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1 Introduction

In the past, the fundamental graph problem of triangle counting and listing
has been studied intensively from a theoretical point of view. Recently, triangle
counting has also become a widely used tool in network analysis. Due to the
very large size of networks like the Internet, WWW, or social networks, the
efficiency of algorithms for triangle counting and listing is an important issue.
The main intention of this work is to evaluate the practicability of triangle
counting and listing in very large graphs with various degree distributions. We
give a surprisingly simple enhancement of a well known algorithm that performs
best, and makes triangle listing and counting in huge networks feasible. This
paper is an extended abstract of [SW05].

2 Definitions

Let G = (V,E) be an undirected, simple graph with a set of nodes V and a
set of edges E. We denote the number of nodes with n and the number of edges
with m. The degree d(v) := |{u ∈ V : ∃{v, u} ∈ E}| of node v is defined to be
the number of nodes in V that are adjacent to v. The maximal degree of a graph
G is defined as dmax(G) = max{d(v) : v ∈ V }. An k-clique is a complete graph
with k nodes. Unless otherwise declared we assume graphs to be connected. A
triangle ∆ = (V∆, E∆) of a graph G = (V,E) is a three node subgraph with
V∆ = {u, v, w} ⊆ V and E∆ = {{u, v}, {v, w}, {w, u}} ⊆ E. We use the symbol
δ(G) to denote the number of triangles in graph G. Note that an n-clique has
exactly

(
n
3

)
triangles and asymptotically δclique ∈ Θ(n3). In dependency to m

we have accordingly δclique ∈ Θ(m3/2) and by concentrating as many edges as
possible into a clique we observe that there exists a family of graphs Gm, such
that δ(Gm) ∈ Θ(m3/2).
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3 Algorithms

We call an algorithm a counting algorithm, if it outputs the number of triangles
δ(v) for each node v and, call it a listing algorithm, if it outputs the three
participating nodes of each triangle. A listing algorithm requires at least one
operation per triangle. For the running time we get worst case lower bounds
of Ω(n3) in terms of n and Ω(m3/2) in terms of m by the final observation in
Section 2.
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Fig. 1. An overview of the presented algorithms.

Simple approaches are to use matrix multiplication as a counting algorithm
or to check for connecting edges between any three nodes as a listing algorithm.
Traversing over all nodes and checking for existing edges between any pair of
neighbors is part of the folklore. This algorithm, which we call node-iterator, has
running time O

(
nd2

max

)
⊆ O

(
n3

)
. The Algorithm listing-ayz is the listing version

of the currently most efficient counting algorithm [AYZ97]. It has running time
in O

(
m3/2

)
. Algorithm node-iterator-core uses the concept of cores. It takes a

node with currently minimal degree, computes its triangles in the same fashion
as in node-iterator and then removes the node from the graph. The running time
is in O

(
nc2

max

)
, where c(v) is the core number of node v. Since node-iterator-core

is an improvement over listing-ayz the running time of node-iterator-core is also
in O

(
m3/2

)
.

Similar to node-iterator one can also traverse over all edges and compare
the adjacency lists of the two incident nodes. This algorithm, which we call
edge-iterator, is equivalent to an algorithm introduced by Batagelj and Mrvar
[BM01]. The running time without preprocessing is in O(mdmax). It can actually
be shown that node-iterator and edge-iterator are asymptotically equivalent, see
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[SW05] for details. Algorithm forward is an improvement of edge-iterator. The
pseudo code is listed in Algorithm 1. It can be shown, that forward has running
time in O

(
m3/2

)
. Both algorithms can be further improved by certain methods

relying on hashing, see [SW05] for details.

Algorithm 1: forward

Input: ordered list (high degree first) of vertices (1, . . . , n); Adjacencies Adj(v)

Data: Node Data: A(v);

for v ∈ V do
A(v)← ∅

for s ∈ (1, . . . , n) do
for t ∈ Adj(s) do

if s < t then
foreach v ∈ A(s) ∩A(t) do

output triangle {v, s, t} ;

A(t)←− A(t) ∪ {s};

4 Experiments

The algorithms are tested in two ways. On the one hand, we list the execution
time of the algorithms. Additionally, we give the number of triangle operations,
which in essence captures the asymptotic running time of the algorithm without
preprocessing. The algorithms are implemented in C++. The experiments were
carried out on a 64-bit machine with a AMD Opteron Processors clocked at
2.20G-Hz. Figure 2 shows the results on generated Gn,m graphs, where m edges
are inserted randomly between n nodes. These Gn,m graphs tend to have no
high degree nodes and to have a very low deviation from the average degree.
However, this seems to be not true for many real networks [FFF99]. Therefore,
Figure 3 shows results on modified Gn,m graphs with O(

√
n) high degree nodes.

5 Conclusion

The two known standard Algorithms node-iterator and edge-iterator are asymp-
toticly equivalent. However, the Algorithm edge-iterator can be implemented
with a much lower constant overhead. It works very well for graphs where the
degrees do not differ much from the average degree. If the degree distribution is
skewed refined algorithms are required. The Algorithm forward shows to be the
best compromise. It is asymptotically efficient and can be implemented to have
a low constant factor with respect to execution time.
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Fig. 2. Generated Gn,m Graphs
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Fig. 3. Generated Graphs with High Degree Nodes
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