15 64.31 1.66

forward-hashed 58.76 62.23 67.75 2.71 59.18 64.05 69.23 2.81
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