
8 Clustering

Marco Gaertler

Clustering is a synonym for the decomposition of a set of entities into ‘natural
groups’. There are two major aspects to this task: the first involves algorithmic
issues on how to find such decompositions, i.e., tractability, while the second con-
cerns quality assignment, i.e., how good is the computed decomposition. Owing
to the informal notion of natural groups, many different disciplines have devel-
oped their view of clustering independently. Originally, clustering was introduced
to the data mining research as the unsupervised classification of patterns into
groups [324]. Since that time a comprehensive framework has started to evolve.
In the following, the simple yet fundamental paradigm of intra-cluster density
versus inter-cluster sparsity will be discussed exclusively. This restriction is nec-
essary in order to provide some insight into clustering theory, and to keep the
scope of this chapter. However, many other interpretations of natural decompo-
sition extend this framework, or are relatively similar. Another specialty is that
the input data is represented as networks that are not complete in general. In
the classic clustering theory, entities were embedded in metric spaces, and the
distance between them was related to their similarity. Thus, all pairwise simi-
larities were known at the beginning. In standard network analysis, the input
networks are usually sparse. Even if they are not, it is very unlikely that they
are complete. This will be the motivation for studying clustering methods that
deal with network input data.

Clustering, based either on the simple paradigm of intra-cluster density ver-
sus inter-cluster sparsity or on other more sophisticated formulations, focuses
on disjoint cliques as the ideal situation. In some instances the desired cases
are totally different. Models where clusters and their connection between each
other can have more complex structural properties are targeted in the following
chapters about roles (Chapter 9) and blockmodels (Chapter 10).

The popularity of density-based clustering is due to its similarity to the
human perception. Most things in our daily life are naturally grouped into cat-
egories. For example books are classified with respect to their content, e.g., sci-
entific, fiction, guidebooks, law, etc. Each topic can be refined, e.g., scientific
publications can be grouped according to their scientific discipline. The relation-
ship of elements within the same group is strong, whereas elements in different
groups typically have a weak relation. Most approaches that deal with infor-
mation processing are based upon this fact. For example finding a book with
a certain content. First, related topics are selected and only those books that

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 178–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

8 Clustering 179

belong to these groups are examined closer. The recursive structure of topics
and subtopics suggests a repeated application of this technique. Using the clus-
tering information on the data set, one can design methods that explore and
navigate within the data with a minimum of human interaction. Therefore, it is
a fundamental aspect of automatic information processing.

Preliminaries

Let G = (V,E) be a directed graph. A clustering C = {C1, . . . , Ck} of G is a
partition of the node set V into non-empty subsets Ci. The set E(Ci, Cj) is the
set of all edges that have their origin in Ci and their destination in Cj ; E(Ci) is
a short-hand for E(Ci, Ci). Then E(C) :=

⋃k
i=1 E(Ci) is the set of intra-cluster

edges and E(C) := E \E(C) the set of inter-cluster edges. The number of intra-
cluster edges is denoted by m (C) and the number of inter-cluster edges by m (C).
In the following, we often identify a cluster Ci with the induced subgraph of G,
i.e., the graph G[Ci] := (Ci, E(Ci)). A clustering is called trivial if either k = 1
(1-clustering) or k = n (singletons). A clustering with k = 2 is also called a cut
(see also Section 2.2.3).

The set of all possible clusterings is denoted by A (G). The set A (G) is par-
tially ordered with respect to inclusion. Given two clusterings C1 := {C1, . . . , Ck}
and C2 := {C′

1, . . . , C
′
�}, Equation (8.1) shows the definition of the partial order-

ing.
C1 ≤ C2 : ⇐⇒ ∀ 1 ≤ i ≤ k : ∃ j ∈ {1, . . . , �} : Ci ⊆ C′

j (8.1)

Clustering C1 is called a refinement of C2, and C2 is called a coarsening of C1.
A chain of clusterings, i.e., a subset of clusterings such that every pair is com-
parable, is also called a hierarchy. The hierarchy is called total if both trivial
clusterings are contained. A hierarchy that contains exactly one clustering of k
clusters for every k ∈ {1, . . . , n} is called complete. It is easy to see that such a
hierarchy has n clusterings and that no two of these clusterings have the same
number of clusters.

Besides viewing a clustering as a partition, it can also be seen as an equiv-
alence relation ∼C on V × V , where u ∼C v if u and v belong to the same
cluster in C. Note that the edge set E is also a relation over V × V , and it is
an equivalence relation if and only if the graph consists of the union of disjoint
cliques.

The power set of a set X is the set of all possible subsets, and is denoted
by P(X), see also Section 2.4. A cut function S : P(V) → P(V) maps a set of
nodes to a subset of itself, i.e.,

∀ V ′ ⊆ V : S(V ′) ⊆ V ′ . (8.2)

Cut functions formalize the idea of cutting a node-induced subgraph into two
parts. For a given node subset V ′ of V the cut function S defines a cut
by (S(V ′), V ′ \ S(V ′)). In order to exclude trivial functions, we require a cut
function to assign a non-empty proper subset whenever possible. Proper cut
functions in addition fulfill the condition (8.3).

180 M. Gaertler

∀ V ′ ⊆ V : |V ′| > 1 =⇒ ∅ �= S(V ′) ⊂ V ′ . (8.3)

These functions are important for clustering techniques that are based on re-
cursive cutting. These methods will be introduced in Section 8.2.1, and some
examples are given in Section 8.2.2.

Graph model of this chapter. In this chapter, graph usually means simple and
directed graphs with edge weights and without loops.

Content Organization

The following is organized into three parts. The first one introduces measure-
ments for the quality of clusterings. They will provide a formal method to define
‘good’ clusterings. This will be important due to the informal foundation of
clustering. More precisely, these structural indices rate partitions with respect
to different interpretations of natural groups. Also, they provide the means to
compare different clusterings with respect to their quality. In the second part,
generic concepts and algorithms that calculate clusterings are presented. The fo-
cus is directed on the fundamental ideas, and not on concrete parameter choices.
Finally, the last section discusses potential enhancements. These extensions are
limited to alternative models for clusterings, some practical aspects, and Klein-
berg’s proposal of an axiomatic system for clustering.

8.1 Quality Measurements for Clusterings

As was pointed out in the introduction, clustering techniques are used to find
groups that are internally dense and that are only sparsely connected with each
other. Although this paradigm of intra-cluster density versus inter-cluster spar-
sity is more precise than the term ‘natural groups’, it is still based on our intuition
and not on a formal quantification. One way to mathematically express it is by
structural indices. These are mappings that assign a non-negative real number
to each clustering. Often their range is normalized to the unit interval, where one
means best possible structural behavior and zero means worst possible structural
behavior. In the following a general framework for indices is presented. Most of
the measurements can be expressed within it.

Let G = (V,E, ω) be a simple, weighted and directed graph, where ω : E →
�+

0 represents the strength of the similarity relation modeled by the edges, and
let C = {C1, . . . , Ck} be a clustering of G. It is indeed possible to have neg-
ative values as strength of similarity, which would express the dissimilarity of
two nodes. However, it is rarely the case that similarity and dissimilarity are
expressed within the same relation. A far more common case is to have two
(weighted) relations, one for similarity and one for dissimilarity. In the following,
we will focus on only one relation that expresses similarity. For the unweighted
case, the weighting function ω is assumed to be constantly one. In many cases ω
will be a mapping to �+, however, in some cases it is useful to distinguish be-
tween edges with weight zero and those node pairs that are not connected by an

8 Clustering 181

edge. We will also use the following short-cut for summing up the weight of an
edge subset:

ω(E′) :=
∑
e∈E′

ω(e) for E′ ⊆ E .

For simplicity, we assume that ω(E) �= 0.
Before defining the actual indices, their framework is presented. The indices

will be composed of two independent functions f, g : A (G) → �+
0 , where f

measures the density inside the clusters and g the sparsity between clusters.
The functions are combined in the following way:

index (C) :=
f (C) + g (C)

max{f (C′) + g (C′) : C′ ∈ A (G)} (8.4)

In order to guarantee the well-definition of Equation (8.4), we assume that there
is at least one clustering C′ such that f (C′)+ g (C′) is not zero. For some indices
either f or g is constantly zero. These indices examine only the (internal) density
or the (external) sparsity.

Indices serve two different purposes simultaneously: first and foremost, they
rate a partition with respect to clustering paradigms, and, second, they compare
clusterings regarding quality. Before we explain both aspects in detail, please
note that, while our indices have these properties, there exist other measures
that realize only one aspect.

The quality of a partition as a clustering is expressed in quantitative terms,
i.e., an index (discretely) counts certain substructures like intra-cluster edges,
triangles, or cliques. These structural elements are related to clustering proper-
ties. Many intra-cluster edges, triangles, or cliques inside the clusters indicate
that the cluster is dense. In an analogous way the lack of these elements between
clusters imply the inter-cluster sparsity. Thus, the quality of clustering is reduced
to a quantitative aspect. Intuitively, there will always be a maximum number
of these indicators. The number of intra-cluster edges, triangles, or cliques is
limited by the size of clusters. In the ideal case the bounds are met. Thus, if
an index counts only half of them, then the clustering is only half as good as
possible. As we will see, these bounds are not tight for all indices and all input
graphs. Thus, most of them are ‘absolute’ in the sense that they do not depend
on the input graph, but rather on the clustering paradigms. In conclusion, the
actual range of indices provides useful information.

Because of this absolute, quantitative structure of our indices, they can
be used to compare clusterings regardless of whether the underlying graph
is the same or not. Different graphs can have different bounds for the num-
ber of substructures, but the indices rate the quality relative to the individ-
ual bounds. For example, in a graph with 10 nodes and 15 edges a clustering
could have 12 intra-cluster edges, and in another graph with 18 nodes and 30
edges another clustering could have 27 inter-cluster edges. Although we have
three inter-cluster edges in both cases, the second clustering would be better
since 27/30 = 9/10 > 4/5 = 12/15. This property is required when algorithms

182 M. Gaertler

are evaluated with random instances, or the data of the input network is not re-
liable, i.e., different data collections result into different networks. The clustering
methods could be applied to all networks, and the clustering with the best score
would be chosen. However, if the index uses characteristics of the input graph,
like the number of edges, maximum weight, etc., then this comparison can only
be done when the underlying graph is the same for all clusterings. Therefore,
indices that depend on the input graph are not appropriate for all applications,
such as benchmarks. Although this dependency will seldom occur, one has to
consider these facts when designing new indices.

8.1.1 Coverage

The coverage γ (C) measures the weight of intra-cluster edges, compared to the
weight of all edges. Thus f (C) = ω(E(C)) and g ≡ 0. The maximum value is
achieved for C = {V }. Equation (8.5) shows the complete formula.

γ (C) :=
ω(E(C))
ω(E)

=

∑
e∈E(C) ω(e)∑

e∈E ω(e)
(8.5)

Coverage measures only the accumulated density within the clusters. Therefore,
an individual cluster can be sparse or the number of inter-cluster edges can be
large. This is illustrated in Figure 8.1. Coverage is also the probability of ran-

cluster 2cluster 1

(a) intuitive clustering

cluster 2cluster 1

(b) non-trivial clustering with best
coverage

Fig. 8.1. A situation where coverage splits an intuitive cluster. The thickness of an
edge corresponds to its weight. If normal edges have weight one and bold edges weight
100, then the intuitive clustering has γ = 159/209 ≈ 0.76 while the optimal value for
coverage is 413/418 ≈ 0.99

domly selecting an intra-cluster edge (where the probability of selection an edge
is proportional to its weight, i.e., Pr[e] ∼ ω(e)). The structure of clusterings with
optimal coverage value is related to the connectivity structure of the graph. A
clustering is compatible with the connectivity structure if clusters consist only
of unions of connected components of the graph. Proposition 8.1.1 gives a char-
acterization of clusterings with optimal coverage value.

8 Clustering 183

Proposition 8.1.1. A clustering has γ = 1 if and only if either the set of
inter-cluster edges is empty or all inter-cluster edges have weight zero. Especially,
clusterings that are compatible with the connectivity structure have coverage value
1.

Sketch of Proof. The edge set is disjointly partitioned into intra-cluster edges
and inter-cluster edges, therefore Equation (8.6) holds for any clustering C.

ω(E) = ω(E(C)) + ω(E(C)) (8.6)

Thus, coverage γ (C) = 1 holds if and only if ω(E(C)) = 0.
Because clusterings that are compatible with the connectivity structure of

the graph have no inter-cluster edge, one can use the equivalence to prove the
proposition. ��

A conclusion of Proposition 8.1.1 is that the 1-clustering always has a cov-
erage value 1. The case of disconnected input graphs is rather special and most
techniques even assume that it is connected. Proposition 8.1.1 can be extended
to characterize non-trivial clusterings that are optimal with respect to coverage.

A further characterization of non-trivial clusterings that are optimal when
trivial clusterings are excluded is possible and given in Proposition 8.1.2.

Proposition 8.1.2. Let G = (V,E) be a connected graph where every cut has
positive weight. Then the clusterings that have more than one cluster and have
optimal coverage value are those that are induced by a minimum cut.

Proof. First, it is obvious that every clustering C with k > 1 can be transformed
into a clustering C′ with less than k clusters, with γ (C) ≤ γ (C′). This is achieved
by merging any two clusters. Therefore, a non-trivial clustering with optimal
coverage has two clusters, and thus is a cut. Second, maximizing coverage is
equivalent to minimizing the weight of the inter-cluster edges, and the edges
that are contained in the cut have minimum weight. That completes the proof.

��

Because of the properties described in Propositions 8.1.1 and 8.1.2, coverage
is rarely used as the only quality measurement of a clustering. Minimum cuts
often cannot catch the intuition, and separate only a very small portion of the
graph. However, there are a few exceptions [286], where both, the input graph
and good clusterings, have a very special structure. An extended version will be
used for the next index (Section 8.1.2).

8.1.2 Conductance

In contrast to coverage, which measures only the accumulated edge weight within
clusters, one can consider further structural properties like connectivity. Intu-
itively, a cluster should be well connected, i.e., many edges need to be removed
to bisect it. Two clusters should also have a small degree of connectivity between
each other. In the ideal case, they are already disconnected. Cuts are a useful

184 M. Gaertler

method to measure connectivity (see also Chapter 7). The standard minimum
cut has certain disadvantages (Proposition 8.1.2), therefore an alternative cut
measure will be considered: conductance. It compares the weight of the cut with
the edge weight in either of the two induced subgraphs. Informally speaking, the
conductance is a measure for bottlenecks. A cut is a bottleneck, if it separates
two parts of roughly the same size with relatively few edges.

Definition 8.1.3. Let C′ = (C′
1, C

′
2) be a cut, i.e., (C′

2 = V \ C′
1) then the

conductance-weight a(C′
1) of a cut side and the conductance ϕ(C′) are defined

in Equations (8.7) and (8.8).

a(C′
1) :=

∑
(u,v)∈E(C′

1,V)

ω((u, v)) (8.7)

ϕ(C′) :=

1, if C′
1 ∈ {∅, V }

0, if C′
1 �∈ {∅, V }, ω(E(C)) = 0

ω(E(C))
min(a(C′

1), a(C′
2))

, otherwise

(8.8)

The conductance of the graph G is defined by

ϕ(G) = min
C1⊆V

ϕ((C1, V \ C1)) . (8.9)

Note that the case differentiation in Equation (8.8) is only necessary in order
to prevent divisions by zero. Before presenting further general information about
conductance, graphs with maximum conductance are characterized.

Lemma 8.1.4. Let G = (V,E, ω) be an undirected and positively weighted
graph. Then G has maximum conductance, i.e., ϕ(G) = 1 if and only if G
is connected and has at most three nodes, or is a star.

Proof. Before the equivalence is shown, two short observations are stated:

1. All disconnected graphs have conductance 0 because there is a non-trivial
cut that has zero weight and the second condition of the Formula (8.8) holds.

2. For a non-trivial cut C′ = (C′
1, V \C′

1) the conductance-weight a(C′
1) can be

rewritten as

a(C′
1) =

∑
e∈E(C′

1,V)

ω(e) = ω(E(C′
1)) + ω(E(C))

in undirected graphs. Thus, the third condition in Formula (8.8) can be
simplified to

ω(E(C))

min
(
a(C′

1), a(V \ C′
1)
) =

ω(E(C))

ω(E(C)) + min
(
ω(E(C′

1)), ω(E(V \ C′
1))

) .

(8.10)

8 Clustering 185

‘⇐=’: If G has one node, then the first condition of Formula (8.8) holds and
thus ϕ(G) = 1.
If G has two or three nodes or is a star, then every non-trivial cut C′ =
(C′

1, V \C′
1) isolates an independent set, i.e., E(C′

1) = ∅. This is achieved
by setting C′

1 to the smaller cut set if G has at most three nodes and to
the cut set that does not contain the center node if G is a star. There-
fore ω(E(C′

1)) = 0 and Equation (8.10) implies ϕ(C′) = 1. Because all
non-trivial cuts have conductance 1, the graph G has conductance 1 as
well.

‘=⇒’: If G has conductance one, then G is connected (observation 1) and for
every non-trivial cut C′ = (C′

1, V \C′
1) at least one edge set E(C′

1) or E(V \
C′

1) has 0 weight (observation 2). Because ω has only positive weight, at
least one of these sets has to be empty.
It is obvious that connected graphs with at most three nodes fulfill these
requirements, therefore assume that G has at least four nodes. The graph
has a diameter of at most two because otherwise there is a path of length
three with four pairwise distinct nodes v1, . . . , v4, where ei := {vi, vi+1} ∈
E for 1 ≤ i ≤ 3. Then the non-trivial cut C′ = ({v1, v2}, V \{v1, v2}) can-
not have conductance 1, because first the inequality ω(E(C′)) ≥ ω(e2) ≥ 0
implies the third condition of Formula (8.8) and second both cut sides are
non-empty (e1 ∈ E({v1, v2}) and e3 ∈ E(V \ {v1, v2})). By the same ar-
gument, G cannot contain a simple cycle of length four or greater. It
also cannot have a simple cycle of length three. Assume G has such a
cycle v1, v2, v3. Then there is another node v4 that is not contained in
the cycle but in the neighborhood of at least one vi. Without loss of
generality i = 1. Thus, the non-trivial cut ({v1, v4}, V \ {v1, v4}) is a
counterexample. Thus G cannot contain any cycle and is therefore a tree.
The only trees with at least four nodes, and a diameter of at most two,
are stars.

��

It is NP-hard to calculate the conductance of a graph [39]. Fortunately, it can
be approximated with a guarantee of O(log n) [565] and O(

√
logn) [36]. For

some special graph classes, these algorithms have constant approximation fac-
tors. Several of the involved ideas are found in the theory of Markov chains and
random walks. There, conductance models the probability that a random walk
gets ‘stuck’ inside a non-empty part. It is also used to estimate bounds on the
rate of convergence. This notion of ‘getting stuck’ is an alternative description of
bottlenecks. One of these approximation ideas is related to spectral properties.
Lemma 8.1.5 indicates the use of eigenvalues as bounds.

Lemma 8.1.5 ([521, Lemma 2.6]). For an ergodic1 reversible Markov
chain with underlying graph G, the second (largest) eigenvalue λ2 of the transi-
tion matrix satisfies:

1 Aperiodic and every state can be reached an arbitrary number of times from all
initial states.

186 M. Gaertler

λ2 ≥ 1 − 2 · ϕ(G) . (8.11)

A proof of that can be found in [521, p. 53]. Conductance is also related to
isoperimetric problems as well as expanders, which are both related to similar
spectral properties themselves. Section 14.4 states some of these characteristics.

For unweighted graphs the conductance of the complete graph is often a
useful boundary. It is possible to calculate its exact conductance value. Propo-
sition 8.1.6 states the result. Although the formula is different for even and odd
number of nodes, it shows that the conductance of complete graphs is asymp-
totically 1/2.

Proposition 8.1.6. Let n be an integer, then equation (8.12) holds.

ϕ(Kn) =

{
1
2 · n

n−1 , if n is even
1
2 + 1

n−1 , if n is odd
(8.12)

Proof. Evaluating Equation (8.8) in Definition 8.1.3 with G = Kn leads to

ϕ(Kn) = min
C⊂V,1≤|C|<n

|C| · (n− |C|)
min(|C|(|C| − 1), (n− |C|)(n − |C| − 1))

. (8.13)

Node subsets of size k of a complete graph are pairwise isomorphic, therefore
only the size of the subset C matters. Thus, Equation (8.13) can be simplified
to

ϕ(Kn) = min
1≤k<n

k(n− k)
min(k2 − k, n2 − 2nk − n− k)

. (8.14)

The fraction in Equation (8.14) is symmetric, thus it is sufficient if k varies in
the range from 1 to !n/2". Using the fact that the fraction is also monotonic
decreasing with increasing k, the minimum is assumed for k = �n/2 . A simple
case differentiation for even and odd ks leads to the final Equation (8.12). ��

In the following, two clustering indices are derived with the help of conduc-
tance. These will be intra-cluster conductance and inter-cluster conductance, and
both will focus on only one property. The first one measures internal density,
while the second rates the connection between clusters.

The intra-cluster conductance α is defined as the minimum conductance oc-
curring in the cluster-induced subgraphs G[Ci], i.e.,

f (C) = min
1≤i≤k

ϕ (G[Ci]) and g ≡ 0 . (8.15)

Note that G[Ci] in ϕ (G[Ci]) denotes a subgraph, and therefore is independent
of the rest of the original graph G. The conductance of a (sub)graph is small if it
can naturally be bisected, and great otherwise. Thus, in a clustering with small
intra-cluster conductance there is supposed to be at least one cluster containing
a bottleneck, i.e., the clustering is possibly too coarse in this case. The minimum
conductance cut itself can also be used as a guideline to split the cluster further
(refer to Section 8.2.2 for further details).

8 Clustering 187

The inter-cluster conductance δ considers the cuts induced by clusters, i.e.,

f ≡ 0 and g =

{
1, if C = {V }
1 − max

1≤i≤k
ϕ ((Ci, V \ Ci)) , otherwise . (8.16)

Note that (Ci, V \ Ci) in ϕ ((Ci, V \ Ci)) denotes a cut within the graph G. A
clustering with small inter-cluster conductance is supposed to contain at least
one cluster that has relatively strong connections outside, i.e., the clustering
is possibly too fine. In contrast to the intra-cluster conductance, one cannot
directly use the induced cut information to merge two clusters.

For both indices the maximum of f+g is one, which leads to the final formula:

α (C) := min
1≤i≤k

ϕ (G[Ci]) (8.17)

δ (C) :=

{
1, if C = {V }
1 − max

1≤i≤k
ϕ ((Ci, V \ Ci)) , otherwise (8.18)

Again a characterization of optimal clusterings is possible.

Proposition 8.1.7. Only clusterings where the clusters consist of connected
subgraphs that are stars or have size of at most three, have intra-cluster con-
ductance 1.

Proposition 8.1.8. Only clusterings that have an inter-cluster edge weight of
zero, including the 1-clustering, have inter-cluster conductance 1.

Both Proposition 8.1.7 and 8.1.8 are immediate consequences of the Defini-
tion 8.1.3 and Lemma 8.1.4. Both measures, intra-cluster conductance and
inter-cluster conductance, have certain disadvantages. Two examples are shown
in Figures 8.2 and 8.3. Both examples explore the ‘artificial’ handling of small
graphs considering their conductance. In practical instances, intra-cluster con-
ductance values are usually below 1/2. Small clusters with few connections have
relatively small inter-cluster conductance values.

8.1.3 Performance

The next index combines two non-trivial functions for the density measure f and
the sparsity measure g. It simply counts certain node pairs. According to the
general intuition of intra-cluster density versus inter-cluster sparsity, we define
for a given clustering a ‘correct’ classified pair of nodes as two nodes either
belonging to the same cluster and connected by an edge, or belonging to different
clusters and not connected by an edge. The resulting index is called performance.
Its density function f counts the number of edges within all clusters while its
sparsity function g counts the number of nonexistent edges between clusters, i.e.,

188 M. Gaertler

cluster 2cluster 1

(a) intuitive clustering

cluster 1 cluster 2 cluster 3 cluster 4

(b) non-trivial clustering with best
intra-cluster conductance

cluster 3cluster 2

cluster 4

cluster 5

cluster 1

(c) non-trivial clustering with best
intra-cluster conductance

Fig. 8.2. A situation where intra-cluster conductance splits intuitive clusters. The
intuitive clustering has α = 3/4, while the other two clusterings have α = 1. The split
in Figure 8.2(b) is only a refinement of the intuitive clustering, while Figure 8.2(c) shows
a clusterings with same intra-cluster conductance value that is skew to the intuitive
clustering

f (C) :=
k∑

i=1

|E(Ci)| and

g (C) :=
∑

u,v∈V

[(u, v) �∈ E] · [u ∈ Ci, v ∈ Cj , i �= j] .

(8.19)

The definition is given in Iverson Notation, first described in [322], and adapted
by Knuth in [365]. The term inside the parentheses can be any logical statement.
If the statement is true the term evaluates to 1, if it is false the term is 0. The
maximum of f+g has n·(n−1) as upper bound because there are n(n−1) different
node pairs. Please recall that loops are not present and each pair contributes with
either zero or one. Calculating the maximum of f + g is NP-hard (see [516]),
therefore this bound is used instead of the real maximum. By using some duality
aspects, such as the number of intra-cluster edges and the number of inter-cluster
edges sum up to the whole number of edges, the formula of performance can be
simplified as shown in Equation (8.21).

8 Clustering 189

cluster 4

cluster 3 cluster 2

cluster 1

(a) intuitive clustering

cluster 3 cluster 2

cluster 1

(b) non-trivial clustering with best
inter-cluster conductance

Fig. 8.3. A situation where two very similar clusterings have very different inter-
cluster conductance values. The intuitive clustering has δ = 0, while the other has the
optimum value of 8/9

perf (C) =
m (C) +

(
n(n− 1) −

∑k
i=1 |Ci|(|Ci| − 1) −m (C)

)
n(n− 1)

=
n(n− 1) −m + 2m (C) −

∑k
i=1 |Ci|(|Ci| − 1)

n(n− 1)
(8.20)

= 1 −
m(1 − 2m(C)

m) +
∑k

i=1 |Ci|(|Ci| − 1)
n(n− 1)

. (8.21)

Note that the derivation from Equation (8.20) to (8.21) applies the equality m =
m (C) + m (C), and that m (C) /m is just the coverage γ (C) in the unweighted
case. Similarly to the other indices, performance has some disadvantages. Its
main drawback is the handling of very sparse graphs. Graphs of this type do
not contain subgraphs of arbitrary size and density. For such instances the gap
between the number of feasible edges (with respect to the structure) and the
maximum number of edges (regardless of the structure) is also huge. For example,
a planar graph cannot contain any complete graph with five or more nodes, and
the maximum number of edges such that the graph is planar is linear in the
number of nodes, while in general it is quadratic. In conclusion, clusterings with
good performance tend to have many small clusters. Such an example is given
in Figure 8.4.

An alternative motivation for performance is given in the following. Therefore
recall that the edge set induces a relation on V × V by u ∼ v if (u, v) ∈ E, and
clusterings are just another notion for equivalence relations. The problem of
finding a clustering can be formalized in this context as finding a transformation
of the edge-induced relation into an equivalence relation with small cost. In

190 M. Gaertler

cluster 5

cluster 4 cluster 3

cluster 2cluster 1

(a) clustering with best performance

cluster 2

cluster 3cluster 1

(b) intuitive clustering

cluster 2cluster 1

(c) another intuitive clustering

Fig. 8.4. A situation where the clustering with optimal performance is a refinement
(Figure 8.4(b)) of an intuitive clustering and is skew (Figure 8.4(c)) to another intuitive
clustering

other words, add or delete edges such that the relation induced by the new edge
set is an equivalence relation. As cost function, one simply counts the number
of additional and deleted edges. Instead of minimizing the number of changes,
one can consider the dual version: find a clustering such that the clustering-
induced relation and the edge-set relation have the greatest ‘intersection’. This
is just the maximizing f +g. Thus performance is related to the ‘distance’ of the
edge-set relation to the closed clustering. Because finding this maximum is NP-
hard, solving this variant of clustering is also NP-hard. Although the problem is
hard, it possesses a very simple integer linear program (ILP). ILPs are also NP-
hard, however there exist many techniques that lead to usable heuristics or
approximations for the problems. The ILP is given by n2 decision variables Xuv ∈
{0, 1} with u, v ∈ V , and the following three groups of constraints:

8 Clustering 191

reflexivity ∀ u : Xuu = 1
symmetry ∀ u, v : Xuv = Xvu

transitivity ∀ u, v, w :

Xuv + Xvw − 2 ·Xuw ≤ 1
Xuw + Xuv − 2 ·Xvw ≤ 1
Xvw + Xuw − 2 ·Xuv ≤ 1

and minimizing objective function:∑
(u,v)∈V 2

(1 − Euv)Xuv + Euv(1 −Xuv) ,

with Euv =

{
1 , if (u, v) ∈ E or u = v

0 , otherwise
.

The idea is that the X variables represent equivalence relations, i.e., two
nodes u, v ∈ V are equivalent if Xuv = 1 and the objective function counts
the number of not ‘correct’ classified node pairs.

There exist miscellaneous variations of performance that use more complex
models for classification. However, many modifications highly depend on their
applicational background. Instead of presenting them, some variations to include
edge weights are given. As pointed out in Section 8.1, indices serve two different
tasks. In order to preserve the comparability aspect, we assume that all the
considered edge weights have a meaningful maximum M . It is not sufficient to
replace M with the maximum occurring edge weight because this value depends
on the input graph. Also, choosing an extremely large value of M is not suitable
because it disrupts the range aspects of the index. An example of such weightings
with a meaningful maximum are probabilities where M = 1. The weighting
represents the probability that an edge can be observed in a random draw.
Using the same counting scheme of performance, one has to solve the problem of
assigning a real value for node pairs that are not connected. This problem will
be overcome with the help of the meaningful maximum M .

The first variation is straightforward and leads to the measure functions given
in Equation (8.22):

f (C) :=
k∑

i=1

ω (E(Ci)) and

g (C) :=
∑

u,v∈V

M · [(u, v) �∈ E] · [u ∈ Ci, v ∈ Cj , i �= j] .

(8.22)

Please note the similarity to the unweighted definition in Formula (8.19). How-
ever, the weight of the inter-cluster edges is neglected. This can be integrated
by modifying g:

g′ (C) := g (C)+M ·
∣∣∣E(C)

∣∣∣− ω
(
E(C)

)
︸ ︷︷ ︸

=:gw(C)

. (8.23)

192 M. Gaertler

The additional term gw (C) corresponds to the difference of weight that would
be counted if no inter-cluster edges were present and the weight that is assigned
to the actual inter-cluster edges. In both cases the maximum is bounded by M ·
n(n− 1), and the combined formula would be:

perfw (C) =
f (C) + g (C) + ϑ · gw (C)

n(n− 1)M
, (8.24)

where ϑ ∈ [0, 1] is a scaling parameter that rates the importance of the weight
of the inter-cluster edges (with respect to the weight of the intra-cluster edges).
In this way there is a whole family of weighted performance indices.

An alternative variation is based on the duality. Instead of counting ‘cor-
rect’ classified node pairs the number/weight of the errors is measured. Equa-
tion (8.21) will be the foundation:

f̃ (C) =
k∑

i=1

(
M |Ci|(|Ci| − 1) − θ · ω(E(Ci)

)
and

g̃ (C) = ω
(
E(C)

)
,

(8.25)

where θ is a scaling parameter that rates the importance of the weight of the
intra-cluster edges (with respect to the weight of the inter-cluster edges). The
different symbols for density f̃ and sparsity g̃ functions are used to clarify that
these functions perform inversely to the standard functions f and g with respect
to their range: small values indicate better structural behavior instead of large
values. Both can be combined to a standard index via

perfm (C) = 1 − f̃ (C) + g̃ (C)
n(n− 1)M

. (8.26)

Note that the versions are the same for ϑ = θ = 1. In general, this is not true for
other choices of ϑ and θ. Both families have their advantages and disadvantages.
The first version (Equation (8.24)) should be used, if the clusters are expected
to be heavy, while the other version (Equation (8.26)) handles clusters with
inhomogeneous weights better.

8.1.4 Other Indices

Clearly these indices are only a small fraction of the whole spectrum used to
formalize and evaluate clusterings. However, they clarify different concepts very
well. This part covers some historical indices that have been used for clustering,
as well as some measures that are based on certain assumptions.

Clustering was originally applied to entities embedded in metric spaces or
vector spaces with a norm function. Many indices have been developed that use
essential structural properties of these spaces, e.g., the possibility to calculate
a barycenter or geometric coverings. Over time, some indices have been trans-
ferred to graph clustering as well. Because these spaces usually provide all pair

8 Clustering 193

information, the first problem is to estimate the similarity of nodes that are not
connected with an edge. This is often solved using shortest path techniques that
respect all information, like weight or direction, or only partial information, or
none. The most common measures resulting are: diameter, edge weight variance,
and average distance within the clusters. In contrast to the previous indices,
these measures do not primarily focus on the intra-cluster density versus inter-
cluster sparsity paradigm. Most of them even ignore the inter-cluster structure
completely. Another difference is that these indices usually rate each cluster in-
dividually, regardless of its position within the graph. The resulting distribution
is then rated with respect to the average or the worst case. Thus, a density mea-
sure2 π can be transformed into an index by applying π on all cluster-induced
subgraphs and rating the resulting distribution of values, e.g., via minimum,
maximum, average, or mean:

worst case: min
i

{π(G[C1]), . . . , π(G[Ck])}

average case:
1
k

∑
i

π(G[Ci])

best case: max
i

{π(G[C1]), . . . , π(G[Ck])}

Their popularity is partially based on the easy computation in metric or normed
vector spaces, where the distance (inverse similarity) of (all) pairs is defined by
their distance within the given space. The other reason is their use for greedy
approaches that will be introduced in Section 8.2.1.

Another kind of measure compares the partition with an average case of the
graph instead of an ideal case. This is especially preferred when the ideal situa-
tion is unknown, i.e., the network has very specific properties and thus general
clustering paradigms could hardly be fulfilled. For example, Newman [442] pos-
tulated that a (uniform) random graph does not contain a clustering structure
at all. Therefore, measuring the difference of numbers of edges within a cluster
and the expected number of edges that would randomly fall within the cluster
should be a good indicator whether the cluster is significant or not. The whole
formula is shown in Equation (8.27).

k∑
i=1

(
|E(Ci)| −m

|Ci| · (|Ci| − 1)|
n · (n− 1)

)
. (8.27)

One advantage is that one can now distinguish between good, ‘random’, and
bad clusterings depending on the sign and magnitude of the index. However, the
expected number of edges that fall at random in a subgraph may be a too global
view. The local density may be very inhomogeneous and thus an average global
view can be very inaccurate. Figure 8.5 sketches such an example. The graph
consists of two groups, i.e., a cycle (on the left side) and a clique (on the right
side), which are connected by a path. In this example there is no subgraph with
average density, in fact the two groups have a significantly different density. One
2 greater values imply larger density

194 M. Gaertler

Fig. 8.5. Graph with inhomogeneous density

way to restrict the global view of average density is to fix the degree of each
node and consider expected number of edges that fall at random in a subgraph.
The modified formula is given in Equation (8.28).

k∑
i=1

ω(E(Ci))

ω(E)
−
(∑

e∈E(Ci,V) ω(e)

ω(E)

)2

 . (8.28)

In general, these measures that compare the partition with an average case of the
graph seem to introduce a new perspective that has not yet been fully explored.

8.1.5 Summary

The presented indices serve as quality measurements for clusterings. They pro-
vide a formal way to capture the intuitive notation of natural decompositions.
Several of these indices can be expressed in a simple framework that models
the paradigm of intra-cluster density versus inter-cluster sparsity. It has been
introduced in Section 8.1. Table 8.1 summarizes these indices, the general form
is given in Equation (8.29).

index (C) :=
f (C) + g (C)

N
(8.29)

A commonality of these measures is that the associated optimization problem,
i.e., finding the clustering with best score, usually is NP-hard. If the optimal
structure is known in advance, as is the case for coverage or conductance, the
restriction to interesting or practically relevant clusterings leads to NP-hard
problems.

Bibliographic Notes. Further information about indices can be found in [324,
325]. In [569, Chapter 7] a collection of density concepts is presented that have
nearly the same intuition. Benchmark tests that are based on indices can be
found in [95].

There is also a lot of work done within the theory community, especially
disciplines like machine learning or neural networks, which targets approximating
indices or extracting structural properties to qualitatively rate partitions. Owing
to our limited scope, these aspects could not be covered. [170, 565] may serve as
an entry point to these issues.

8 Clustering 195

T
a
b
le

8
.1

.
S
u
m

m
a
ry

o
f
cl

u
st

er
in

g
in

d
ic

es

N
a
m

e
f

(C
)

g
(C

)
N

co
v
er

a
g
e

γ
(C

)
ω
(E

(C
))

0
ω
(E

)

in
tr

a
-c

lu
st

er
co

n
d
u
ct

a
n
ce

α
(C

)
m

in
1
≤

i≤
k
ϕ

(G
[C

i
])

0
1

in
te

r-
cl

u
st

er
co

n
d
u
ct

a
n
ce

δ
(C

)
0

� 1
,

if
C

=
{V

}
1
−

m
a
x

1
≤

i≤
k
ϕ

((
C

i
,V

\
C

i
))

,
o
th

er
w

is
e

1

p
er

fo
rm

a
n
ce

p
er

f(
C)

k � i=
1

|E
(C

i
)|

�

u
,v

∈
V

[(
u
,v

)
	∈

E
]
·[

u
∈

C
i
,v

∈
C

j
,i

	=
j]

n
(n

−
1
)

p
er

fo
rm

a
n
ce

p
er

f w
(C

)

k � i=
1

ω
(E

(C
i
))

M

�

u
,v

∈
V

[(
u
,v

)
	∈

E
]
·[

u
∈

C
i
,v

∈
C

j
,i

	=
j]

+
ϑ
·� M

·� � �E(
C)

� � �−
ω

� E
(C

)��

M
·n

(n
−

1
)

p
er

fo
rm

a
n
ce

1
−

p
er

f m
(C

)

k � i=
1

� M
|C

i
|(|

C
i
|−

1
)
−

θ
·ω

(E
(C

i
)�

ω

� E
(C

)�

M
·n

(n
−

1
)

196 M. Gaertler

8.2 Clustering Methods

This section covers the description of algorithmic paradigms and approaches
used to calculate clusterings. It is split in three parts: First, some fundamental
techniques are explained. Second, instances that embody these principles are
described. Third, related problems are discussed.

8.2.1 Generic Paradigms

The description of generic methods is structured into three groups: Greedy and
shifting approaches as well as general optimizing techniques utilized to find near-
optimal clusterings. Mostly the concepts and algorithms apply a certain number
of reductions to obtain an instance where a solution can easily be computed,
and then extend it to the original input. This is very similar to the standard
divide and conquer techniques, where instances are recursively divided until the
problem is trivially solvable. In contrast to this, the reduction step is more gen-
eral and can modify the instance completely. Thus, the reduced instance does
not need to be a subinstance of the original problem. The reduction step is
usually composed of two parts itself. First, significant substructures are identi-
fied. These can be bridges that are likely to separate clusters, or dense groups
that indicate parts of clusters. Such an identification is often formulated as a
hypothesis, and the recognized substructures are considered as evidence for its
correctness. After the recognition phase a proper modification is applied to the
current input graph. Such transformations can be arbitrary graph operations,
however, the usual modifications are: addition and deletion of edges, as well
as collapsing subgraphs, i.e., representing a subgraph by a new meta-node. A
sketch of this idea is given in Figure 8.6. The ‘shapes’ of the (sub)instances indi-
cate the knowledge of clustering, i.e., smooth shapes point to fuzzy information
while the rectangles indicate exact knowledge. In the initial instance (left figure,
upper row), no clustering information is present. During the reduction phases
parts of the graph became more and more separated, which is indicated by the
disjoint objects. The right instance in the upper row can be easily solved, and
the fuzzy information is transformed into exact information with respect to the
given instance. Based upon it, the expansion phase transfers this knowledge to
the original instance (left figure, lower row). An additional difference to divide
and conquer methods is that the size of the considered graphs can increase during
the reduction phases.

Greedy Concepts. Most greedy methods fit into the following framework:
start with a trivial and feasible solution and use update operations to lower
its costs recursively until no further optimization is possible. This scheme for a
greedy approach is shown in Algorithm 19, where c (L) denotes the cost of solu-
tion L and Ng (L) is the set of all solutions that can be obtained via an update
operation starting with solution L. This iterative scheme can also be expressed
for clusterings via hierarchies. A hierarchy represents an iterative refinement (or

8 Clustering 197

reduce−−−−→ reduce−−−−→

↓ solve

expand←−−−− expand←−−−−

Fig. 8.6. Example of successive reductions. The ‘shapes’ of the (sub)instances indicate
the knowledge of clustering, i.e., smooth shapes point to fuzzy information while the
rectangles indicate exact knowledge. The first row shows the application of modifica-
tions, while the second indicates the expansion phases

Algorithm 19: Scheme for greedy methods

let L0 be a feasible solution
i ← 0
while {L : L ∈ Ng (Li) , c (L) < c (Li)} 	= ∅ do

Li+1 ← argminL∈Ng(Li)
c (L)

i ← i + 1
return Li

coarsening) process. Greedy methods that use either merge or split operations
as updates define a hierarchy in a natural way. The restriction to one of these
operations guarantees the comparability of clusterings, and thus leads to a hier-
archy. These two concepts will be formalized shortly, before that some facts of
hierarchies are briefly mentioned.

Hierarchies provide an additional degree of freedom over clusterings: the
number of clusters is not fixed. Thus, they represent the group structure in-
dependently of its granularity. However, this feature usually increases the space
requirement, although a hierarchy can be implicitly represented by a tree, also
called a dendrogram, that represents the merge operations. Algorithms tend to
construct it explicitly. Therefore, their space consumption is often quadratic or
larger. For a few special cases these costs can be reduced with the help of data
structures [178].

198 M. Gaertler

The Linkage process (Agglomeration) iteratively coarses a given clustering
by merging two clusters until the 1-clustering is reached. The formal description
is shown in Definition 8.2.1.

Definition 8.2.1 (Linkage). Given a graph G = (V,E, ω), an initial cluster-
ing C1 and either a global cost function cglobal : A (G) → �+

0 or a cost func-
tion clocal : P(V) × P(V) → �+

0 for merging operations, the Linkage process
merges two clusters in the current clustering Ci := {C1, . . . , Ck} while possible
in the following recursive way:

global: let P be the set of all possible clusterings resulting from Ci by merging
two clusters, i.e.,

P :=
{
{C1, . . . , Ck} \ {Cµ, Cν} ∪ {Cµ ∪ Cν} | µ �= ν

}
,

then the new clustering Ci+1 is defined as an element in P with minimum
cost with respect to cglobal.

local: let µ, ν be those two distinct indices such that clocal has one global min-
imum in the pair (Cµ, Cν), then the new clustering Ci+1 is defined by
merging Cµ and Cν , i.e.,

Ci+1 := {C1, . . . , Ck} \ {Cµ, Cν} ∪ {Cµ ∪ Cν} .

Although the definition is very formal, the basic idea is to perform a cheapest
merge operation. The cost of such an operation can be evaluated using two
different view points. A local version charges only merge itself, which depends
only on the two involved clusters. The opposite view is a global version that
considers the impact of the merge operation. These two concepts imply also
the used cost functions, i.e., a global cost function has the set of clusterings as
domain while the local cost function uses a pair of node subsets as arguments.
An example of linkage is given in Figure 8.7. The process of linkage can be
reversed, and, instead of merging two clusters, one cluster is split into two parts.
This dual process is called Splitting (Diversion). The formal description is given
in Definition 8.2.2.

Definition 8.2.2 (Splitting). Let a graph G = (V,E, ω), an initial cluster-
ing C1, and one of the following function sets be given:

global: a cost function cglobal : A (G) → �+
0

semi-global: a cost function cglobal : A (G)→�+
0 and a proper cut function Slocal :

P(V) → P(V)
semi-local: a cost function clocal : P(V) × P(V) → �+

0 and a proper cut func-
tion Slocal : P(V) → P(V)

local: a cost function clocal : P(V) × P(V) → �+
0

The Splitting process splits one cluster in the current clustering Ci := {C1, . . .
Ck} into two parts. The process ends when no further splitting is possible. The
cluster that is going to be split is chosen in the following way:

8 Clustering 199

cluster 6

cluster 5 cluster 4

cluster 3

cluster 2cluster 1

(a) initial step

cluster 2,3

cluster 6

cluster 5 cluster 4

cluster 1

(b) 2nd step

cluster 1,2,3

cluster 4

cluster 6

cluster 5

(c) 3rd step

cluster 4,5

cluster 1,2,3

cluster 6

(d) 4th step

cluster 1,2,3,4,5

cluster 6

(e) 5th step

cluster 1,2,3,4,5,6

(f) final step

Fig. 8.7. Example of linkage

global: let P be the set of all possible clusterings resulting from Ci by splitting
one cluster into two non-empty parts, i.e.,

P :=
{
{C1, . . . , Ck} \ {Cµ} ∪ {C′

µ, Cµ \ C′
µ} | ∅ �= C′

µ � Cµ

}
,

then the new clustering Ci+1 is defined as an element in P with minimum
cost with respect to cglobal.

semi-global: let P be the set of all possible clusterings resulting from Ci by splitting
one cluster into two non-empty parts according to Slocal, i.e.,

P :=
{
{C1, . . . , Ck} \ {Cµ} ∪ {Slocal (Cµ) , Cµ \ Slocal (Cµ)}

}
,

then the new clustering Ci+1 is defined as an element in P with minimum
cost with respect to cglobal.

semi-local: let µ be an index such that clocal has one global minimum in the
pair (Slocal (Cµ) , Cµ \ Slocal (Cµ)) then the new clustering Ci+1 is defined
by splitting cluster Cµ according to Slocal, i.e.,

Ci+1 := {C1, . . . , Ck} \ {Cµ} ∪ {Slocal (Cµ) , Cµ \ Slocal (Cµ)} .

200 M. Gaertler

local: let µ be an index and Cν be a proper subset of cluster Cµ such that clocal

has one global minimum in the pair (Cν , Cµ \ Cν), then the new cluster-
ing Ci+1 is defined by splitting cluster Cµ according to Slocal, i.e.,

Ci+1 := {C1, . . . , Ck} \ {Cµ} ∪ {Cµ, Cµ \ Cν} .

Similar to the Linkage process, the definition is rather technical but the ba-
sic idea is to perform the cheapest split operation. In contrast to the Linkage
method, the cost model has an additional degree of freedom because clusters can
be cut in several ways. Again, there is a global and a local version that charge
the impact of the split and the split itself, respectively. Both correspond to the
views in the Linkage process. However, rating every possible non-trivial cut of
the clusters is very time consuming and usually requires sophisticated knowledge
of the involved cost functions. One way to reduce the set of possible splittings is
to introduce an additional cut function Slocal. It serves as an ‘oracle’ to produce
useful candidates for splitting operations. The semi-global and semi-local ver-
sions have the same principles a the global and the local version, however, their
candidate set is dramatically reduced. Therefore, they are often quite efficiently
computable, and no sophisticated knowledge about the cost function is required.
However, the choice of the cut function has usually a large impact on the quality.

Both, the Linkage and the Splitting process, are considered to be greedy
for several reasons. One is the construction of the successive clusterings, i.e., an
update operation chooses always the cheapest clustering. These can produce total
or complete hierarchies quite easily. Total hierarchies can be achieved by simply
adding the trivial clusterings to the resulting hierarchy. They are comparable
to all other clusterings, therefore preserving the hierarchy property. Recall that
complete hierarchies are hierarchies such that a clustering with k clusters is
included for every integer k ∈ [1, n]. Both processes lead to a complete hierarchy
when initialized with the trivial clusterings, i.e., singletons for Linkage and the
1-clustering for Splitting. Note that in the case of the Splitting process, it is
essential that the cut functions are proper. Therefore, it is guaranteed that every
cluster will be split until each cluster contains only one node. Although the cost
can be measured with respect to the result or the operation itself, clairvoyance
or projection of information into the future, i.e., accepting momentarily higher
cost for a later benefit, is never possible.

Because of their simple structure, especially in the local versions, both con-
cepts are frequently used and are also the foundation of clustering algorithms
in general. The general local versions can be very efficiently implemented. For
the Linkage process, a matrix containing all cluster pairs and their merging cost
is stored. When an update operation takes place, only the cost of merging the
new resulting cluster with another is recalculated. For certain cost functions this
scheme can even be implemented with less than quadratic space and runtime
consumption [178]. In the case of the Splitting process, only the cut information
needs to be stored for each cluster. Whenever a cluster gets split, one has to re-
compute the cut information only for the two new parts. This is not true for any
global version in general. However, a few very restricted cost and cut functions
can be handled efficiently also in the global versions.

8 Clustering 201

Shifting Concept. In contrast to the global action of the previous greedy
strategies, the shifting approaches work more locally. They choose an initial
clustering and iteratively modify it until a local optimum is found. Usually three
operations are permitted: first, a node moves from one cluster to another exist-
ing cluster, second, a node moves from one cluster to create a new cluster, and,
third, two nodes exchange their cluster assignments. Sometimes more complex
operations, like instant removal of one cluster and reassigning nodes to already
existing clusters, are allowed. However, these complex operations are usually
only used for speed-up, or to avoid artifical situations, therefore they will not
be discussed here. Note that one can typically simulate them by a sequence of
simple operations. Regarding algorithmic aspects, shifting concepts are relatively
close to the greedy ones. Algorithm 20 shows the general procedure where Ns (L)
denotes the set of all clusterings that can be obtained by applying the modifi-
cations to the clustering L. Step 1 can be based on cost or potential functions,

Algorithm 20: Scheme for shifting methods

let L0 be an initial solution
i ← 0
while Ns (Li) 	= ∅ do

choose Li+1 ∈ Ns (Li)1

i ← i + 1
return Li

random selecting, or on the applicational background. The technical definition
of the shifting concept is given in Definition 8.2.3, and uses a potential function
as selection criteria.

Definition 8.2.3. Given a graph G = (V,E, ω), an initial clustering C1 and
a potential function Φ : A (G) × A (G) → �, the Shifting process is defined
as performing any operation on the current clustering Ci that results in a new
clustering Ci+1 such that Φ (Ci, Ci+1) > 0.

Shifting concepts have many degrees of freedom. The choice of potential
functions is critical. There are two common subtypes of potentials: type-based
and compressed. Type-based potentials are functions that heavily depend on the
type of operations. They are often used to preserve certain properties. In the case
that creating a new cluster via a node movement is very expensive in contrast
to the other node movements, it is very likely that the number of clusters in
the final clustering is roughly the same as in the initial clustering. Compressed
or sequenced shifts collapse a series of operations into one meta-operation, and
rate only the output of this operation with its argument. Thus, a certain number
of operations are free of charge. These functions are often used in combination
with a standard potential function that has many local optima. By ignoring a
number of intermediate steps, it may be easier to reach a global optimum.

202 M. Gaertler

Owing to their contingent iterative nature, shifting approaches are rarely used
on their own. There can be sequences of shifting operations where the initial and
final clustering are the same, so-called loops. Also, bounds on the runtime are
more difficult to establish than for greedy approaches. Nonetheless, they are a
common postprocessing step for local improvements. An example of shifting is
given in Figure 8.8.

cluster 1

cluster 2cluster 3

(a) initial step

cluster 2

cluster 3

cluster 1

(b) 2. step

cluster 2

cluster 1

cluster 3

(c) 3. step

Fig. 8.8. Example of shifting

General Optimization Concepts for Clustering. The two previous con-
cepts, the greedy and the shifting framework, were fairly adapted. Both defined
precisely the permitted operations and constraints, and the conditions of their
application. The following concepts can be used for arbitrary optimization ap-
proaches. They are based on the idea that clusterings can be formulated as the
result of a generic optimization process. The input data may be generated in a
certain way with an implicit clustering structure. The optimization problem is to
extract a clustering that is relatively close to the hidden one. Alternatively, the
contained clustering is the result of an unknown optimization process. It is only
known that this process respects certain paradigms, like intra-cluster density,
inter-cluster sparsity, or both. The related problem is again to extract a cluster-
ing that is relatively close to the hidden one. The variety of techniques to solve
optimization problems is gigantic, therefore only the following are considered
here: parameter estimation, evolutionary and search-based approaches.

Parameter estimation is based on the assumption that the input data was
created by a (random) sampling process: There is a hidden graph with a certain
clustering, then a sample of the (whole) graph is drawn that will be the input
graph. The approach then tries to estimate the parameters of this sampling
process. These parameters will be used to reconstruct the clustering of the hidden
graph. Originally, these methods were introduced to find clusterings for data
embedded in metric spaces [325, Section 5.3]. There are clusterings that may be

8 Clustering 203

represented by a union of distributions, and the goal is to estimate the number
of distributions and their parameters (mean, deviation, etc.). The Expectation
Maximization (EM) is the most commonly used method. In general, it is only
applied to data that is embedded in a metric space. Although graphs are typically
not embedded, one can think of many processes that involve an implicit (metric)
topology. An example is the following: let a finite space with a topology, a set
of points, referred to as cluster centers, and a probability distribution for each
cluster center be given; then n nodes/points are introduced by choosing one
cluster center and a free spot around it that respects both the topology and its
distribution. Two nodes will be connected by edges if their distance (with respect
to the topology) is smaller than or equal to a given parameter. An example of
this process is shown in Figure 8.9. Thus, the graph (Figure 8.9(c)) would be

(a) initial topology (b) 2 cluster cen-
ters (diamonds) and
6 nodes (circles)

(c) resulting graph
with distance thres-
hold 3

Fig. 8.9. Example of generating a graph and its clustering using distributions.

the input graph, and the estimation approach would try to estimate the number
of cluster centers as well as the assignment of each node to a cluster center. In
the EM case, the resulting clustering should have the largest expectation to be
the original hidden clustering, i.e., the same number of cluster points and the
correct node cluster-point assignment.

Evolutionary approaches such as genetic algorithms (GA), evolution strat-
egies (ES) and evolutionary programming (EP) iteratively modify a population
of solution candidates by applying certain operations. ‘Crossover’ and ‘mutation’
are the most common ones. The first creates a new candidate by recombining
two existing ones, whilst the second modifies one candidate. To each candidate
a fitness value is associated, usually the optimization function evaluated on the
candidate. After a number of basic operations, a new population is generated
based on the existing one, where candidates are selected according to their fitness
value. A common problem is to guarantee the feasibility of modified solutions.
Usually this is accomplished by the model specification. In the context of cluster-

204 M. Gaertler

ing, the model can either use partitions or equivalence relations. As presented in
Section 8.1.3, clusterings can be modeled as 0-1 vectors with certain constraints.

Search-based approaches use a given (implicit) topology of the candidate
space and perform a random walk starting at an arbitrary candidate. Similar to
evolutionary approaches, the neighborhood of a candidate can be defined by the
result of simple operations like the mutations. The neighborhood of a clustering
usually is the set of clusterings that result from node shifting, cluster merging,
or cluster splitting. The selection of a neighborhood is also based on some fitness
value, usually the optimization function evaluated on the candidate. The search
usually stops after a certain number of iterations, after finding a local optimum,
or a combination of both.

8.2.2 Algorithms

Clustering methods have been developed in many different fields. They were
usually very adapted, either for specific tasks or under certain conditions. The
reduction of algorithms to their fundamental ideas, and constructing a framework
on top, started not that long ago. Thus, this part can only give a short synopsis
about commonly used methods.

Instances of Linkage. The different instances of the Linkage framework were
originally designed for distance edge weights. Distances are the ‘dual’ version of
similarities. Historically, the input data for clusterings algorithms was metrically
embedded and complete (the similarity/dissimilarity of every pair is known). In
these scenarios, it is possible to find clusterings using distance functions instead
of similarities, i.e., one has to search for spatially dense groups that are well-
separated from each other. If the distance function is only partially known, it is
no longer possible to derive information about the similarity of two objects from
their distance to other objects.

However, the use of distance functions had certain advantages that can be
carried over to similarity weights. One reason was that distances can be easily
combined to estimate the distance of a path. The most common way is the
summation of the edge weights along the path. The standard local cost functions
are defined as:

clocal (Ci, Cj) :=
⊙

{d(u, v) : u ∈ Ci, v ∈ Cj} , (8.30)

where d(u, v) is the length of any shortest path connecting u and v, and
⊙

is any
set evaluation function, like minimum, average, or maximum. Indeed these three
versions are called Single Linkage, Average Linkage, and Complete Linkage. A
possible explanation of the name Single Linkage is that the cheapest, shortest
path will be just an edge with minimum weight inside of E(Ci, Cj). Note that
the cost function can be asymmetric and have infinity as its value. Also, note
that it is necessary to use the length of the shortest paths because not every node
pair (u, v) ∈ Ci ×Cj will be connected by an edge. In fact, the set E(Ci, Cj) will
be empty in the ideal case.

8 Clustering 205

When dealing with similarities instead of distances one has to define a mean-
ingful path ‘length’. A simple way is to ignore it totally and define the cost
function as

clocal (Ci, Cj) :=
⊙

{M − ω(e) : e ∈ E(Ci, Cj)} , (8.31)

where M is the maximum edge weight in the graph. Alternatively, one can define
the similarity of a path P : v1, . . . , v� by:

ω(P) :=

(
�−1∑
i=1

1
ω(vi, vi+1)

)−1

. (8.32)

Although this definition is compatible with the triangle inequality, the meaning
of the original range can be lost along with other properties. Similar to cost
definition in Equation (8.31), the distance value (in Equation(8.30)) would be
replaced by (n− 1)M −ω(P). These ‘inversions’ are necessary to be compatible
with the range meaning of cost functions. Another definition that is often used
in the context of probabilities is

ω(P) :=
�−1∏
i=1

ω(vi, vi+1) . (8.33)

If ω(vi, vi+1) is the probability that the edge (vi, vi+1) is present and these
probabilities are independent of each other, then ω(P) is the probability that
the whole path exists.

Lemma 8.2.4. The dendrogram of Single Linkage is defined by a Minimum
Spanning Tree.

Only a sketch of the proof will be given. A complete proof can be found
in [324]. The idea is the following: consider the algorithm of Kruskal where
edges are inserted in non-decreasing order, and only those that do not create
a cycle. From the clustering perspective of Single Linkage, an edge that would
create a cycle connects two nodes belonging to the same cluster, thus that edge
cannot be an inter-cluster edge, and thus would have never been selected.

The Linkage framework is often applied in the context of sparse networks
and networks where the expected number of inter-cluster edges is rather low.
This is based on the observation that many Linkage versions tend to produce
chains of clusters. In the case where either few total edges or few inter-cluster
edges are present, these effects occur less often.

Instances of Splitting. Although arbitrary cut functions are permitted for
Splitting, the idea of sparse cuts that separate different clusters from each
other has been the most common one. Among these are: standard cuts (Equa-
tion (8.34)), Ratio Cuts (Equation (8.35)), balanced cuts (Equation (8.36)),

206 M. Gaertler

Table 8.2. Definition of various cut functions

S (V) := min
∅�=V ′⊂V

ω(E(V ′, V \ V ′)) (8.34)

Sratio (V) := min
∅�=V ′⊂V

ω(E(V ′, V \ V ′))

|V ′| · (|V | − |V ′|) (8.35)

Sbalanced (V) := min
∅�=V ′⊂V

ω(E(V ′, V \ V ′))

min(|V ′|, (|V | − |V ′|)) (8.36)

Sconductance (V) := min
∅�=V ′⊂V

δ(V ′) (8.37)

S2–sector (V) := min
V ′⊂V,

	|V |/2
≤|V ′|≤�|V |/2�

ω(E(V ′, V \ V ′)) (8.38)

Conductance Cuts (Equation (8.37)), and Bisectors (Equation (8.38)). Table 8.2
contains all the requisite formulae.

Ratio Cuts, balanced cuts, and Bisectors (and their generalization, the k–
Sectors) are usually applied when the uniformity of cluster size is an important
constraint. Most of these measures are NP-hard to compute. Therefore, approx-
imation algorithms or heuristics are used as replacement. Note that balanced
cuts and Conductance Cuts are based on the same fundamental ideas: rating
the size/weight of the cut in relation to the size/weight of the smaller induced
cut side. Both are related to node and edge expanders as well as isoperimetric
problems. These problems focus on the intuitive notion of bottlenecks and their
formalizations (see Section 8.1.2 for more information about bottlenecks). Some
spectral aspects are also covered in Section 14.4, and [125] provides further in-
sight. Beside these problems, the two cut measures have more in common. There
are algorithms ([565]) that can be used to simultaneously approximate both cuts.
However, the resulting approximation factor differs.

Splitting is often applied to dense networks or networks where the expected
number of intra-cluster edges is extremely high. An example for dense graphs
are networks that model gene expressions [286]. A common observation is that
Splitting methods tend to produce small and very dense clusters.

Non-standard Instances of Linkage and Splitting. There are several al-
gorithms that perform similar operations to ‘linkage’ or ‘splitting’, but do not
fit into the above framework. In order to avoid application-specific details, only
some general ideas will be given without the claim of completeness.

The Identification of Bridge Elements is a common Splitting variant, where
cuts are replaced by edge or node subsets that should help to uncover individual
clusters. One removal step can lead to further connected components, however it
is not required. Figure 8.10 shows such an example. Most of the techniques that
are used to identify bridge elements are based on structural indices, or properties

8 Clustering 207

Fig. 8.10. Example for the removal of bridge elements. Removed elements are drawn
differently: edges are dotted and nodes are reduced to their outline

derived from shortest path or flow computations. Also centralities can be utilized
for the identification [445].

Multi-Level Approaches are generalizations of the Linkage framework, where
groups of nodes are collapsed into a single element until the instance becomes
solvable. Afterwards, the solution has to be transformed into a solution for the
original input graph. During these steps the previously formed groups need not
be preserved, i.e., a group can be split and each part can be assigned to individual
clusters. In contrast to the original Linkage framework, here it is possible to tear
an already formed cluster apart. Multi-level approaches are more often used in
the context of equi-partitioning, where k groups of roughly the same size should
be found that have very few edges connecting them. In this scenario, they have
been successfully applied in combination with shiftings. Figure 8.11 shows an
example.

Modularity – as presented at the beginning of Section 8.2.1, clustering algo-
rithms have a very general structure: they mainly consist of ‘invertible’ transfor-
mations. Therefore, a very simple way to generate new clustering algorithms is
the re-combination of these transformations, with modifications of the sequence
where appropriate. A reduction does not need to reduce the size of an instance,
on the contrary it also can increase it by adding new data. There are two different
types of data that can be added. The first is information that is already present
in the graph structure, but only implicitly. For example, an embedding such
that the distance in the embedding is correlated to the edge weights. Spectral
embeddings are quite common, i.e. nodes are positioned according to the entries
of an eigenvector (to an associated matrix of the graph). More details about
spectral properties of a graph can be found in Chapter 14. Such a step is usually
placed at the beginning, or near the end, of the transformation sequence. The
second kind is information that supports the current view of the data. Similar to
the identification of bridge elements, one can identify cohesive groups. Bridges
and these cohesive parts are dual to each other. Thus, while bridges would be
removed, cohesive groups would be extended to cliques. These steps can occur
during the whole transformation sequence.

208 M. Gaertler

(a) input graph

Group 4

Group 3Group 2

Group 1

(b) identifying groups

(c) collapsing groups

Group 2Group 1

(d) solving the instance

Group 1 Group 2

(e) expanding internal groups

Group 1 Group 2

(f) locally optimizing groups

Fig. 8.11. Example of a multi-level approach

8 Clustering 209

8.2.3 Bibliographic Notes

A good introduction to the variety of clustering techniques is given in [324, 325].
Although data mining is their primary motivation, other applicational aspects
are covered as well. Equi-partitioning, i.e., finding a clustering where clusters
have roughly the same size, is a slightly different problem from the general clus-
tering problem. It is rooted in many divide and conquer methods. Many solving
techniques involve splitting via cut functions and shiftings. Chip design (VLSI)
is one major research field that has developed such algorithms. A survey that
covers general methods as well as their relevance to VLSI is presented in [27].
More generally, finding good partitions, approximating sparse-cuts, and calculat-
ing (multi-commodity) flows has to be solved via (integer) linear programming.
An introduction is given in [439, 507]. There are several other disciplines that
deal with similar clustering and pattern matching problems, like Artifical In-
telligence, neural networks, image processing [564], genetics [286], and facility
location [439, 507]. Especially, facility location and its derivatives can be seen as
extended clustering problems. There, a set of elements has to be covered by a
subset of candidates, fulfilling certain constraints and optimizing a global target
function. This is also closely related to the parameter estimation framework. An
introduction to the general topic is provided in [169].

There is also a lot of work done within the theory community that develops
sophisticated approximations and sampling techniques. These methods have the
advantage that a provable guarantee of quality of resulting clustering can be
given (see for example [36, 565, 170]). On the other hand, these techniques
rarely operate on the clustering structure itself, but utilize other paradigms for
finding a suitable decomposition. One of these tools is spectral decomposition.
Unfortunately, these aspects go beyond the scope of this chapter. Some examples
can be found in [27, 565, 170]. Spectral properties of networks are discussed in
more detail in Chapter 14.

8.3 Other Approaches

The previous sections about quality measuring (Section 8.1) and clustering tech-
niques (Section 8.2) provide an introduction both for application as well as for the
topic as a whole. However, certain aspects have been neglected. Among them are
extensions of clustering, alternative descriptions, axiomatics, dynamic updates,
evaluation, pre- and post-processings. Discussing everything would definitely go
beyond our scope, therefore only extensions of clusterings and axiomatics will
be presented.

8.3.1 Extensions of Clustering

Clusterings were introduced as partitions of the node set. The extensions that
are presented also group the node set.

Fuzzy clustering relaxes the disjoint constraint, thus clusters can overlap
each other. The basic idea is that bridging elements belong to adjacent clusters

210 M. Gaertler

rather than build their own one. In order to avoid redundancy, one usually
requires that a cluster is not contained in the union of the remaining clusters.
Figure 8.12 shows such an example where the two groups have the middle node
in common. It is seldom used, due to its difficult interpretation. For example,

Group 1 Group 2

Fig. 8.12. Example of a fuzzy clustering

it is very difficult to judge single nodes or small node subsets that belong to a
relatively large number of (fuzzy) clusters. When the number of clusters is also
restricted, then artefacts occur more frequently. For example, if the number is
restricted to a constant k, then a difficult situation is where more than k cliques
of size at least k have a large number of nodes in common (see Figure 8.13(a)).
If the number can scale according to a node’s degree, then sparse clusters can be
torn apart. For example, a star with k leaves may be decomposed into k fuzzy
clusters, each containing one leaf and the central node (see Figure 8.13(b)).

Another extension is to enhance clusterings with representatives. Each clus-
ter has a representative. It is very similar to the facility location problems (Sec-
tion 8.2.3), where a candidate covers a subset of elements. This can be seen as
‘representing’ the group by one element. It is usually a node that is located ‘in
the center’ of the cluster. This form of enhancement can be very effective when
the graph is embedded in a metric or a vector space. In these cases the repre-
sentative can also be an element of the space and not of the input. The concept
is also used to perform speed-ups or approximate calculations. For example, if
all the similarity/distance values between the nodes in two clusters are needed,
then it can be sufficient to calculate the similarity/distance values between the
representatives of the clusters.

Nested clustering represents a nested sequence of node subsets, i.e., a map-
ping η : �→ P(V) such that:

1. the subsets are nested, i.e.,

∀ i ∈ � : η(i + 1) ⊆ η(i)

2. and the sequence is finite, i.e.,

∃ k ∈ � : ∀� > k : η(�) = ∅ .

8 Clustering 211

(a) Four cliques of size six that
have a common K4. Each maxi-
mum clique is a fuzzy cluster.

(b) A star with four leaves and
each fuzzy cluster contains the
center node and one leaf.

Fig. 8.13. Two examples of fuzzy clusterings where many clusters intersect each other

The smallest possible k is also called the size of the sequence, and η(k) the top
element. The intuition behind this structure is that the top element η(k) consists
of locally maximal dense groups. The density of the subsets η(i) also decreases
with decreasing argument i. Therefore the argument i can be seen as degree
of density. One can distinguish two extreme types: The first one is called hier-
archies, where each η(i) induces a connected graph. The corresponding graphs
can be seen as onions, i.e., having a unique core and multiple layers around it
with different density. The second type is called peaks, and is complementary
to hierarchies, i.e., at least one subset η(i) induces a disconnected graph. An
appropriate example may be boiling water, where several hotspots exist that
are separated by cooler parts. If the graph has a skew density distribution then
a hierarchy type can be expected. In this scenario, it can reveal structural in-
formation, unlike standard clustering. If the graph has a significant clustering,
then peaks are more likely to occur. In that case, the top element consists of the
core-parts of the original clusters. Figure 8.14 shows such examples. Cores are
an often used realization of nested clusterings. They were introduced in [513, 47].
They can be efficiently computed and capture the intuition quite well.

8.3.2 Axiomatics

Axioms are the usual way to formulate generic properties and reduce concepts
to their cores. They also provide a simple way to prove characteristics, once a
property is proven for a system of axioms. Every structure fulfilling the axioms
possesses this property. In the following, only Kleinberg’s proposal introduced

212 M. Gaertler

Group 1

Group 2

Group 3

(a) hierarchy

Group 1

Group 2

(b) peaks

Fig. 8.14. Examples of a nested clustering

in [361] is presented. A graph clustering version of his result will be presented
here. This version will be equivalent to the original.

Let Kn = (V,E) be the complete graph on n nodes, and ω : E → �+
0 a dis-

tance function on the edges. The set of all possible distance functions is denoted
by D.

Definition 8.3.1. A clustering function f is a mapping f : D → A (Kn) fulfill-
ing the following axioms:

Scale-Invariance:
∀ α ∈ �+, ω ∈ D : f(ω) = f(α · ω) ,

where (α · ω)(u, v) := α · (ω(u, v))
Richness: f(D) = A (Kn)
Consistency: for all ω, ω′ ∈ D hold(

∀ u, v ∈ V : ω′(u, v)

{
≤ ω(u, v) , if u ∼f(ω) v

≥ ω(u, v) , otherwise

)
=⇒ f(ω) = f(ω′) .

A brief intuition of the axioms in Definition 8.3.1 is given before the conse-
quences are presented. Scale-invariance ensures that a clustering does not depend
on hard-coded values, but rather on ratios. The clustering should not change if
the distances are homogeneously increased. Richness ensures that every possible
clustering has at least one edge weighting as a preimage. It is self-evident that ev-
ery clustering should be constructable by assigning suitable weights to the edges.
Finally, consistency handles the relation between different clusterings. Assume
that ω is fixed, so f(ω) represents a clustering. If the weights on the edges are
changed respecting f(ω), then the clustering should be respected as well. The
modifications on ω consist of non-increasing the distance inside of clusters and

8 Clustering 213

non-decreasing the distance between clusters. In this way clusters may become
more compact (distances can decrease) and different clusters may become more
separated (distances can increase).

Theorem 8.3.2 ([361, Theorem 2.1]). For all n ≥ 2 there exists no cluster-
ing function.

Only a sketch of the proof is given here, but full details can be found in [361].

Sketch of Proof. Assume there exists a clustering function f for a fixed n. The
basic idea is to show that f(D), i.e., the image of f , cannot contain both a
clustering and a refinement of it simultaneously. This is achieved by using the
axiom consistency (and scale-invariance). There exists a clustering C in A (Kn)
such that at least one cluster has more than one element, and an edge weighting ω
with f(ω) = C. Informally speaking, it is possible to modify ω to isolate a proper
subset of a cluster within C. This can be done in such a way that consistency
is fulfilled for the two weighting functions. However, one can show that the
modified weighting also leads to a refinement of C. Therefore, it is not possible
that f(D) contains a clustering and its refinement. Thus f(D) is an antichain.
This contradicts the fact that A (Kn) is not an antichain for n ≥ 2. ��

Theorem 8.3.2 is a negative result for clustering functions and, as a consequence,
for clustering algorithms. However, the set of axioms is very restrictive. In fact,
there are many functions that are close to being clustering functions.

Lemma 8.3.3 ([361, Theorem 2.2]). There are many functions that fulfill
two of the three axioms of Definition 8.3.1.

For every combination of two axioms, there is a selection criterion for Single
Linkage such that it is a clustering function fulfilling these two axioms.

Further investigations reveal that relaxing the conditions of scale-invariance
and consistency to refinements leads to clustering functions. This is not the
only possibility. Another way is to explore the ‘lack’ of information (edges).
Usually graphs are not complete, and cannot be complete for several reasons.
The standard technique, completing the edge set and assigning only extremely
large values to the additional edges, is not possible in this scenario. First of
all, all values need to be finite, and, second, the two axioms, scale-invariance
and consistency, allow general manipulations so there is no guarantee that an
artificially introduced extreme value can keep its role. In order to include the
lack of information, a clustering function could be defined as a mapping from
the set of weighted relations to the set of partitions over the set. For a set of
elements X , the set of all weighted (binary) relations over X is denoted by Ω(X)
– or in short Ω, if the set X is clear. For every relation ω ∈ Ω(X) its domain is
given by E(ω).

Definition 8.3.4. Given a set of elements X, a graph clustering function f is
a mapping f : Ω(X) → A (X) fulfilling the following axioms:

Scale-Invariance:
∀ α ∈ �+, ω ∈ Ω(X) : f(ω) = f(α · ω)

214 M. Gaertler

Richness: f(Ω(X)) = A (X)
Consistency: for all ω, ω′ ∈ Ω(X) with E(ω) ⊆ E(ω′) hold(

∀ u, v ∈ V : ω′(u, v)

{
≤ ω(u, v) , if u ∼f(ω) v

≥ ω(u, v) , otherwise

)
=⇒ f(ω) = f(ω′) ,

where ω(u, v) = ∞ for (u, v) ∈ E(ω′) \ E(ω).

Note that the axioms in Definition 8.3.1 and Definition 8.3.4 are essentially the
same. The complex rule for consistency is due to the fact that the relations in Ω
can have different domains. This implies the additional constraints. Also the
set D of all edge weightings (of a complete graph) is a subset of Ω. The name
graph clustering function is inspired by the fact that X and ω ∈ Ω can be seen
as a graph: Gω = (X,E(ω), ω). Thus, the graph clustering function f maps the
set of (weighted and simple) graphs with n elements to the set of all partitions
over n elements.

Lemma 8.3.5. The function fcomp that maps ω ∈ Ω to the clustering where the
clusters are the connected components of Gω is a graph clustering function.

Proof. It is sufficient to check the axioms since fcomp has the correct domain and
codomain. Scale-invariance and consistency are fulfilled. This is due to the fact
that for every relation ω ∈ Ω, the clustering fcomp(ω) has no inter-cluster edges.
Although additional edges can be introduced via the axiom consistency, these
edges cannot be inter-cluster edges with respect to fcomp(ω). The axiom richness
is also satisfied because, for every clustering C, there exists a spanning forest F
with the same connected components as the clusters. Its edge relationEF induces
a weighted relation ω via ω(u, v) = 1 if (u, v) ∈ EF . The relation ω will be
mapped to C by fcomp. ��

Definition 8.3.4 and Lemma 8.3.5 clearly indicate that the lack of information
indeed can be more explanatory than complete information. The presented graph
clustering function does not provide further insight, but shows the potential of
missing information. Alternatively to graph clustering functions, the axiom con-
sistency may be redefined in various ways: restricted to a cluster or the connec-
tion between clusters, homogenous scalings, or predetermined breaking/merging
points for controlled splits/linkages. These ideas are mostly unexplored, but have
a certain potential.

A closing remark: it would also be interesting to know if there exist axiom
systems that describe, or even characterize, already used frameworks. As men-
tioned previously, Single Linkage (with certain selection criteria) fulfills any two
axioms, therefore it may be possible to extend current frameworks with the help
of axioms. This might also be very valuable in identifying fundamental clustering
concepts.

8 Clustering 215

8.4 Chapter Notes

In this chapter, graph clustering has been introduced that was based on cohesion.
The main objective of clustering is to find ‘natural’ decompositions of graphs.
In our case, partitions of the node set modeled the clustering, and the paradigm
of intra-cluster density versus inter-cluster sparsity had to be respected.

Both the term natural decomposition and the considered paradigm define
clusterings only in an intuitive way, without mathematical parameters. To cap-
ture the informal notion more formally, structural indices were used that rate
partitions with respect to clustering paradigms (see Section 8.1). Another bene-
fit of these indices is that clusterings of different graphs can be compared, which
is required for benchmark applications and to handle graphs with uncertain-
ties. Most optimization problems related to indices, i.e., finding a non-trivial
clustering with best index score, are NP-hard.

In the first part of Section 8.2.1, generic frameworks were presented. They
include simple methods like iteratively merging or splitting clusters, shifting
concepts, and general optimization techniques. The frameworks are very flexible
and can integrate a large number of problem-specific requirements. The next
part dealt with the frameworks’ parameters. It is still a high level view, and can
be applied to most of the clustering problems. Some extensions with relatively
similar methods concluded the section.

Alternative approaches for the representation of clusterings, as well as the
methods to find suitable clusterings, were covered in the final section. First,
the data structure partition was either enhanced with additional information or
replaced by other decomposition types. Also, an axiom system was introduced to
characterize clustering methods. In contrast to Section 8.2.2, where techniques
were distinguished according to their different underlying ideas, the axiomatic
framework describes the common foundation. Kleinberg’s axioms were discussed
in detail.

Owing to the large variety of applications for graph clustering, a complete
and homogenous framework has not yet been established. However, several basic
clustering techniques are fairly well understood, both from the informal and the
mathematical points of view. The most difficult aspect is still the formalization
of the ‘natural decomposition’, and, therefore, a mathematical framework for
qualitatively good clusterings. Indices present a suitable method.

Alternative approaches to graph decompositions that are not based on den-
sity, but rather on structural properties, are presented in Chapters 9 and 10.

	Quality Measurements for Clusterings
	Coverage
	Conductance
	Performance
	Other Indices
	Summary

	Clustering Methods
	Generic Paradigms
	Algorithms
	Bibliographic Notes

	Other Approaches
	Extensions of Clustering
	Axiomatics

	Chapter Notes

