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Abstract

In this paper we investigate to what extent the infor-
mation provided by routing tables about the graph of the
Autonomous Systems (ASes) can be used to understand dy-
namic phenomena occurring in the network. First, we clas-
sify the time scales at which such an analysis can be per-
formed and, consequently, the kinds of phenomena that
could be anticipated. Second, we improve cutting-edge
technologies used to analyze the structure of the network,
most notably spectral methods for graph clustering, in or-
der to be able to analyze a whole sequence of consecu-
tive snapshots that capture the temporal evolution of the
network. Finally, we use such tools to analyze the data
collected by the Oregon RouteViews project [20] during
the last few years. We confirm stable properties of the AS
graph, find major trends and notice that events occurring
on a smaller time-frame, like worm-attacks, misconfigura-
tions, outages, DDoS attacks, etc. seem to have a very di-
verse degree of impact on the AS graph structure, which
suggests that these techniques could be used to distinguish
some of them.

1 Introduction

Several researchers have started studying the Internet
and its properties. In fact, such a rich and dynamic environ-
ment can be analyzed with respect to both the adjacency re-
lationships between the entities composing it and the com-
plex information flowing through its links and stored in
its nodes. Often, this field of research produces intrigu-
ing results. For example, self-similarity laws, which are
usually found when studying natural or biological phenom-
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ena, were used to explain the apparently chaotic behavior
of traffic loads or the uneven distribution of the number of
adjacencies between the network nodes.

Recently, the general attention focused on the Au-
tonomous Systems (ASes), the independent organizations
whose cooperation guarantees the delivery of the packets
through the network. Since each AS exchanges traffic flows
with some neighbors (BGP peers), and local and remote ad-
jacencies can be gathered from the logs of the BGP conver-
sations between peers, plenty of current and historic data
is potentially available about the ASes, their peerings, and
the IP prefixes that are contained inside them. This kind
of information is used to produce reliable statistics on the
scalability of Internet technology and on the state of health
of global routing [17].

Usually, the AS graph is reconstructed by merging infor-
mation collected by a number of repositories managed by
private and public research organizations around the world.
Several studies have the purpose of analyzing the static
properties of the AS graph, including the kind of relation-
ships between its nodes, the distribution of their degrees, or
other graph-theoretic measures [14, 3, 10, 12, 25, 22].

In this paper we investigate to what extent the informa-
tion available from the BGP repositories can be used to un-
derstand the dynamic phenomena taking place in the Inter-
net. Since, to our knowledge, this is the first attempts to
systematically study dynamic properties of the AS graph,
we begin by classifying the timescales at which such ob-
servations can be carried out and, consequently, the kinds
of phenomena which may be anticipated, namely, stabil-
ity, major trends, and spot events. Second, we consider the
cutting-edge technologies described in the literature to an-
alyze the structure of the AS graph, most notably spectral
methods for graph clustering, and we advance and mod-
ify them in order to be able to analyze not only a single
snapshot, but a sequence of consecutive AS graphs cap-
turing the temporal evolution of the network. Finally, we
use such tools to analyze the data collected by the Oregon
RouteViews project [20] during the last few years, confirm-
ing known results and sensible hypotheses about the stable
properties of the Internet, measuring how the network is



evolving, and showing how this approach may turn out to
be a valuable tool for monitoring the network against some
types of malicious attacks. In fact, the various kinds of
transient phenomena affecting the Internet seem to have a
very different magnitude of impact on our measures, from
none at all (worm attacks, misconfigurations, etc.) to a sig-
nificant one (DDoS against DNS servers), offering a way
to distinguish them.

The paper is organized as follows: Section2 describes
the motivations that prompted our research. Section3 pro-
vides the necessary background and describes our method-
ological contribution to this domain of research. Section4
contains the results of our short- and long-term analysis of
the last few years of networks evolution and incidents. The
conclusions complete the paper.

2 Motivations

Data retrieved from BGP repositories is generally ana-
lyzed to determine the structure and properties of the net-
work of the Autonomous Systems at a specific time [13, 14,
3, 10, 12, 25]. However, a more sophisticated investigation
can only be accomplished by considering a whole sequence
of snapshots taken at subsequent moments. This is partic-
ularly true when the properties to be analyzed are related
to temporal aspects, like stability, growth, or the dynamics
of transitory phenomena. This kind of analysis can be per-
formed with different time granularity, addressing different
needs:

Long-term analysis Typically, the measures of the AS
graph are not constant, but heavily affected by noise,
rapid fluctuations, and sudden changes. A more stable
view, obtained by considering a sufficiently long time
window, would allow us to decide whether a partic-
ular snapshot actually fits into the ‘average’ network
behavior, to understand if a peculiar measure captures
a persistent property of the network or if it must be
ascribed to fortuitous fluctuations, and to spot slow
phenomena that take place over a period of months or
even of years. Combining acquired knowledge about
long-term temporal behavior allows to identify current
trends and helps to ensure that the network continues
to work properly.

Short-term analysis: The accessibility of detailed BGP
logs offers the opportunity to perform short-term anal-
ysis, that is to investigate changes occurring in a short
time period (and sometimes in a small neighborhood)
with the purpose of classifying them as noise, in-
cidents, outages, misconfigurations or malicious at-
tacks. Of course, an effective classification would al-
low us to detect anomalies that occurred in the past,
but the objective of this research may be much more

ambitious: devise techniques to spot anomalies as
they occur, by means of a preemptive monitoring of
the real-time and near-real-time behavior of the net-
work.

3 Methodology

In this section we give an overview of the terminology
we use, the data collection process, and our techniques.

3.1 Terminology

As usual, we build the graph of the Autonomous Sys-
tems starting from a setP of AS paths gathered from BGP
logs. Each AS path is associated with a prefix (an interval
of IP addresses) and consists of the sequence of the num-
bers of the Autonomous Systems traversed by the traffic
to be delivered to the associated prefix. The first number
in the sequence is calledvantage pointand is the source
that recorded the AS path, while the last number is thean-
nouncing AShosting the prefix IP numbers. In order to
preserve information about vantage points and their rela-
tive importance we enrich the AS graphG(V,E) with a
mappingφ : V × E −→ [0,∞[, where:

• each AS is represented by a node,

• there exists an undirected edge between two nodes, if
there exists a path inP in which the corresponding AS
numbers are consecutive, and

• the numberφ(v, e) equals the number of different
paths inP that havev as vantage point and containe.

This model allows us to keep track of the edge set seen by
each vantage point. AS graphs are very difficult to com-
pare, even if built from data sets taken at short intervals of
time. In fact, the very vantage points collecting data are of-
ten temporarily unavailable, inducing significant changes
in the observed portion of the network. Therefore, it is
sometimes desirable being able to consider the stable, com-
mon part of two subsequent AS graphs. We define thecom-
monly observed AS graphof two AS graphsG1 andG2

(with attached mappingsφ1 andφ2) as the graphGc where
an edge{u, v} is introduced if it has a value different from
zero for bothφ1(v, {u, v}) and φ2(v, {u, v}) for some
nodev. If needed, the value ofφc(v, {u, v}) is chosen to
be the minimum of the two values above. Isolated nodes
are removed fromGc.

3.2 Data Collection

Data on the actual routing can be collected by logging
the BGP routing tables. Unfortunately, some well-known
testbeds available on the web, e.g. [2], do not provide the



needed granularity with respect to time. In order to have
the needed width and density, we used data collected by
theOregon RouteViews Project([20]). This project was es-
pecially founded to grant real-time information about the
global routing system from the perspectives of several dif-
ferent backbones and locations around the Internet. Its data
is widely used by other network researchers and operators.
It started to operate on April 20th, 2001 and provides snap-
shots every two hours. The provided data is not purified and
contains misleading information, like repetitions of paths,
loops inside paths, or prepending of ASes. Further, other
issues can alter data, like truncated data files, time-outs,
lost connections, or connections closed too early. We there-
fore filtered data according to the following simple rules:

1. discard any data set that is truncated or shows signs of
technical problems, like the IP space is too limited,

2. enumerate all paths only once, and

3. delete loops and prepending ASes.

3.3 Observed Indices

A common approach is to define or use indices that
provide a succinct measure of the properties of the graph
which are to be monitored. We consider the number of
nodes, edges, vantage points and paths. The first two are
the classical graph theoretic measures and give a rough
measure of the size and the density of the network. The
other two are specific to this domain. They are needed
to reflect the various influences on the extracted network
view. So far, the total number of BGP-peerings between
ASes currently present in the Internet is unknown. It is
only known that a larger set of vantage points often implies
a larger set of paths. More paths often also result in more
edges. Unfortunately, the peer and path sets are affected
by various fluctuations themselves. Such changes can be
roughly classified as: Problems due to the collecting soft-
ware’s faults, connectivity problems that affected the col-
lection process, and actual changes in the routing graph.
The first two may lead to false conclusions and therefore
need to be removed. Most of these events can be elim-
inated by an online cleaning process. Other indices that
capture structural properties are the maximum core level
and the size of the induced core graph (both will be intro-
duced in Section3.4.1). Besides this static indices, we also
considered the similarity of consecutive snapshots, by con-
sidering the commonly observed AS graph and its size.

3.4 Abstract Views

In order to cope with the amount of data, we had to com-
pute a very concise description. We used different kinds

of simplification and clustering techniques, which offer the
opportunity to get highlevel views of the network structure
and behavior.

3.4.1 Cleaning the Graph

When dealing with large amounts of data, a usual tech-
nique is filtering out irrelevant information. Several au-
thors attempted to investigate relevance concepts for the
AS graph. The most common is the degree of a node,
used for example by Govindan and Reddy [16], Gao [14]
and Tauro et. al. [25]. We used the concept of coreness
which is strictly related to the degree of nodes and was in-
troduced in [23] and [5]. Thek-coreof a graph is defined as
the unique subgraph obtained by recursively removing all
nodes of a degree less thank. A node hascorenessvalue`,
if it belongs to thè -core but not to the(` + 1)-core. Core-
ness can be used to filter out peripheral ASes. A suitable
value ofk can be chosen, for example, based on the num-
ber of the remaining ASes. There are no evidences that the
scale-free property of the AS graphs might influence this
coreness-based cleaning. The coreness concept can be used
to generate a reduced model of the graph. We define the
core graphGcore(H) = (V ′, E′) of a graphH = (V,E) as
follows. LetEi,j be the subset of all edges (inH) incident
to nodes of corenessi andj. In Gcore(H) there is a node for
each distinct coreness value, and two nodesi andj are con-
nected, ifEi,j is not empty. An edge-weighting functionw
of H can be transformed into an edge weightw′ of Gcore

by settingw′(i, j) to the total weight of all edges inEi,j .
The AS graph has a very special structure, i.e. it is the re-

sult of merging paths. This composition reflects fundamen-
tal properties and thus a good filtering technique should re-
spect the inherent path properties. The quality of a filtering
technique could be measured by the number of AS paths
that remain connected in the reduced graph. For thek-core
filtering we defineµk(i) to be the fraction of paths that
havei connected components in thek-core. This number
depends on the input parameterk. In order to avoid such a
dependency and increase the insight into its compatibility,
we will consider lower bounds forµk(1). Such a bound
is given by the fraction of paths that remain connected in
all k-cores and is denoted byµ(1). On the other hand, we
also like to judge the degree of fragmentation. Therefore
we count the fraction of paths that would be cut intoi com-
ponents in ak-core for some valuek andi > 1. This value,
which is denoted byµ(i), gives an upper bound onµk(i).
An experimental validation on the coreness is presented in
Section4.1.1.

3.4.2 Clustering

Clustering is a well-known technique to explore the inner
structure of relationships and the roles of the participating



entities. It was already used for this purpose in research
areas such as social networks [6, 11], data mining [18],
and VLSI [4]. Gkantsidis et. al. [15] performed spectral
analysis and clustering on the AS graph. As part of their
preprocessing they delete all nodes of degree one or two,
which is equivalent to consider the 3-core. Other oper-
ations involved normalization or third-party information.
Their main analysis is based on spectral information and
involves eigenvectors. In this special scenario eigenvectors
are mappings from the node set to the real numbers and
proximity in these values often corresponds to dense sub-
graphs. They used a common heuristic to partition, which
is based on selecting connected subgraphs that share the
same sign in a specific eigenvector. By suitably choosing a
subset of the eigenvectors, they were able to produce clus-
ters characterized by strong geographic or business rela-
tionships. Good eigenvectors for this task are among those
that correspond to the largest eigenvalues.

We applied a clustering method, called Geometric MST
Clustering (GMC), that embodies the same intuition of the
proximity provided by the eigenvectors and that was intro-
duced in [8]. Although it involves more complex algorith-
mic steps, it can be fully automated, it explores the eigen-
vector structure to a larger extent, and requires only the
graph (and optionally an edge weighting). The general idea
is to interpret several eigenvectors, that are associated with
the largest eigenvalues of the normalized adjacency matrix,
as embedding for the graph and search within this geomet-
ric object for dense parts. The search itself is performed by
a Minimum-Spanning-Tree (MST) computation. By con-
sidering only the span of tree edges that have (geometric)
distance smaller than a given threshold, the MST represents
a hierarchy of clusterings. Evaluating this hierarchy with
different clustering indices allows to chose a good cluster-
ing as well as to incorporate several user-defined aspects.

The AS graph is quite inhomogeneous with respect to
the density. The major part of the nodes are only loosely
connected ([24]). In order to overcome this property and
concentrate on relevant ASes, we choose the minimumk-
core that has at most 200 elements. This choice is based on
a rough estimate on the number of important ASes and ex-
periments. As objective function for the clustering we used
quality(C) = 4

√
coverage(C) · performance(C)3, where

coverage is the ratio of numbers of edges within all clus-
ters and the total number of edges; andperformance is the
number of all adjacent node pairs lying in the same cluster
plus the number of all non-adjacent node pairs lying in a
different cluster divided by the total number of node pairs.
The coverage score is an indicator for the global density
of a clustering. Whileperformance rates the clustering
with respect to the disjoint-clique model. We chose this
objective function to focus more on structural issues than
on pure density. Again experiments verified the usability

of this objective function. Some properties of the resulting
clusterings are presented in Section4.1.2.

The integration of dynamic aspects, like the clustering
of a sequence of graphs, entails lots of problems. First
of all, the result format is not clear. Is a single partition
of the node set still required or for each point of time?
What is the importance ratio between edge set and time
horizon? Second, how can static algorithms be adapted?
And finally what should be the relation between static and
dynamic clusterings? In the few instances such problems
already arose, the following two methods were used to re-
duce the dynamic case to the static one, thus always cal-
culating a single partition of the node set. The first one
collapsed all graphs into one. Edges are present if their fre-
quency is large enough. This corresponds to consider the
’average’ graph over time and cluster it. The second ap-
proach clusters each graph individually and combines the
results afterwards to a single partition. In this case, the
’average’ clustering is output. Both versions have their dis-
advantages; the major problem is to find suitable thresholds
for the combination step. We will use the second approach
because it allows us to observe node movement more eas-
ily. However, statistical disturbances are the major source
of false conclusions for both methods, especially when the
given time frame is very short.

4 Experiments and Results

Basic properties and the quality of our auxiliary reduc-
tion techniques are presented first. This is necessary to in-
crease the understanding of the impact of these utilities and
to avoid wrong conclusions. It is followed by the major el-
ements of dynamic analysis – baselines, trends and anoma-
lies.

4.1 Evaluation of Reduction Techniques

The reduction techniques consist of cleaning and filter-
ing on one side and clustering on the other. The major dif-
ference is that the first keeps atomic elements – nodes still
represent single ASes – while clustering produces many
non-singleton groups. In this first part we present some
considerations that justify the use of the reduction tech-
niques in the later sections.

4.1.1 Validation of Cleaning and Filtering

It can be observed thatµ(1) always exceeded0.9, thus
more than 90% of all AS paths remained connected in ev-
eryk-core. Furthermore, onlyµ(2) andµ(3), which are the
upper bounds on the fraction of paths that are split into two
and three components, have values that are significantly
larger than zero. Figure1 shows the temporal evolution.
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Figure 1. Fraction of paths that are guaran-
teed to be connected and are split into two
or three components over time

These observations are good indicators that the core struc-
ture of the graph is compatible with the path structure in
general and therefore may be used for filtering purposes
without altering the graph structure too much.

4.1.2 Significance of Clustering

We selected several random snapshots and clustered them
individually. The observed features were averaged, used
as hypotheses for common properties, and verified against
other randomly selected samples. Thus, we found the fol-
lowing characteristics:

• two to six clusters have more than four elements; these
clusters cover together more than 70% of all elements

• the remaining clusters often contained only one ele-
ment

• clusters reflect geographical issues, i.e. the major clus-
ters separated US, Europe and Asia

The Cooperative Association for Internet Data Analysis
(CAIDA) provides limited geographic positions for several
ASes. These may include coordinates or affiliation to cer-
tain states. The relationship between clusters and this data
is shown in Figure2 and Table1. Thus, clusters reflect

(a) United States of America

(b) Europe

Figure 2. Geographical positions of some
ASes. Different shapes represent different
clusters, i.e. crosses for cluster 1 (33/86 po-
sitions available), squares for cluster 2 (10/17
positions available), and sharps for cluster 3
(4/6 positions available).

actual coherences of ASes as well as geographical issues.
Therefore it might be useful to detect and classify changes
in the network structure.



Clusters
Country 1. 2. 3. remaining
US 75 3 1 22
Europe 3 10 4 24
Africa 2 1 1 2
Asia 5 1 - 2
unknown 1 2 - 2

Table 1. Distribution of countries on clusters

4.2 Baselines and Trends

Determining the standard undisturbed behavior is one
fundamental task of dynamic analysis. As an initial step
we investigate the evolution of static indices. The temporal
evolution is shown in Figure3(a) and3(b). The number
of nodes and edges seem to be locally stable over time.
In order to verify this observation, we calculated the stan-
dard deviations of time frames of different length. Both
indices seem to be non-constant, therefore a larger time
window results in a larger deviation. In Figure4 the time
frame length is plotted versus the average standard devia-
tion (ASD). As expected the ASDs are isotonic in the frame
length, furthermore their increases can be expressed by lin-
ear function, thus verifying the local stability. The slope
for the number of edges is three times larger than for the
number of nodes. This can be explained by the fact, that
edges are subject to more consistent changes and depend
on the number of paths which in turn depend on the num-
ber of participating peers. For example, number of edges
and paths as well as number of paths and peers are highly
correlated (≈ 0.977 and≈ 0.897, respectively). In this spe-
cial scenario, we can utilize the path structure to normalize
the views by using the commonly observed AS graph of
two consecutive AS graphs. The size of the node set and
the edge set will be denoted by|V ′| and|E′|. This enables
us to decide whether a change in the number of nodes (or
edges) is only due to a change in the vantage points or not.
Figure5(a)displays the evolution of the number of nodes
and edges for the AS graphs and the commonly observed
AS graphs. Utilizing the detailed view of Figure5(b) we
conclude that the first two increases (2am and 10am) of
peers led to a larger view (new edges were added) while
the third increase (2pm) did not effect it (only redundant
information was added). However, we have to be careful
judging decreases, since the absence of vantage points can
have many reasons. Some of these causes are independent
of the (global) network status, like internal reorganization
or connection failures during the collection process.

Another approach to judge the undisturbed behavior of
the network involves a more structural and high-level view:
the core graph (Section3.4.1). We extend the concept by
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Figure 3. Graph theoretic and domain spe-
cific measures. The x-axis represents time,
starting in May 2001 till September 2003.

adding a node-weighting function that represents the frac-
tion of nodes (in the original graph) having a certain core-
ness. We observed that most nodes have a very low core-
ness score (one, two, or three). When edges are uniformly
weighted, there are two different types of edges with large
weight: edges that connect cores with a small index and
edges that connect low-index cores with high-index cores
(transition edges). In the case where edges are weighted
according to the number of paths that use them, transi-
tion edges and edges connecting cores with large index are
present. Figure6 shows such a core graph with the two
different edge weightings. This reflects the general intu-
ition, that many links are needed to connect the customer to
their provider and that the links that occur more frequently
in paths are links to or within the ’backbone’ and not in-
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side the periphery. This description is stable with respect
to time. In Figure7 the relative distribution of coreness
values are drawn; from the diagram it is evident that frac-
tions of nodes with the lowest and the highest coreness are
stable.

Long-term Patterns

Using these observed phenomena, we recognized two ma-
jor patterns. The first one is the linear growth of the num-
ber of nodes and edges. Although it seems to be a trivial
observation (Figure3(a)), it is not at all expected. Many re-
searchers have reported an exponential growth in the time
frame of 1997 till 2000. Because both indices grow in a
linear fashion, the ratio of observed edges to the total num-
ber of possible edges decreases. The second pattern is the
distribution of growth. ASes are separated according to
their importance in the core graph. By inspecting the evo-
lution of the core graph, we observed that most nodes enter
the graph with a very low coreness score, while edges (in
the path-weighted version) connect low-score nodes with
high-score nodes or only high-score nodes with each other.
This verifies the general intuition, that more customers than
(high-level) providers enter the system and that more con-
nections are established to connect the small providers with
the backbone or enlarge the backbone.

4.3 Short-Term Analysis – Anomalies

In this section we describe the results of short-term anal-
ysis. Namely, we measure the impact on our measurements
of dramatic short-lived events that occurred in the network
in the last few years. This section also offers the oppor-
tunity to test the effectiveness of the techniques described
in Section3.4.2to overcome the difficulties implied by the
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Figure 5. Sizes of AS graphs and commonly
observed AS graphs.

use of the clustering approach in a dynamic scenario on
real-world data. As already mentioned, events that last very
short are problematic. In these cases a higher granularity of
the data would be needed for better observations, but is of-
ten absent. However, our measurements suggest that events
occurring on a small time-window may be effectively clas-
sified with our clustered analysis. In particular, we show
in this section that some kind of sporadic phenomena, like
worm attacks or misconfigurations, even if they may have
a dramatic effect from the user’s point of view, do not seem
to have a measurable impact on the AS graph structure. On
the other hand, some very specific events, notably DDoS
attacks against DNS root servers, happen to cause a signifi-
cant change of the structure of the clusters. Thus, this kind
of analysis may be a promising tool, to be used as a litmus-
paper to test if one of these specific events is occurring in
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the network.

BGP storm due to worm attack. On July 19th 2001, the
Code Red II worm was spreading on the Internet ex-
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ploiting the indexing service vulnerability in the Microsoft
Internet Information Server MS-IIS ([9]). Although an ex-
ponentially growth in the advertisement rate was observed
by [7], we could not assess a significant change in the num-
ber of nodes and edges. In fact, Figure8 shows that the
number of nodes and edges is quite stable while the drop in
the number of peers accounts for the loss of paths. These
missing peers - AS715 and AS19092 - usually contribute
with more than 15,000 paths each. Using the clustering
technique, we could not spot any significant changes. In
fact, about 75% of all nodes were either perfectly stable
or switched between two clusters, the other nodes blinked
in and out of our observed view or could not be associ-
ated to one cluster. The number and sizes of the clusters
were stable. A similar behavior could be observed when
on September 18th 2001, a extremely virulent worm, called
W32.NIMDA, spread throughout the Internet using multi-
ple methods to inflect both Windows servers and user ma-
chines ([27]).

Shutdown of KPNQwest/Ebone and RIPE NCC Test
Traffic measures a 50% increase of alarms. In July
2002, KPNQwest, one of Europe’s largest Internet back-
bone provider had a time-out. The company went offline
on the 3rd and returned on the 25th ([19]). At the be-
ginning of this event, the RIPE NCC measures a 50% in-
crease of alarms on their TTMs (Test Traffic Measurement
Boxes, [26]). We observed a drop in the number of peers,
paths and edges. While the first two lasted only a few days,
the last one was present during the whole period. Figure9
shows this evolution. The clustering is rather stable when
we considered the three time periods (before, during and
after the shutdown) separately. However, we could observe
temporal migrations (small subsets formed new clusters or
were swallowed up), new ASes ’entered’ the system and
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Figure 8. Evolution around July 19th 2001

old ASes ’left’ during the transitions. The few drops in the
number of edges of the commonly observed AS graph (see
Figure9(a)) are probably due to technical issues and do not
reflect changes.

Misconfiguration in UUNet. UUNet (WorldCom)
stopped talking to the rest of the Internet on October 3rd
2002 between 12am and 9pm (UTC), due to misconfig-
uration in some of their routers. This caused increases
of respond times, delays, and packet losses ([21]). It
affected many other ASes, because UUNet carried half of
the world’s Internet traffic. Although the number of edges
seems to be affected, we could not observe a significant
change (see Figure10).

DDoS Attacks against 13 Internet Root Servers. On
October 21st 2002, a series of well-coordinated, simulta-
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neous DDoS attacks were launched from various points
around the world, against each of the 13 Root Servers that
are used for the Internet’s Domain Name System (DNS)
([21]). The attack, which disabled nine of the 13 Root
Servers, started at 8:45pm (UTC) and lasted approximately
two hours. We could only partially observe the event,
becauseOregon Routeviewhad a 6-hours blackout, due
to connection time-outs, starting at October 22nd 2am
(UTC) and the peer AS701 disappeared, causing a loss of
≈ 17, 600 paths earlier on the 21st (8am UTC). It never re-
turned as a vantage point. Thus, we can only analyze the
structure of the network before and during the attack, but
not immediately afterwards. Also, the loss of paths limits
the viewpoint. Similar to the previous worm attacks, the
number of nodes and edges is stable (see Figure11). The
clusterings are very stable, except for the point in time of
21st 8pm. In that instant a kind of splitting occurred. A
subset of 29 elements and a single node emerged from the
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largest cluster and built their own clusters. For simplicity
we denote the remaining part of the largest cluster by 1’
and the other two with 1” and 1”’ respectively, according
to their size. Table2 contains the geographic distribution
of the ASes located in those clusters. Most of the elements
in 1” and 1”’ were perfectly stable while belonging to clus-
ter 1 during the other time frames. The four Asian ASes –
AS2518, AS4143, AS4728, and AS4766 – are kind of ex-
change servers. The cluster 1” contains also several well-
know ASes like AT&T, Cable and Wireless, former Ge-
nuity, Globalcrossing, Sprintlink, UUnet, Verio, Microsoft
(three times) and Google. A more fascinating fact is that
in each cluster 1’ and 1” an unaffected or a less affected
DNS root server (AS297 and AS3557) is present. This is a
strong indicator that the clustering was affected. However,
the degree of interaction remains open. The current gran-
ularity is not high enough for a further and more detailed
analysis.

countries
clusters

1 1’ 1” 1”’

US 74 48 26 -
Europe 9 9 - -

Asia 11 7 3 1
Africa 1 1 - -

Australia 1 1 - -
unknown 1 1 - -

Table 2. The distribution of countries of the
cluster and its segmentation.
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Figure 11. Evolution around October 21st
2002

Sapphire worm attack. In the morning of 25th Jan-
uary 2003, theSapphire worm (also known asSQL
slammer ) was released on the Internet. Exploiting a
vulnerability in Microsoft SQL server it multiplied itself
rapidly and soon spread out over networks worldwide.
From news headlines and activity on mailing lists it was
clear the attack had an impact on the Internet’s perfor-
mance. Similar to theDDoS Attackour data sourceOre-
gon Routeviewhad a blackout from 8am till 12am due to
connection timeouts. Also two large peers - AS7660 and
AS8297 - were absent on 26th. Each contributed with more
than 16,000 paths. Thus our view point is very limited and
can hardly be used to distinguish between worm attack and
peer loss.

DDoS Attack on the RIPE NCC. Starting from 2pm
(UTC) February 27th, 2003, the RIPE NCC network suf-
fered a large DDoS attack (a distributed ICMP echo attack).
Their network structure was affected not only ICMP traf-
fic. Network condition returned back to normal the same
day at 4:30pm UTC. Shortly before (2am till 2pm) the
peer AS5459 did not contribute, causing a loss of≈ 7, 100
paths. Nothing unusual could be observed.

Blackouts. During August and September 2003, several
blackouts happened in different geographic regions. On
August 14th, around 6pm (UTC) started the cascading
chain of events that lead to a gigantic blackout in the north-
eastern part of America and Canada (refer to [1] for de-
tails). A 40-minute blackout took place in London on
August 28th (around 6 pm). The last one struck parts of
France, Italy and Switzerland on September 28th. It started
around 2:30 am and power returned during the afternoon.
The event in London could not be observed, since it was
too short. The other two exhibited a similar pattern: a
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large drop in the number of paths occurred at the start of
the event. This drop caused also a drop in the static in-
dices (number of nodes and number of edges). The recov-
ery phase was very short and the indices quickly got back
to their old scores. The drops in the number of nodes and
edges of the commonly observed AS graph (Figure12(a))
is not due to the blackout itself. They are results of the
disruption in the collection process. The reduced data set
was relatively stable. Most nodes were present more than
80% of the time. Only a small set (≈ 20 nodes) appeared
only once or twice. The clustering itself is relatively stable.
Figure13 shows the temporal development of the sizes of
the clusters. Smaller migrations, splittings or merging phe-
nomena could be observed. Although there is no clear pat-
tern or regularity apparent, it is a fact that these changes
occurred more frequently during the recovery phase, thus
giving a good indicator that clustering reflects aspects of
the event. Similar observations could be made during the
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Figure 13. Sizes of the different clusters dur-
ing the blackout in the US and Canada

blackout in Europe. However, the impact on the structure
was not comparable with respect to size and the recovery
time much shorter.

5 Conclusions

Clustering and reduction techniques are well-known and
widely-used approaches for analyzing large amounts of
data. We adapted these tools to the domain of the dy-
namic analysis of the Internet graph at the AS level. Sev-
eral experiments were performed to deepen the knowledge
of short- and long-term phenomena. The first target was
to describe the baseline behavior of the network in the ab-
sence of pathologic phenomena. Although the analysis was
relatively plain, we could verify several intuitional proper-
ties. A second effort went in the direction of measuring the
impact of short-lived events, such as viruses, misconfigura-
tions and blackouts. We found, that viruses and worms had
no measurable effect on the network structure, even if Inter-
net services might have been disrupted. In contrast, black-
outs and DDoS showed measurable consequences. Obvi-
ously, the analysis showed indisputable and precise evi-
dences of blackouts and power outages, but the symptoms
registered for DDoS are perhaps more promising from a
practical point of view.

Although hampered by lots of technical problems, as
the continuous changing of the available vantage points
or the uncertain identification of the ever-changing clus-
ters through time, we think that the dynamic analysis of the
AS graph is a promising field of research that could have
many useful outcomes in the future. In this paper we made
a first step towards the definition of a practical methodical
approach to this intriguing problem.
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Preprint 799, Universtiy of Ljibljana, 2002.

[6] Vladimir Batagelj, Anuska Ferligoj, and Patrick Dor-
eian. Generalized blockmodeling. Informatica
(Slovenia), 42(4), 1999.

[7] Code Red II and Nimda Worms and BGP Instabil-
ity. http://www.renesys.com/projects/
bgp_instability .

[8] Ulrik Brandes, Marco Gaertler, and Dorothea Wag-
ner. Experiments on graph clustering algorithms. In
Proceedings of the 11th Annual European Symposium
on Algorithms (ESA’03), Lecture Notes in Computer
Science. Springer-Verlag, 2003. To appear.

[9] The Code Red Worm.http://www.ciac.org/
ciac/bulletins/l-117.shtml .

[10] G. Di Battista, M. Patrignani, and M. Pizzonia. Com-
puting the types of the relationships between au-
tonomous systems. InIEEE INFOCOM 2003, 2003.

[11] Patrick Doreian, Vladimir Batagelj, and Anuska
Ferligoj. Symmetric-acyclic decompositions of net-
works. Journal of Classification, 17(1):3–28, 2000.

[12] T. Erlebach, A. Hall, and T. Schank. Classifying
customer-provider relationships in the internet. In
Proceedings of the IASTED International Conference
on Communications and Computer Networks, pages
538–545, 2002.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
SIGCOMM, pages 251–262, 1999.

[14] Lixin Gao. On inferring autonomous system relation-
ships in the internet.IEEE/ACM Transactions on Net-
working, 9(6):733–745, 2001.

[15] Christos Gkantsidi, Milena Mihail, and Ellen Zegura.
Spectral analysis of internet topologies. InIEEE In-
focom 2003, 2003.

[16] R Govindan and R. Reddy. An analysis of internet
inter-domain topology and route stability. InIEEE
INFOCOM 1997, 1997.

[17] Geoff Huston. BGP table statistics.http://bgp.
potaroo.net .

[18] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clus-
tering: A review. ACM Computing Surveys (CSUR),
31(3):264–323, 1999.

[19] KPNQwest limps back after shutdown.
http://news.com.com/2104-1033_
3-946262.html .

[20] David Meyer. University of oregon route views
project.http://www.routeviews.org/ .

[21] The internet outage and attacks of october
2002. http://www.isoc-chicago.org/
internetoutage.pdf .

[22] M. Rimondini, M. Pizzonia, G. Di Battista, and
M. Patrignani. Algorithms for the inference of the
commercial relationships between autonomous sys-
tems: Results analysis and model validation. submit-
ted to this workshop, 2004.

[23] S. B. Seidman. Network structure and minimum de-
gree.Social Networks, 5(5):269–287, 1983.

[24] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Falout-
sos. Power laws and the as-level internet topology. In
IEEE/ACM Transactions on Networking (TON), vol-
ume 11, pages 514–524. ACM Press, 2003.

[25] S. Tauro, C. Plamer, G. Siganos, and M. Faloutsos. A
simple conceptual model for the internet topology. In
IEEE Globalcom 2001, volume 3, pages 1667–1671,
2001.

[26] Test Traffic Analysis Update. http:
//www.ripe.net/ripe/meetings/
archive/ripe-43/presentations/
ripe43-tt-analysis/ .

[27] The W32.nimda Worm. http://www.ciac.
org/ciac/bulletins/l-144.shtml .

http://www.cnn.com/2003/US/08/16/blackout.chron.ap/index.html
http://www.cnn.com/2003/US/08/16/blackout.chron.ap/index.html
http://www.cnn.com/2003/US/08/16/blackout.chron.ap/index.html
http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/
http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/
http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/
http://www.renesys.com/projects/bgp_instability
http://www.renesys.com/projects/bgp_instability
http://www.ciac.org/ciac/bulletins/l-117.shtml
http://www.ciac.org/ciac/bulletins/l-117.shtml
http://bgp.potaroo.net
http://bgp.potaroo.net
http://news.com.com/2104-1033_3-946262.html
http://news.com.com/2104-1033_3-946262.html
http://www.routeviews.org/
http://www.isoc-chicago.org/internetoutage.pdf
http://www.isoc-chicago.org/internetoutage.pdf
http://www.ripe.net/ripe/meetings/archive/ripe-43/presentations/ripe43-tt-analysis/
http://www.ripe.net/ripe/meetings/archive/ripe-43/presentations/ripe43-tt-analysis/
http://www.ripe.net/ripe/meetings/archive/ripe-43/presentations/ripe43-tt-analysis/
http://www.ripe.net/ripe/meetings/archive/ripe-43/presentations/ripe43-tt-analysis/
http://www.ciac.org/ciac/bulletins/l-144.shtml
http://www.ciac.org/ciac/bulletins/l-144.shtml

	Introduction
	Motivations
	Methodology
	Terminology
	Data Collection
	Observed Indices
	Abstract Views
	Cleaning the Graph
	Clustering


	Experiments and Results
	Evaluation of Reduction Techniques
	Validation of Cleaning and Filtering
	Significance of Clustering

	Baselines and Trends
	Short-Term Analysis -- Anomalies

	Conclusions

