
Partitioning Graphs to Speed Up Dijkstra’s
Algorithm

Rolf H. Möhring1, Heiko Schilling1, Birk Schütz2,
Dorothea Wagner2, and Thomas Willhalm2

1 Technische Universität Berlin, Institut für Mathematik,
Straße des 17. Juni 136, 10623 Berlin, Germany

2 Universität Karlsruhe, Fakultät für Informatik,
Postfach 6980,76128 Karlsruhe, Germany

Abstract. In this paper, we consider Dijkstra’s algorithm for the point-
to-point shortest path problem in large and sparse graphs with a given
layout. In [1], a method has been presented that uses a partitioning of
the graph to perform a preprocessing which allows to speed-up Dijkstra’s
algorithm considerably.

We present an experimental study that evaluates which partitioning
methods are suited for this approach. In particular, we examine par-
titioning algorithms from computational geometry and compare their
impact on the speed-up of the shortest-path algorithm. Using a suited
partitioning algorithm speed-up factors of 500 and more were achieved.

Furthermore, we present an extension of this speed-up technique to
multiple levels of partitionings. With this multi-level variant, the same
speed-up factors can be achieved with smaller space requirements. It
can therefore be seen as a compression of the precomputed data that
conserves the correctness of the computed shortest paths.

1 Introduction

We consider the problem of repeatedly finding shortest paths in a large but
sparse graph with given arc weights. Dijkstra’s algorithm [2] solves this problem
efficiently with a sub-linear running time as the algorithm can stop once the
target node is reached. If the graph is static, a further reduction of the search
space can be achieved with a preprocessing that creates additional information.
More precisely, we consider the approach to enrich the graph with arc labels
that mark, for each arc, possible target nodes of a shortest paths that start with
this arc. Dijkstra’s algorithm can then be restricted to arcs whose label mark
the target node of the current search, because a sub-path of a shortest path is
also a shortest path.

This concept has been introduced in [3] for the special case of a timetable
information system. There, arc labels are angular sectors in the given layout
of the train network. In [4], the approach has been studied for general weighted
graphs. Instead of the angular sectors, different types of convex geometric objects
are implemented and compared.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 189–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

190 R.H. Möhring et al.

A different variation has been presented in [1], where the graph is first parti-
tioned into regions. Then an arc-flag then consists of a bit-vector that marks the
regions containing target nodes of shortest paths starting with this arc. Usually,
arc-flags result in a much smaller search space for the same amount of prepro-
cessed data. Furthermore, the generation of arc-flags can be realized without the
computation of all-pairs shortest paths in contrast to the geometric objects of
[4]. In fact, only the distances to nodes are needed that lie on the boundary of a
region. (See [1] for details.) However in [5], it has been shown that partitioning
of the graph with METIS [6] generally results in a better reduction than for the
partitioning algorithms of [1].

The first contribution of this paper is a computational study whether par-
titioning algorithms from computational geometry can be used for the arc-flag
approach and how they compare to the results of METIS. The algorithms are
evaluated with large road networks, the typical application for this problem.

As a second contribution of this paper, we present a multi-level version of arc-
flags that produces the same speed-up with lower space consumption. Therefore,
these multi-level arc-flags can be seen as a (lossy) compression of arc-flags. Note
that the compression still guarantees the correctness of a shortest-path query
but may be slower than the uncompressed arc-flags.

We start in Sect. 2 with some basic definitions and a precise description of
the problem and the pruning of the search space of Dijkstra’s algorithm with
arc-flags. In Sect.3, we present the selection of geometric partitioning algorithms
that we used for our analysis. We discuss the two-level variant of the arc-flags
in Sect. 4. In Sect. 5, we describe our experiments and we discuss the results of
the experiments in Sect. 6. We conclude the paper with Sect. 7.

2 Definitions and Problem Description

2.1 Graphs

A directed simple graph G is a pair (V, A), where V is a finite set of nodes and
A ⊆ V × V are the arcs of the graph G. Throughout this paper, the number of
nodes |V | is denoted by n and the number of arcs |A| is denoted by m. A path
in G is a sequence of nodes u1, . . . , uk such that (ui, ui+1) ∈ A for all 1 ≤ i < k.
A path with u1 = uk is called a cycle. A graph (without multiple arcs) can have
up to n2 arcs. We call a graph sparse, if m ∈ O(n). We assume that we are given
a layout L : V → R

2 of the graph in the Euclidean plane. For ease of notation,
we will identify a node v ∈ V with its location L(v) ∈ R

2 in the plane.

2.2 Shortest Path Problem

Let G = (V, A) be a directed graph whose arcs are weighted by a function
l : A → R. We interpret the weights as arc lengths in the sense that the length
of a path is the sum of the weights of its arcs. The (single-source single-target)
shortest-path problem consists in finding a path of minimum length from a given

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 191

source s ∈ V to a given target t ∈ V . Note that the problem is only well defined
for all pairs, if G does not contain negative cycles. If there are negative weights
but not negative cycles, it is possible, using Johnson’s algorithm [7], to convert
in O(nm + n2 log n) time the original arc weights l : A → R to non-negative arc
weights l′ : A → R

+
0 that result in the same shortest paths. Hence, in the rest of

the paper, we can safely assume that arc weights are non-negative. Throughout
the paper we also assume that for all pairs (s, t) ∈ V ×V , the shortest path from
s to t is unique.1

2.3 Dijkstra’s Algorithm with Arc-Flags

The classical algorithm for computing shortest paths in a directed graph with
non-negative arc weights is that of Dijkstra [2]. For the general case of arbitrary
non-negative arc lengths, it still seems to be the fastest algorithm with O(m +
n log n) worst-case time. However, in practice, speed-up techniques can reduce
the running time and often result in a sub-linear running time. They crucially
depend on the fact that Dijkstra’s algorithm is label-setting and that it can be
terminated when the destination node is settled. (Therefore, the algorithm does
not necessarily search the whole graph.)

If one admits a preprocessing, the running time can be further reduced with
the following insight: Consider, for each arc a, the set of nodes S(a) that can be
reached by a shortest path starting with a. It is easy to verify that Dijkstra’s
algorithm can be restricted to the sub-graph with those arcs a for which the
target t is in S(a). However, storing all sets S(a) requires O(nm) space which
results in O(n2) space for sparse graphs with m ∈ O(n) and is thus prohibitive
in our case. We will therefore use a partition of the set of nodes V into p regions
for an approximation of the set S(a). Formally, we will use a function r : V →
{1, . . . , p} that assigns to each node the number of its region. (Given a 2D layout
of the graph, a simple method to partition a graph is to use a regular grid as
illustrated in Figure 1 and assign all nodes inside a grid cell the same number.)
We will now use a bit-vector ba : {1, . . . , p} → {true, false} with p bits, each
of which corresponds to a region. For each arc a, we therefore set the bit ba(i)
to true iff a is the beginning of a shortest path to at least one node in region
i ∈ {1, . . . , p}. For a specific shortest-path query from s to t, Dijkstra’s algorithm
can be restricted to the sub-graph Gt with those arcs a for which the bit of the
target-region is set to true. (For all edges on the shortest path from s to t the
arc-flag for the target region is set, because a sub-path of a shortest path is also
a shortest path.)

The sub-graph Gt can be computed on-line during Dijkstra’s algorithm. In a
shortest-path search from s to t, while scanning a node u, the modified algorithm
considers all outgoing arcs but ignores those arcs which have not set the bit for
the region of the target node t. All possible partitions of the nodes lead to a
correct solution but most of them would not lead to the desired speed-up of the
computation.

1 This can be achieved by adding a small fraction to the arc weights, if necessary.

192 R.H. Möhring et al.

Fig. 1. A 5 × 7 grid partitioning of Germany

The space requirement for the preprocessed data is O(p · m) for p regions
because we have to store one bit for each region and arc. If p = n and we assign
to every node its own region number, we store in fact all-pairs shortest paths:
if a node is assigned to its own, specific region, the modified shortest-path al-
gorithm will find the direct path without regarding unnecessary arcs or nodes.
Note however, that in practice even for p � n we achieved an average search
space that is only 4 times the number of nodes in the shortest path. Further-
more, it is possible within the framework of the arc-flag speed-up technique to
use a specific region only for the most important nodes. Storing the shortest
paths to important nodes can therefore be realized without any additional im-
plementation effort. (It is common practice to cache the shortest paths to the
most important nodes in the graph.)

3 Partitioning Algorithms

The arc-flag speed-up technique uses a partitioning of the graph to precompute
information on whether an arc may be part of a shortest path. Any possible
partitioning can be used and the algorithm returns a shortest path, but most
partitions do not lead to an acceleration. In this section, we will present the
partitioning algorithms that we examined. Most of these algorithms need a 2D
layout of the graph.

3.1 Grid

Probably the easiest way to partition a graph with a 2D layout is to use regions
induced by a grid of the bounding box. Each grid cell defines one region of the
graph. Nodes on a grid line are assigned to an arbitrary but fixed grid cell. Figure
1 shows an example of a 5 × 7 grid.

Arc-flags for a grid can be seen as a raster image of S(u, v), where S(u, v)
represents the set of nodes x for which the shortest u-x path starts with the arc

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 193

(u, v). The pixel i in the image is set, iff (u, v) is the beginning of a shortest
path to a node in region i ∈ {1, . . . , p}. A finer grid (i.e., an image with higher
resolution) provides a better image of S(u, v), but requires more memory. (On
the other hand, the geometric objects in [4] approximate S(u, v) by a single
convex object of constant size.)

The grid partitioning method uses only the bounding box of the graph—
all other properties like the structure of the graph or the density of nodes are
ignored and hence it is not surprising that the grid partitioning always has the
worst results in our experiments. Since [1, 5] include this partitioning method,
we use the grid partitioning as a baseline and compare all other partitioning
algorithms with it.

3.2 Quadtrees

A quadtree is a data structure for storing points in the plane. Quadtrees are
typically used in computational geometry for range queries and have applications
in computer graphics, image analysis, and geographic information systems.

Definition 1 (Quadtree). Let P be a set of points in the plane and R0 its
bounding-box. Then, the data structure quadtree is a rooted tree of rectangles,
where

– the root is the bounding region R0, and
– R0 and all other regions Ri are recursively divided into the four quadrants,

while they contain more than one point of P .

The leaves of a quadtree form a subdivision of the bounding-box R0. Even more,
the leaves of every sub-tree containing the root form such a subdivision. Since,
for our application, we do not want to create a separate region for each node, we
use a sub-tree of the quadtree. More precisely, we define an upper bound b ∈ N

of points in a region and stop the division if a region contains less points than
this bound b. This results in a partition of our graph where each region contains
at most b nodes. Fig. 2(a) shows such a partition with 34 regions. In contrast
to the grid-partition, this partitioning reflects the geometry of the graph—dense
parts will be divided into more regions than sparse parts.

3.3 Kd-Trees

In the construction of a quadtree, a region is recursively divided into four equally-
sized sub-regions. However, equally-sized sub-regions do not take into account
the distribution of the points. This leads to the definition of a kd-tree. In the
construction of a kd-tree, the plane is recursively divided in a similar way as for a
quadtree. The underlying rectangle is decomposed into two halves by a straight
line parallel to an axis. The directions of the dividing line alternate. The positions
of the dividing line can depend on the data. Frequently used positions are given
by the center of the rectangle (standard kd-tree), the average, or the median of
the points inside. (Fig. 2(b) shows a result for the median and 32 regions.) If

194 R.H. Möhring et al.

(a) Quadtree (34 regions) (b) Kd-Tree (32 regions) (c) METIS (32 regions)

Fig. 2. Germany with three different partitions

the median of points in general position is used, the partitioning has always 2l

regions.
The median of the nodes can be computed in linear time with the median of

medians algorithm [8]. Since the running time of the preprocessing is dominated
by the shortest-path computations after the partitioning of the graph, we decided
to use a standard sorting algorithm instead. (As a concrete example, the kd-tree
partitioning with 64 regions for one of our test graphs with one million nodes
was calculated in 175s, calculating the arc-flags took seven hours.)

3.4 METIS

A fast method to partition a graph into k almost equally-sized sets with a small
cut-set is presented in [9]. An efficient implementation can be obtained free-of-
charge from [6]. There are two advantages of this method for our application. The
METIS partitioning does not need a layout of the graph and the preprocessing
is faster because the number of arcs in the cut is noticeable smaller than in the
other partitioning methods. Fig. 2(c) shows a partitioning of a graph generated
by METIS.

4 Two-Level Arc-Flags

An analysis of the calculated arc-flags reveals that there might exist possibilities
to compress the arc-flags. For 80% of the arcs either almost none or nearly all bits
of their arc-flags are set. Table 1 shows an excerpt of the analysis we made. The
column ”= 1” shows the number of arcs, which are only responsible for shortest
paths inside their own region (only one bit is set). Arcs with more than 95%
bits set could be important roads. This justifies ideas for (lossy) compression

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 195

Table 1. Some statistics about the number of regions that are marked in arc-flags

graph #arcs algorithm # marked regions
= 1 < 10% > 95%

road network 1 920,000 KdTree(32) 351,255 443,600 312,021
road network 1 920,000 KdTree(64) 334,533 470,818 294,664
road network 1 920,000 METIS(80) 346,935 468,101 290,332
road network 4 2,534,000 KdTree(32) 960,779 1,171,877 854,670
road network 4 2,534,000 KdTree(64) 913,605 1,209,353 799,206

(a) Without two-level
arc-flags a search vis-
its almost all arcs in
the target region.

(b) For each arc a bit-vector is stored for the
coarse 5 × 5 grid and a bit-vector for a fine 3 × 3
grid in the same coarse region as the arc.

Fig. 3. Illustrations for two-level vectors

of the arc-flags, but it is important that the decompression algorithm is very
fast—otherwise the speed-up of time will be lost.

Let us have a closer look at a search space to get an idea of how to compress
the arc-flags. As illustrated in Figure 3(a) for a search from the dark grey node to
the light grey node, the modified Dijkstra search reduces the search space next
to the beginning of the search but once the target region has been reached, almost
all nodes and arcs are visited. This is not very surprising if you consider that
usually all arcs of a region have set the region-bit of their own region. We could
handle this problem if we used a finer partition of the graph but this would lead
to longer arc-flags (requiring more memory and a longer preprocessing). Take
the following example, if we used a 15 × 15 grid instead of a 5 × 5 grid, each
region would be split in 9 additional regions but the preprocessing data increases
from 25 to 225 bits per arc. However, the additional information for the fine grid
is mainly needed for arcs in the target region of the coarse grid. This leads to
the idea that we could split each region of the coarse partition but store this

196 R.H. Möhring et al.

additional data (for the fine grid) only for the arcs inside the same coarse region.
Therefore, each arc gets two bit-vectors: one for the coarse partition and one for
the associated region of the fine partition.

The advantage of this method is that the preprocessed data is smaller than
for a fine one-level partitioning, because the second bit-vector exists only for the
target region (34 bits per arc instead of 225). It is clear that the 15 × 15 grid
would lead to better results. However, the difference for the search spaces is small
because we expect that entries in arc-flags of neighboring regions are similar for
regions far away. Thus, we can see this two-level method as a compression of the
first-level arc-flags. We summarize the bits for remote regions. If one bit is set
for a fine region, the bit is set for the whole group.

Only a slight modification of the search algorithm is required. Until the target
region is reached, everything will remain unaffected, unnecessary arcs will be
ignored with the arc-flags of level one. If the algorithm has entered the target
region, the second-level arc-flags provide further information on whether an arc
can be ignored for the search of a shortest path to the target-node.

Experiments showed (Section 6) that this method leads to the best results
concerning the reduction of the search space, but an increased preprocessing
effort is needed. Note however, that it is not necessary in the preprocessing to
compute the complete shortest-path trees for all boundary nodes of the fine
partitioning. The computation can be stopped if all nodes in the same coarse
region are finished.

5 Experimental Setup

The main goal of this section is to compare the different partitioning algorithms
with regard to their resulting search space and speed-up of time during the ac-
celerated Dijkstra search. We tested the algorithms on German road networks,
which are directed and have a 2D layout and positive arc weights. Table 2 shows
some characteristics of the graphs. The column “shortest path” is the average
number of nodes on a shortest path in the graph. For the unmodified Dijkstra’s
algorithm, the average running time and number of nodes touched by the algo-
rithm is given for 5000 runs.

All experiments are performed with an implementation of the algorithms
in C++ using the GCC compiler 3.3. We used the graph data structure from

Table 2. Characteristics of tested road networks. The columns “shortest paths” pro-
vides the average number of nodes on a shortest path

Graph #nodes #arcs shortest Dijkstra’s algorithm
path time [s] #touched nodes

road network 1 362,000 920,000 250 0.26 183,509
road network 2 474,000 1,169,000 440 0.27 240,421
road network 3 609,000 1,534,000 580 0.30 306,607
road network 4 1,046,000 2,534,000 490 0.78 522,850

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 197

LEDA 4.4 [10]. As we do not have real-world shortest-path queries we considered
random queries for our experiments. For each graph, we generated a demand file
with 5000 random shortest-path requests so that all algorithms use the same
shortest-path demands. All runtime measurements were made on a single AMD
Opteron Processor with 2.2 GHz and 8 GB RAM. Note that our algorithms are
not optimized with respect to space consumption. However, even for the largest
graphs considered in this study significant less than 8 GB RAM would suffice.

Our speed-up method reduces the complete graph for each search to a smaller
sub-graph and this leads to a smaller search space. We sampled the average size
of the search space by counting the number of visited nodes and measured the
average CPU time per query. Dijkstra’s algorithm is used as a reference algo-
rithm to compare search space and CPU time. Fortunately, Dijkstra’s algorithm
with arc-flags only tests a bit of a bit-vector and does not lead to a significant
overhead. In graphs we tested, there is a strong linear correlation between the
search space and the CPU time. This justifies that in the analysis it is sufficient
to consider the search space only.

Arc-flags can be combined with a bidirectional search. In principle, arc-flags
can be used independently for the forward search, the backward search, or both
of them. In our experiments the best results (with a fixed total number of bits
per arc) achieved a forward and backward accelerated bidirectional search, which
means that we applied the partition-based speed-up technique on both search
directions (with half of the bits for each direction).

6 Computational Results

6.1 Quadtrees and Kd-Trees

We first compared the four geometric partitioning methods quadtrees and kd-
trees for the center (standard), average, and median. Figure 4(a) shows the
average search space for a road network for an increasing number of bits per arc.
As the differences are indeed very small, we will use only kd-trees with median
in the rest of this section as a representative for this partitioning class.

We now compare the average search space for different graphs. For an easy
comparison we consider the search space relative to the average search space
of Dijkstra’s algorithm in this graph. Figure 4(b) provides the relative average
search space for an increasing number of bits per arc. It is remarkable that for
arc-flags in this range of size all curves follow a power law.

6.2 Two-Level Partitionings

The main reason for the introduction of the second-level partitions was that no
arc is excluded from the shortest-path search inside the region of the target node
t. Therefore, the second-level arc-flags reduce the shortest-path search mainly if
the search already approaches the target. Figure 5 compares the search spaces
of the one-level and two-level accelerated searches. Although only very few bits
are added, the average search space is reduced to about half of its size.

198 R.H. Möhring et al.

10 20 50 100 200

2
0
0
0

4
0
0
0

6
0
0
0
8
0
0
0

1
2
0
0
0

Quadtree
kd−Tree Standard
kd−Tree Average
kd−Tree Median

bits per arc

se
ar

ch
sp

ac
e

[#
no

de
s]

(a) Partitioning with quadtree and
three kd-tree partitions (standard, av-
erage, and median). The difference for
the resulting search space is marginal.

10 20 50 100 200 500

0
.
5

1
.
0

2
.
0

5
.
0

1
0
.
0

2
0
.
0

street network 1
street network 2
street network 3
street network 4

bits per arc

se
ar

ch
sp

ac
e

[%
]

(b) Partitioning with median kd-tree
for road network 1-4. The search space
is plotted relative to the search space
of Dijkstra’s algorithm.

Fig. 4. Average search space for different sizes of arc-flags. With an increasing number
of bits per arc, the search space gets smaller

��������� ��������	 ��������
 ���������

�

����

	���

���

����

���

����

����

����

����

�����

�����

�	���

�
���

�����

������

������ �	������

��
��

��
��

��
�

��
�
��

��

Fig. 5. Comparison of one-level (64 regions) and two-level (64 first-level regions, 8
second-level regions) arc-flags with kd-trees

Using a bidirectional search, the two-level strategy becomes less important,
because the second-level arc-flags will not be used in most of the shortest-path
searches: the second-level arc-flags are only used, if the search enters the region
of the target. During a bidirectional search the probability is high that the
two search horizons meet in a different region than the source or target region.
Therefore, the second-level arc-flags are mainly used, if both nodes are lying in
the same region. Figure 6 confirms this estimation. Only for large partitions in
the first level is a speed-up recognizable. If more than 50 bits for the first level
are used, the difference is very small. We conclude that the second-level strategy
does not seem to be useful in a bidirectional search.

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 199

20 40 60 80 100 120 140

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

0 subregions
4 subregions
8 subregions

se
ar

ch
sp

ac
e

[#
no

de
s]

bits per arc (first and second level)
20 40 60 80 100 120 140

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

0 subregions
4 subregions
8 subregions

se
ar

ch
sp

ac
e

[#
no

de
s]

bits per arc (first level)

Fig. 6. Average search space for a bidirectional search using arc-flags by kd-trees.
The two-level strategy becomes irrelevant for the bidirectional search. If more than
50 regions are used for the first-level, the two-level acceleration does not provide any
noticeable improvement

6.3 Comparison of the Partitioning Methods

Finally, we want to compare the different algorithms directly. We have four
orthogonal dimensions in our algorithm tool-box:

1. The base partitioning method: Grid, KdTree or METIS
2. The number of partitions
3. Usage of one-level partitions or two-level partitions
4. Unidirectional or bidirectional search

Since computing all possible combinations on all graphs takes way too much
time, we selected the algorithms that are listed in Table 3. (We refrained from
implementing Bi2Metis, because usually the two-level arc-flags in a bidirectional
search hardly performed better than the one-level variant.) Furthermore, we fix
the size of the preprocessed data to nearly the same number for all algorithms.

Table 3. Partitionings with nearly the same preprocessed data size of 80 bit

Name of partitioning forward backward bits per arc
1st level 2nd level 1st level 2nd level

Grid 9 × 9 - - - 81
KdTree 64 - - - 64
METIS 80 - - - 80
2LevelGrid 8 × 8 4 × 4 - - 80
2LevelKd 64 16 - - 80
2LevelMETIS 72 8 - - 80
BiGrid 7 × 7 - 6 × 6 - 85
BiKd 32 - 32 - 64
BiMETIS 40 - 40 - 80
Bi2LevelGrid 6 × 6 2 × 2 6 × 6 2 × 2 80
Bi2LevelKd 32 8 32 8 80

200 R.H. Möhring et al.

(The same size can not be realized due to the restrictions by the construction of
the partitioning algorithms.) Figure 7 compares the results of our partitioning
methods on the four road networks.

For the unidirectional searches, the two-level strategies yield the best results
(a factor of 2 better than for their corresponding one-level partitioning). For the
bidirectional search, we can see some kind of saturation: the differences between
the partitioning techniques are very small.

Figure 8 shows the search space for the four road networks. Note that in the
case of a bidirectional search, a large number of bits per arc already shows some

0
50

00
10

00
0

15
00

0

G
ri
d(
81

)

K
dT

re
e(
64

)

M
E
T
IS
(8
0)

2L
ev
el
G
ri
d(
80

)

2L
ev
el
K
d(
80

)

2L
ev
el
M
E
T
IS
(8
0)

B
iG

ri
d(
85

)

B
iK

D
(6
4)

B
iM

E
T
IS
(8
0)

B
i2
Le

ve
lK

D
(8
0)

Fig. 7. Average search space for most of the implemented algorithms in road net-
works 1-4. The number of bits are noted in brackets

16 32 64 128 256

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

1
0
0
0
0

2
0
0
0
0

street network 1
street network 2
street network 3
street network 4

bits per arc

se
a
rc

h
sp

a
c
e

[#
n
o
d
e
s]

Fig. 8. Search space for road networks 1-4 with a bidirectional accelerated search using
kd-tree partitions

Partitioning Graphs to Speed Up Dijkstra’s Algorithm 201

effects of saturation as the curves are bent. In contrast, in Fig. 4(b) the curves
follow a power-law.

7 Conclusion and Outlook

The best partition-based speed-up method we tested is a bidirectional search,
accelerated in both directions with kd-tree or METIS partitions. We can measure
speed-ups of more than 500. (In general, the speed-up increases with the size of
the graph.) Even with the smallest preprocessed data (16 bit per arc), we get
a speed-up of more than 50. The accelerated search on network 4 is 545 times
faster than plain Dijkstra’s algorithm using 128 bits per arc preprocessed data
(1.3ms per search). Of the tested partitioning methods, we can recommend the
kd-tree used for forward and backward acceleration. The partitionings with kd-
trees and METIS yield the highest speed-up factors, but kd-trees are easier to
implement.

It would be particularly interesting to develop a specialized partitioning
method that is optimized for the arc-flags approach. Our experiments showed
that our intuition is right that regions should be equally sized and nodes should
be grouped together if their graph-theoretic distance is small. However, we can-
not prove that our intuition is theoretically the best partitioning method for
arc-flags. Although many further techniques are known from graph clustering,
all optimization criteria that we are aware of either result in a large running
time or their use for the arc-flags approach cannot be motivated.

For an unidirectional search the two-level arc-flags lead to a considerable
speed-up. The reduction of the search space outweighs by far the overhead to
“uncompress” two-level arc-flags. It would, however, be interesting to evaluate
whether this effect can be repeated with a third or fourth level of compression
(especially for very large graphs like the complete road network of Europe).

There are further known speed-up techniques [11, 12, 13, 14]. Although the
speed-up factors of these speed-up techniques are not competitive, experimental
studies [15, 16] with similar techniques suggest that combinations outperform a
single speed-up technique. A systematic evaluation of combinations with current
approaches would therefore be of great value.

References

1. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In Raubal, M., Sliwinski, A., Kuhn, W.,
eds.: Geoinformation und Mobilität - von der Forschung zur praktischen Anwen-
dung. Volume 22 of IfGI prints., Institut für Geoinformatik, Münster (2004) 219–
230

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

3. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Experimental Algorithmics
5 (2000)

202 R.H. Möhring et al.

4. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In Battista, G.D., Zwick, U., eds.: Proc. 11th Eu-
ropean Symposium on Algorithms (ESA 2003). Volume 2832 of LNCS., Springer
(2003) 776–787

5. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and con-
strained shortest path computation. (2005) Submitted to WEA’05.

6. Karypis, G.: METIS: Family of multilevel partitioning algorithms.
http://www-users.cs.umn.edu/~karypis/metis/ (1995)

7. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM (JACM) 24 (1977) 1–13

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge Massachusetts (2001)

9. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing archive 20 (1998) 359–392

10. Mehlhorn, K., Näher, S.: LEDA, A platform for Combinatorial and Geometric
Computing. Cambridge University Press (1999)

11. Jung, S., Pramanik, S.: HiTi graph model of topographical road maps in navigation
systems. In: Proc. 12th IEEE Int. Conf. Data Eng. (1996) 76–84

12. Holzer, M.: Hierarchical speed-up techniques for shortest-path algorithms. Tech-
nical report, Dept. of Informatics, University of Konstanz, Germany (2003)
http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/.

13. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a∗ search meets graph
theory. Technical Report MSR-TR-2004-24, Microsoft Research (2003) Accepted
at SODA 2005.

14. Gutman, R.: Reach-based routing: A new approach to shortest path algortihms
optimized for road networks. In Arge, L., Italiano, G.F., Sedgewick, R., eds.: Proc.
Algorithm Engineering and Experiments (ALENEX’04), SIAM (2004) 100–111

15. Holzer, M., Schulz, F., Willhalm, T.: Combining speed-up techniques for shortest-
path computations. In Ribeiro, C.C., Martins, S.L., eds.: Experimental and Ef-
ficient Algorithms: Third International Workshop, (WEA 2004). Volume 3059 of
LNCS., Springer (2004) 269–284

16. Wagner, D., Willhalm, T.: Drawing graphs to speed up shortest-path com-
putations. In: Proc. 7th Workshop Algorithm Engineering and Experiments
(ALENEX’05). LNCS, Springer (2005) To appear.

http://www-users.cs.umn.edu/~karypis/metis/

	Introduction
	Definitions and Problem Description
	Graphs
	Shortest Path Problem
	Dijkstra's Algorithm with Arc-Flags

	Partitioning Algorithms
	Grid
	Quadtrees
	Kd-Trees
	METIS

	Two-Level Arc-Flags
	Experimental Setup
	Computational Results
	Quadtrees and Kd-Trees
	Two-Level Partitionings
	Comparison of the Partitioning Methods

	Conclusion and Outlook

