
11 Network Statistics

Michael Brinkmeier and Thomas Schank

Owing to the sheer size of large and complex networks, it is necessary to reduce
the information to describe essential properties of vertices and edges, regions,
or the whole graph. Usually this is done via network statistics, i.e., a single
number, or a series of numbers, catching the relevant and needed information.
In this chapter we will give a list of statistics which are not covered in other
chapters of this book, like distance-based and clustering statistics. Based on this
collection we are going to classify statistics used in the literature by their basic
types, and describe ways of converting the different types into each other.

Up to this point network statistic has been a purely abstract concept. But
one has quite good ideas what a statistic should do:

A network statistic . . .

. . . should describe essential properties of the network.
This is the main task of network statistics. A certain property should be
described in a compact and handy form. We would like to forget the exact
structure of the underlying graph and concentrate on a restricted set of
statistics.

. . . should differentiate between certain classes of networks.
A quite common question in network analysis regards the type of the ‘mea-
sured’ network and how to generate models for it. This requires the decision
whether a generated or measured graph is similar to another one. In many
situations this may be done by identifying several statistics, which are in-
variant in the class of networks of interest. Using these statistics an arbitrary
graph can be tested for membership in a specific class, by determining its
statistics and comparing them with some references.

. . . may be useful in algorithms and applications.
Some network statistics may be used for algorithms or calculations on the
graph. Or they might indicate which graph elements have certain properties
regarding the application.

To which degree a certain statistic fulfills one or more of these tasks obviously
depends on the application and the network. Therefore we will not go into detail
about the interpretation, and restrict ourselves to the description of types of
statistics, common constructions, and several examples.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 293–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

294 M. Brinkmeier and T. Schank

11.1 Degree Statistics

The most common and computationally easy statistic is the vertex degree. De-
pending on the underlying network and its application, it may be a simple mea-
sure for the strength of connection of a specific vertex to the graph, or – as in the
case of indegrees – a measure for the relevance. But usually, instead of using this
statistic directly, the main interest lies in the absolute number or the fraction
of vertices of a given in-, out-, or total degree. It has been discovered that the
distribution of degrees in many naturally occurring graphs significantly differs
from that of classical random graphs.

In a classical undirected random graph Gn,p the fraction of vertices of degree
k is expected to be(

n− 1
k

)
pk(1 − p)n−1−k (Binomial distribution)

if the number of vertices n is small, or approximately

(np)k

k!
e−np (Poisson distribution)

if n is large. But in many natural graphs the degrees seem to follow a power law,
i.e.

c k−γ with γ > 0 and c > 0.

The power law is a good example for a parameter elimination
by means of a functional description, as described in Section 11.7.1. Since

the degree distribution can be described as ck−γ , it suffices to determine the
constant exponent γ. This can easily be done with linear regression of the log-
log-plot of the distribution. The scaling constant c is then dictated by the fact
that the sum over all k is either the number of edges (in the absolute case) or
1 (in the relative case). Of course, the exponent is only meaningful if the degree
distribution has the appropriate form.

Examples for graphs and networks whose degree distribution seems to follow
a power law include

– the actor collaboration graph (γ ≈ 2.3) [40],
– the World Wide Web (γin ≈ 2.1, γout ≈ 2.45/2.72)1[16, 40, 102],
– the power grid of the United States of America (γ ≈ 4) [40],
– the Internet (router and autonomous systems) (γ ≈ 2.2) [197].

More details about the power law, and models for generating graphs satisfying
it, can be found in Chapter 13.

Experiments and measurements indicate that the power law and the resulting
exponents are good statistics for the classification of graphs. They are especially
useful for the decision whether a specific model generates graphs which are close
to the naturally occurring ones.
1 In the examples shown in Figures 11.4 and 11.5 near the end of this chapter, we

have γin ≈ 2 and γout ≈ 3.25.

11 Network Statistics 295

11.2 Distance Statistics

Another basic, but computationally more complex statistic is the distance be-
tween two vertices, defined as d(u, v) = min{|P | | P is a path from u to v}.
Arranging the distances leads to a V × V -matrix D, whose columns and rows
are indexed by the vertices of the graph, with

D = (d(u, v))u,v∈V

containing the distance d(u, v) in row u and column v.
For arbitrary edge weights w : E → � the problem of finding a shortest path

is NP-hard (see [240]). But for more special (but also more common) cases the
distance can be calculated in polynomial time by solving the all-pairs shortest-
path problem (APSP). Before we go into detail about the algorithmic aspects
in Section 11.2.5 (see also Section 4.1.1), we will describe related statistics that
are commonly used in the literature. As we will see, often not the distances
themselves but more ‘condensed’ statistics are used.

11.2.1 Average or Characteristic Distance

The average or characteristic distance d̄ is the arithmetic mean of all distances
in the graph, i.e.,

d̄ :=
1

|V |2 − |V |
∑

u�=v∈V

d(u, v).

For disconnected graphs we obviously have d̄ = ∞. Hence it might be useful to
restrict ourselves to all connected pairs, leading to the average connected distance

d̄ :=
1
k

∑
u�=v∈V

0<d(u,v)<∞

d(u, v)

where k is the number of connected pairs u �= v. In abuse of notation we denote
both statistics with d̄, since usually only the second is meaningful.

If the distance-matrix D is known, the average distance can be calculated in
O(n2) time.

11.2.2 Radius, Diameter and Eccentricity

By fixing one argument of the distance, the number of parameters of this statistic
is reduced, leading to the eccentricity ε(u) of a vertex u. This is the maximal
distance of another node from u, i.e.,

ε(u) := max {d(u, v) | v ∈ V } .

The radius rad(G) is the minimal eccentricity of all vertices, i.e.

rad(G) := min {ε(u) | u ∈ V } .

296 M. Brinkmeier and T. Schank

Maximizing over both arguments of the distance, one obtains the diameter
diam(G) of a graphG as the maximal distance between two arbitrary (connected)
vertices, i.e.,

diam(G) := max {d(u, v) | u, v ∈ V } .

As with the average distances, the diameter and the eccentricity can be calcu-
lated from the distance matrix in O(n2) time. The eccentricity of a single vertex
may also be calculated via the single-source shortest-paths problem (SSSP), see
Sections 4.1.1 and 11.2.5.

11.2.3 Neighborhoods

The h-neighborhood Neighh(v) of a vertex v is the set of all vertices u with
distance less than or equal to h from v, i.e.,

Neighh(v) := {u ∈ V | d(v, u) ≤ h} .

The sizes of the h-neighborhoods form a parameterized statistic

N(v, h) := |Neighh(v)|.

The (absolute) hop plot P (h) eliminates the dependence on the vertex by
assigning the number of pairs (u, v) with d(u, v) ≤ h to each parameter h, i.e.,

P (h) :=
∣∣{(u, v) ∈ V 2 | d(u, v) ≤ h

}∣∣ =
∑
v∈V

N(v, h).

The (relative) hop plot p(h) is the fraction of pairs with a distance less than
or equal to h, i.e.,

p(h) :=
P (h)
n2

=
1
n2

∑
v∈V

N(v, h).

The average h-neighborhood size Neigh(h) is defined as

Neigh(h) :=
1
n

∑
v∈V

N(v, h) =
P (h)
n

= np(h).

Again the absolute and relative hop plots, and the neighborhood sizesN(v, h),
can be calculated from the distance matrix in O(n2) time and space.

The absolute hop plot of the Internet is examined by Faloutsos et al. in [197].
They observe that it follows a power law with an exponent around 4.7.

The h-neighborhoods that are necessary for the hop plot can be approximated
using the ANF-algorithm of Palmer et al. presented in [462]. We will go into
detail about that in Section 11.2.6.

11 Network Statistics 297

11.2.4 Effective Eccentricity and Diameter

The effective eccentricity εeff and the effective diameter diameff are obtained via
an interesting construction from the eccentricity and the diameter. The former
measures the minimal distance at which a specified fraction r of all nodes lies
from a specific source v, i.e.,

εeff(v, r) := min {h | N(v, h) ≥ rn} .

The latter does the same without specifying a concrete source, i.e.,

diameff(r) := min
{
h | P (h) ≥ rn2

}
= min {h | p(h) ≥ r} .

If N and P are known, both statistics can be calculated in O(log diam(G))
using binary search on N(v, h) and P (h).

The effective diameter and the effective eccentricity occur in [462] for a fixed
value of r = 0.9.

11.2.5 Algorithmic Aspects

As mentioned at the beginning of this section, the problem of finding a shortest
path between two vertices in a network with arbitrary edge weights w : E → �

is NP-hard (see [240]). But if we restrict ourselves to networks without cycles
of negative weight, the problem can be solved in polynomial time by well-known
algorithms described in the following.

The Path Algebra. Assume that G = (V,E) is a weighted graph (directed/un-
directed) without cycles of negative weight. Then the most general approach,
which may be adapted to several other problems, for the calculation of the
distance matrix is given by matrix multiplication over the path algebra.

Let di(u, v) be the weight of a shortest path (i.e. a path of minimal weight)
from u to v using at most i edges. This implies

d0(u, v) =

{
0 if u = v

∞ otherwise.

Since a path with at most i+ 1 edges either has at most i edges or consists of a
path of length ≤ i to a predecessor v′ of v and the edge (v′, v), we have

di+1(u, v) = min
v′∈V

(di(u, v), di(u, v′) + w(v′, v)) .

Here it is important to keep in mind that G does not contain cycles of negative
weight.

The distance matrix may be calculated via the summation and multiplication
of an adapted adjacency matrix A over the commutative semi-ring (�̄,min,+),
with �̄ = � ∪ {∞}. The entries of A are given by

298 M. Brinkmeier and T. Schank

avu =

0 if u = v

w(u, v) if there exists an edge from u to v

∞ otherwise
.

Explicitly, this means that summation is replaced by the minimum and mul-
tiplication by the addition. Then the distance matrix D is Adiam(G), or, written
as an iteration, D is the limit of the iteration Di+1 = Di · A and D0 = A.

Fortunately it suffices to iterate diam(G)-times, where the diameter is taken
on the graph without weights. This is due to the fact that each simple path has
at most length diam(G).

If T (n) is the time needed for a multiplication of two n × n-matrices, the
iteration leads to a running time of O(T (n)diam(G)). Using the iteration D2i =
Di ·Di instead, one obtains a running time of O(T (n) log(diam(G))).

Hence, the time needed for the calculation of the distance matrix via matrix
multiplication is dominated by the time T (n) needed for the multiplication of
two n× n-matrices. For the naive matrix multiplication we have T (n) = O(n3).
In [595] Zwick described an algorithm with T (n) = O(n2.575).

Single-Source Shortest-Paths. The distance matrix may be calculated by
solving the single-source shortest-paths problem (SSSP) for all sources. Depend-
ing on the type of weight function, several algorithms are known.

– If the network is unweighted, i.e., w(e) = 1 for all edges e ∈ E, then SSSP can
be solved via breadth-first-search in O(m) (see [133]).

– If G has only edges of nonnegative weights then the algorithm of Dijkstra
solves SSSP in O(n logn+m) time when using Fibonacci Heaps (see [133] or
Algorithm 4 in Section 4.1.1.).

– If G contains no cycles of negative weight, then the Bellman-Ford algorithm
solves SSSP in O(nm) (see [133]).

The runtime of the algorithm of Dijkstra may be improved if more sophis-
ticated data structures and strategies are used. In [547] Thorup describes an
algorithm which calculates the SSSP for a given source on an undirected graph
with positive integers as weights in O(m) time and space, leading to O(nm)
time for the distance matrix. He uses an alternative strategy for the choice of
the next node in the Dijkstra algorithm, following [152], and realizes the priority
queue using buckets.

For further results about shortest paths, see [224, 225, 546, 548, 487, 12].

All-Pairs Shortest-Paths. An alternative to the use of matrix multiplications
over the path algebra is the Floyd-Warshall algorithm for the solution of the all-
pairs shortest-paths problem (APSP). Again the algorithm can only be applied
to networks without cycles of negative weight. It requires O(n3) time and can be
found in textbooks (e.g., [133]) or in this volume (Algorithm 5 in Section 4.1.2).

11 Network Statistics 299

Another approach to solving the APSP consists of running an SSSP algorithm
for each of the n vertices of the given graph. This leads to the following runtimes
for APSP:

1. unweighted: O(nm)
2. non-negative weights: O(nm + n2 logn)
3. no cycles of negative weight: O(n2m)

An improved solution to the APSP on a weighted graph without cycles of
negative weight is achieved by Johnson’s algorithm (details can be found in
[133]). It first calculates the distances from an artifical source to all vertices
in the graph using the Bellman-Ford algorithm. If the graph does not contain
cycles of negative weight, it recalculates the edge weights using the results of the
Bellman-Ford algorithm and then determines the distances of all pairs by calling
the Dijkstra algorithm n times. If the graph contains cycles of negative length
it simply terminates. In total this leads to a runtime of O(n2 logn + nm).

11.2.6 ANF – The Approximate Neighborhood-Function

In [461] Palmer et al. described an algorithm for the estimation of the hop plot
of an unweighted graph G = (V,E) using approximative counting as introduced
by Flajolet and Martin in [215]. The basis of the algorithm is the observation
that the set Neighh(u) = {v | d(u, v) ≤ h} of nodes v with distance at most h
from u can be described as

Neighh(u) = Neighh−1(u) ∪
⋃

(u,v)∈E

Neighh−1(v).

Therefore it suffices to approximately count the number of elements in an it-
eratively increasing set. The main idea is to represent the sets Neighh(u) by
bitmasks, such that each bit represents a subset of vertices. Then the union cor-
responds to a logical or of the bitmasks. The resulting algorithm is shown as
Algorithm 22.

In the last loop the estimate for N(u, h) is calculated from the lowest position
R[u, h] of a 0-bit in the bitmask B[u, h] starting at 0, i.e. B[u, h] is of the form
{0, 1}∗01R[u,h]. Following [215] the expected value of R[u, h] is log(ϕN(u, h))
with ϕ ≈ 0.77351.

If this procedure is repeated z times with different position assignments k[u],
one can use the average R̄[u, h] over all lowest 0-bit positions to obtain an even
better estimate with

N(u, h) =
2R̄[u,h]

0.77351 (1 + 0.31/z)
,

where the additional factor (1+0.31/z) is caused by a bias of the expected value
of N [u, h] in this situation. Details can be found in [215].

Experiments conducted by Palmer, Gibbons and Faloutsos in [461] indicate
a high accuracy of the estimations (less than 10% error for z = 64 trials) while

300 M. Brinkmeier and T. Schank

Algorithm 22: The ANF-Algorithm

Input: A graph G = (V, E) and a natural number r
Data: Bitmasks B[u, h] for each u ∈ V , h = 1, . . . , n of length log n + r
Output: Estimations N(u, h) for the number of nodes within distance h of u

for each vertex u

begin
l ← log n + r
foreach v ∈ V do

Set k[v] = i with probability 1
2i+1 for 0 ≤ i < l − 1 and probability 1

2l−1

for i = l − 1
end
foreach v ∈ V do

Set position k[v] of B[v, 0] to 1
end
for h ∈ {1, . . . , n} do

foreach u ∈ V do
B[u, h] ← B[u, h − 1]

end
foreach (u, v) ∈ E do

B[u, h] ← B[u, h] ∨ B[v, h − 1]
end

end
foreach u ∈ V and h ∈ {0, . . . , n} do

Let R[u, h] be the lowest position of a 0-bit in B[u, h]

N(u, h) ← 2R[u,h]/0.77351
end

end

providing higher speed and lower space requirements than other approximation
methods based on random intervals and sampling. More exact results involving
the standard deviation of the estimate can be found in [215].

11.3 The Number of Shortest Paths

A statistic closely related to the distance is the number c(u, v) of distinct shortest
paths between two vertices

c(u, v) := |{P | P is a shortest path from u to v}| .

Since the general APSP is NP-hard, the same obviously holds for the calcula-
tion of the number of distinct shortest paths. But again it becomes polynomially
solvable if the network does not contain cycles of negative or zero length. The
c(u, v) can be calculated by a modified Floyd-Warshall-algorithm (see Algorithm
23). In a similar way the Dijkstra algorithm may be modified if all edge weights
are positive.

Closely related to c(u, v) is the number of disjoint shortest paths. But this
problem is known to be NP-hard [346].

Alternatively, one can calculate the number of distinct shortest paths between
two arbitrary vertices, using a specific edge, i.e.,

11 Network Statistics 301

Algorithm 23: Counting the number of distinct shortest paths

Input: A graph G = (V, E) with edge weights w and without cycles of negative
or zero length.

Output: The distances d(u, v) and the number of distinct shortest paths
between each pair u, v of vertices

begin
foreach v ∈ V do

foreach u ∈ V do

d(u, v) ←

	
�

�

0 if u = v

w(u, v) if (u, v) ∈ E

∞ otherwise

c(u, v) ←
�

1 if (u, v) ∈ E

0 otherwise

foreach v′ ∈ V do
foreach u ∈ V do

foreach v ∈ V do
if d(u, v′) + d(v′, v) = d(u, v) then

c(u, v) ← c(u, v) + c(u, v′)c(v′, v)

else
if d(u, v′) + d(v′, v) < d(u, v) then

d(u, v) ← d(u, v′) + d(v′, v)
c(u, v) ← c(u, v′)c(v′, v)

end

c(e) := |{P | P is a shortest path including e}| .

Since each shortest path passing through the edge e = (u, v) from u′ to v′ consists
of a shortest path from u′ to u, the edge e, and a shortest path from v to v′, the
statistic c(e) can be calculated from the c(u, v):

c(e) =
∑

d(u′,v′)=d(u′,u)+1+d(v,v′)

c(u′, u)c(v, v′).

11.4 Distortion and Routing Costs

Consider a spanning tree T of G = (V,E), i.e., an acyclic, connected subgraph
of G containing all vertices v ∈ V . Then the distortion D(T) of T is the average
length of paths in T between two adjacent vertices in G. More precisely

D(T) :=
1
|E|

∑
{u,v}∈E

dT (u, v)

where dT (u, v) is the distance from u to v in T .

302 M. Brinkmeier and T. Schank

The global distortion D(G) of G is the minimum distortion over all spanning
trees of G, i.e.,

D(G) := min {D(T) | T is a spanning tree of G} .

The distortion is closely related to the communication costs of a spanning
tree T of a network, as introduced by Hu in [317]. In this setting a requirement
ru,v is given for each pair of vertices. The communication cost of T is given as the
sum of all distances between vertices in T , multiplied by the requirement values.
By setting ru,v = 1

m if {u, v} ∈ E and 0 otherwise, one obtains the distortion. In
[333] Johnson et al. proved that the calculation of the minimal communication
costs of a network with ru,v = 1 for all pairs of vertices is NP-hard.

11.5 Clustering Coefficient and Transitivity

The clustering coefficient introduced by Watts and Strogatz [573] in the year 1998
has become a frequently used tool in network analysis. For a node v the clustering
coefficient c(v) is supposed to represent the likeliness that two neighbors of v
are connected. The clustering coefficient C(G) of a graph is the average of c(v)
taken over all nodes. The latter seems to be a very popular index in network
analysis.

In 2000 Barrat and Weigt [41] used an ‘alternative formulation’ for this aver-
age, claiming that their redefinition does not alter the ‘physical significance’ for
certain generated small world networks. In the year 2002 the so-called transitiv-
ity was introduced by Newman, Strogatz and Watts [447], again as an alternative
formulation of the clustering coefficient of a graph. It really turned out to be
equivalent to the formulation of Barrat and Weigt, but not at all equivalent to
the original clustering coefficient.

11.5.1 Definitions

We will define both indices in terms of triangles and triples of a node and a graph,
respectively. Let G be a simple and undirected graph. A triangle) = {V�, E�}
is a complete subgraph of G with exactly three nodes, see Figure 11.1. We use

Fig. 11.1. A triangle and its three triples

λ(G) for the number of triangles of a graphG. Accordingly we define λ(v) = |{) |
v ∈ V�}| as the number of triangles of a node. Note that λ(G) = 1/3

∑
v∈V λ(v).

11 Network Statistics 303

A triple is a subgraph of G (not necessarily an induced subgraph) with three
nodes and two edges. A triple is a triple at node v if v is incident with both edges
of the triple. The number of triples at a node v can be formulated in dependence
of its degree d(v) as

τ(v) =
(

d(v)
2

)
=

d(v)2 − d(v)
2

.

The number of triples for the whole graph is τ(G) =
∑

v∈V τ(v). In the above
terms the clustering coefficient of a node v with τ(v) �= 0 is defined as

c(v) =
λ(v)
τ(v)

.

With V ′ = {v ∈ V | d(v) ≥ 2} we define the clustering coefficient of the whole
graph as

C(G) =
1

|V ′|
∑
v∈V ′

c(v).

Note that there is some variation in the literature in how nodes of degree less
than two are handled, e.g., c(v) is defined to be zero or one and included in the
averaging process.

The transitivity for a graph is defined as

T (G) =
3λ(G)
τ(G)

.

As there are exactly three triples in each triangle, see Figure 11.1, 3λ(G) ≤ τ(G)
holds and consequently T (G) is a rational number between zero and one.

a

b

c

d

1 2 3 n

Fig. 11.2. On the left: Graph with clustering coefficients: c(a) = c(c) = 2/3, c(b) =
c(d) = 1, C(G) = 1

4
(2 + 4/3) ≈ 0.83 and transitivity T (G) = 3 · 2/8 = 0.75. On the

right: family of graphs where T (G) → 0, C(G) → 1 for n → ∞.

304 M. Brinkmeier and T. Schank

11.5.2 Relation Between C and T

The transitivity T (G) was first introduced as an alternative formulation for the
clustering coefficient C(G) in [447]. The left hand side of Figure 11.2 shows a
small graph where the two values differ. The right hand side shows a family of
graphs where T (G) approaches zero while C(G) approaches one, for increasing n.
The equation

T (G) =
∑

v∈V ′ τ(v)c(v)∑
v∈V ′ τ(v)

given by Bollobás and Riordan [68] shows a formal relation between the two
indices: The transitivity is equal to the triple weighted clustering coefficient.
Hence T (G) equals C(G), e.g., if all nodes have the same degree or all clustering
coefficients are equal.

11.5.3 Computation

To compute the clustering coefficients we need to compute the number of triples
τ(v) and the number of triangles λ(v), for each node v. It is straight-forward to
compute the number of triples τ(v) in linear time. This leaves us with the task
of computing the number of triangles. For the transitivity it suffices to compute
λ(G) for the whole graph. It is not known whether there is an algorithm that is
asymptotically faster in computing the triangles globally vs. locally.

The standard method is to iterate over all nodes and check whether the
edge between any two neighbors is present. This algorithm has running time in
O(nd2

max) where dmax = max{d(v) | v ∈ V } = ∆(G).
We assumed above that it is possible to test for edge existence in constant

time. This could be done with a n × n matrix by using the ‘indirection trick’,
see e.g. Exercise 2.12 in [4]. A more useful approach, requiring only linear space,
is to use hashing. If each node is assigned a random bit vector of appropriate
length, and the hash function uses a combination of two of these, we will get a
randomized algorithm with expected testing time in O(1).

The second approach is to use matrix multiplication. Note that if A is the
adjacency matrix of graph G, then the diagonal elements of A3 contain two times
the number of triangles of the corresponding node. This gives an algorithm with
running time in O(nγ), where γ is the matrix multiplication coefficient. It is
currently known that γ ≤ 2.376 [132].

Itai and Rodeh [321] proposed an algorithm with running time in O(m3/2).
This is an improvement for sparse graphs, compared to the mentioned methods.

We will now discuss the algorithm of Alon, Yuster, and Zwick [26]. It im-
proves the running time by using fast matrix multiplication, and still expresses
only dependence on m in the running time. If used with standard matrix mul-
tiplication (γ = 3) it will achieve the same bound as the algorithm of Itai and
Rodeh.

The pseudocode of the algorithm is listed in Algorithm 24. Informally the
algorithm splits the node set into low degree vertices Vlow = {v ∈ V : d(v) ≤ β}

11 Network Statistics 305

Algorithm 24: AYZ triangle algorithm

Input: Graph G with adjacency array representation and hashed edge set
matrix multiplication parameter γ
Output: number of triangles λ(v) for each node

β ←− m(γ−1)/(γ+1)
1

for v ∈ V do2

λ(v) ← 0
if d(v) ≤ β then

Vlow ← Vlow ∪ {v}
else

Vhigh ← Vhigh ∪ {v}

for v ∈ Vlow do3

for all pairs of neighbors {u, w} of v do
if edge between u and w exists then4

if u, w ∈ Vlow then5

for z ∈ {v, u, w} do
λ(z) ← λ(z) + 1/3

else if u, w ∈ Vhigh then6

for z ∈ {v, u, w} do
λ(z) ← λ(z) + 1

else7

for z ∈ {v, u, w} do
λ(z) ← λ(z) + 1/2

A ← adjacency matrix of node induced subgraph of Vhigh8

M ← A3
9

for v ∈ Vhigh do10

λ(v) ← λ(v) + M(i, i)/2 where i is index of v11

and high degree vertices Vhigh = V \Vlow, where β = mγ−1/γ+1. It then performs
the standard method on the low degree nodes, and uses fast matrix multiplication
on the subgraph induced by the high degree nodes.

Lemma 11.5.1. Algorithm 24 computes the triangles λ(v) for each node and
can be implemented to have running time in O(m2γ/(γ+1)), or O(m1.41) .

Proof. The correctness of the algorithm can be easily seen by checking the case
distinction for different types of triangles consisting of exactly three (line 5), two
(line 7), one (line 6), or zero (line 11) low degree nodes.

To prove the time complexity, we first note that the lines 1, 2, and 10 can
clearly be implemented to run in linear time. We prove that the time required
for the loop beginning at line 3 is in O(m2γ/(γ+1)). Line 4 requires a test for
edge existence in constant time. We have discussed this in the context of the
standard method above. The following tests in line 5, 6 and 7 are clearly in
constant time. The bound follows then from

∑
v∈Vlow

(
d(v)

2

)
≤ mβ. The running

time of line 8 is less than that of line 9. To bound line 9 we have to show that

306 M. Brinkmeier and T. Schank

O
(
nγ

high

)
⊂ O

(
m2γ/(γ+1)

)
. Utilizing the hand shaking lemma

∑
v∈V d(v) = 2m,

we get nhighβ ≤ 2m, which yields nhigh ≤ 2m2/(γ+1). ��

11.5.4 Approximation

For processing very large networks, linear or sublinear running time is desired.
We outline now how we can achieve approximations with sublinear running time
using random sampling. A more detailed description can be found in [502].

Let Xi be independent real random variables bounded by 0 ≤ Xi ≤ M for all
i. With k denoting the number of samples, and ε some error bound, Hoeffding’s
bound [299] states:

Pr

(∣∣∣∣∣1k
k∑

i=1

Xi − �
[

1
k

k∑
i=1

Xi

]∣∣∣∣∣ ≥ ε

)
≤ e

−2kε2

M2 (11.1)

We assume that the graph is in an appropriate data structure in working
memory. Specifically, we require that testing whether an edge between two nodes
exists is in constant time. When giving the running time we regard the error
bound ε and probability of correctness to be constants. To approximate the
clustering coefficient for a node v, we estimate λ(v) by checking for the required
number (determined by Eq. 11.1) of neighbor pairs whether they are connected.
This leads to an O(n)-time algorithm for approximating c(v) for all nodes. The
clustering coefficient for the graph C(G) can be approximated in a similar fash-
ion. A short computation shows that it is sufficient to choose a random node v
and then two random neighbors for each sample. This gives an algorithm running
in constant time. To approximate the transitivity one can proceed in a similar
fashion, however, the nodes have to be chosen with weights corresponding to
τ(v). This can be done in time O(n).

Lemma 11.5.2. Consider the error bound ε and the probability of correctness
to be constants. Then there exist algorithms that approximate the clustering coef-
ficients for each node c(v) and the transitivity T (G) in time O(n). The clustering
coefficient C(G) can be approximated in time in O(1).

11.6 Network Motifs

In molecular biology a functional domain of a molecule is called a motif. Thus
motifs are building blocks for molecules on a higher level than atoms. Milo et
al. [423] introduced the term motifs for networks, following the idea of building
blocks on a higher level than nodes and edges. They enumerated the occur-
rences of small subgraphs in a network G. A connected subgraph that occurs in
G significantly more often than in a random network of same size and degree
distribution is called a motif of G.

The authors considered several networks from biology (food webs, neuronal
networks, gene regulation), engineering (electrical circuits), and also a domain
of the World Wide Web. They looked for weakly connected subgraphs up to four
nodes, and discovered for each of the networks distinctive motifs.

11 Network Statistics 307

11.6.1 Algorithmic Aspects

A very basic algorithm to enumerate the occurrences of a subgraph with k nodes
is to check all

(
n
k

)
possible combinations of k nodes. The comparison itself can

be done by permuting the k nodes in k! steps, where in each step all potential
2
(
k
2

)
edges are considered. To do this the number of possible automorphisms of

the subgraph has to be known, see Section 12.1.
Unfortunately the original work of Milo et al. [423] does not describe the

algorithm, and the ‘supplementary materials’ remain very vague in that respect,
too. The ‘supplementary materials’, some of the considered networks, and an
implementation of the algorithm can be downloaded from an author’s website.2

However, it has been reported that the published results produced by that pro-
gram are incorrect.3

Algorithm 24 of Alon, Yuster, and Zwick [26] for enumerating all triangles in
an undirected graph can be modified to count directed and connected subgraphs
of three nodes without incurring additional costs in the asymptotic running time.

In [363] the basic idea of the triangle counting algorithm of Alon, Yuster,
and Zwick was refined by Kloks, Kratsch and Müller to achieve an algorithm
for counting all K4’s in a graph in time O(m

γ+1
2). Here γ ≤ 2.376 [132] is the

matrix multiplication coefficient. Further, for the undirected case, they were able
to derive an algorithm that counts all subgraphs with at most four nodes in time
O(nγ + m

γ+1
2). It is not known whether this can be generalized to the directed

case whilst obeying the same bound in running time.

11.7 Types of Network Statistics

Browsing through the literature, and by examination of the previous examples,
one can identify four basic types of statistics which can be described by two
pairs of exclusive attributes:

single-valued vs. distribution and global vs. local

Even though the attributes are intuitively clear, we give a formal description
of the four resulting types. Let G be a class of graphs (e.g., (un-)weighted, (un-
)directed, (un-)connected etc.), P a set of parameters, and Y a set of values.
Usually we have, e.g., P, Y = �,�,� or products of them. Furthermore let XG

be a set of not specified graph elements in G, which may consist of vertices,
edges, subgraphs, paths etc.

Global (Single-valued) Statistics. A global (single-valued) statistic γ assigns
a single value γG ∈ Y to each graph G ∈ G.

Examples: Number of vertices/edges, diameter (Section 11.2.2), clustering
coefficient of a graph (Section 11.5), edge- and vertex-connectivity (Chapter
7).

2 http://www.weizmann.ac.il/mcb/UriAlon/
3 Falk Schreiber, personal communication regarding MFinder 1.1

308 M. Brinkmeier and T. Schank

Global Distributions. A global distribution Γ assigns a map ΓG : P → Y to
each graph G ∈ G. We usually denote the value by ΓG(t), where t is the
parameter. For example for P = � a global distribution ΓG is a sequence
(ΓG(0), ΓG(1), . . .) of values for each graph in G.

Examples: absolute/relative distribution of in/out-degrees (Section 11.1),
hop plot (Section 11.2.3).

Local (Single-valued) Statistics. A local (single-valued) statistic λG assigns
a single value λG(x) ∈ Y to a certain graph element x of a given graph
G ∈ G, where x may be a vertex, an edge, a set of vertices or edges, a
subgraph, or whatever may be seen as a local graph element.
More formally λG : XG → Y is a map from a set XG of graph elements in
G to the set of values Y .

Examples: in/out-degree (Section 11.1), weight/capacity/length of edges,
distance (Section 11.2), clustering coefficient of a vertex (Section 11.5) ,
various centralities (Chapters 3 and 5).

Local Distributions. A local distribution Λ assigns a map ΛG : XG × P → Y
from the cartesian product of the appropriate set of graph elements and a
parameter set P to Y to each graph G ∈ G. As in the global case we write
ΛG(x, t) for the value at x with parameter t.

Examples: Sizes of neighborhood (Section 11.2.3), effective eccentricity and
diameter (Section 11.2.4).

Since we already used the term distribution for multiple valued statistics, we
will adapt our nomenclature slightly. The term statistic refers to a single-valued,
and distribution to multiple-valued, network statistics. Nonetheless both types
are included in the notion network statistics.

11.7.1 Transformation of Types of Statistics

The four types are not isolated from each other. In the literature several tech-
niques can be found to transform one into another. In fact, it usually is possible
to classify network statistics by their ‘underlying’ statistic, from which they are
deduced in one or more of the constructions we are going to describe. A rough
scheme of the possible transformations is presented in Figure 11.3. A more de-
tailed description is given in the following sections.

Of course, all constructions may be composed, e.g., after going from a global
statistic to a local distribution, one may construct a local statistic from the
result. In this section we restrict ourselves to the operations which seem to be
more or less independent of each other. In the literature and in the examples
below, many network statistics are obtained by the application of two or more
of the steps described here.

11 Network Statistics 309

Global Distribution

Global Statistics Local Statistic

Local Distribution

Localization

Globalization

Localization

Localization Elimination
Parameter

Elimination
Parameter

Globalization
Localization Counting

Parameter ReductionParameter Reduction
Reparametrization Reparametrization

Reparametrization

Fig. 11.3. Transformations of types of statistics

Some of the operations do not occur in the literature (at least as far as
we know). They are mainly presented for completeness, and because they seem
to be very natural possibilities. Furthermore we do not discuss the intuition
behind the transformations, since this depends on the concrete application and
interpretation of the values. We only give a formal description of the techniques.

Globalization. As the name says, globalization eliminates the dependence of a
local statistic or distribution on graph elements. This is often done by calculating,
choosing, or constructing a single value γG from the values λG(x) for all graph
elements x ∈ XG. The most common examples are:

– the maximum
γG := max {λG(x) | x ∈ XG} ,

– the minimum
γG := min {λG(x) | x ∈ XG} ,

– the summation
γG :=

∑
x∈XG

λG(x),

– and averaging

γG :=
1

|XG|
∑

x∈XG

λG(x).

For distributions, the same constructions may be applied parameterwise, e.g.,

ΓG(t) := max
x∈XG

{λG(x, t)} .

310 M. Brinkmeier and T. Schank

Examples are the average (connected) distance (Section 11.2.1), the diam-
eter and the radius (Section 11.2.2), the relative and absolute hop plot (Sec-
tion 11.2.3), and the global distortion (Section 11.4).

Counting. To transform a local statistic λ into a global distribution Γ , one
may count the number of graph elements x such that λG(x) lies in a specific
range of values. For discrete statistics (e.g., λG(x) ∈ �,�), the absolute number
of occurrences of the value t, i.e.,

ΓG(t) := |{x ∈ XG | λG(x) = t}|,

or the relative number of occurrences, i.e.

ΓG(t) :=
|{x ∈ XG | λG(x) = t}|

|XG|

are very common. Similarly, for continuous statistics (e.g., λG(x) ∈ �), the
absolute or relative number of elements with λG(x) ≤ t, i.e.,

ΓG(t) := |{x ∈ XG | λG(x) ≤ t}| or

ΓG(t) :=
|{x ∈ XG | λG(x) ≤ t}|

|XG|
is widely used.

Examples are the absolute, relative, and complementary cumulative degree
distributions (Section 11.1), the absolute and relative hop plot (Section 11.2.3).

Parameter Elimination and Reduction. Perhaps the widest class of type
changes is the elimination of parameters. In some respect nearly all types of
changes can be interpreted in this way. But we restrict ourselves to parameters,
i.e., values which are not directly related to the examined network.

Similar to the transformation from local to global statistics and distributions,
one may calculate a single value λG from a sequence/map of values given by a
distribution ΛG. But instead of using the graph elements as variables, one uses
the parameter of the distribution. Examples are

– the maximum
λG(x) := max {ΛG(x, t) | t ∈ P} ,

– the minimum
λG(x) := min {ΛG(x, t) | t ∈ P} ,

– summation
λG(x) :=

∑
t∈P

ΛG(x, t),

11 Network Statistics 311

– averaging (only sensible if P is finite)

λG(x) :=
1
|P |

∑
t∈P

ΛG(x, t),

– and the projection onto a certain parameter t0 ∈ P

λG(x) := ΛG(x, t0).

For single-valued statistics one simply has to neglect the argument x. The ec-
centricity (Section 11.2.2) is an example for this transformation.

If a local or global distribution has more than one parameter, i.e., if its set
of parameters is the cartesian product P = P ′ × P ′′, one may use only one
parameter for the calculations, leading to a parameter reduced distribution, e.g.,

Λ′
G(x, t′) := max

t′′∈P ′′
{ΛG(x, t′, t′′)} .

If the local or global distribution allows the description as a function of the
parameters, some may be eliminated using a different technique. Assume that the
local distribution ΛG(x, t) can be described by a function fr with parameter r(x),
i.e., ΛG(x, t) = fr(x)(t). Then the parameters r(x) form a local statistic which
indirectly describes the local distributions. If the graph element x is omitted,
the same technique can be applied for the construction of a global statistic from
a global distribution.

An example for this transformation is the power law exponent (Section 11.1).
The degree distributions are reduced to a single value.

Reparametrization. Instead of eliminating a parameter, one can change it.
For a local distribution ΛG(x, t) with parameter t ∈ P , we usually can write the
reparameterized distribution Λ̃G with parameter r ∈ P ′ as

Λ̃G(x, r) := fr(x, (ΛG(x, t))t∈P)

where fr is a function with parameter r, using all values of ΛG(x, t) for a given x.
For example one may chose P = P ′ = �,

fr(x; y0, y1, . . .) = max{yr, yr+1, . . . }

leading to
Λ̃G(x, r) := max {ΛG(x, t) | t ≥ r} .

Another example is fr(x; y0, y1, . . .) =
∑

t≥r ΛG(x, t) leading to

Λ̃G(x, r) :=
∑
t≥r

ΛG(x, t).

Concrete examples are the effective eccentricity and diameter (Section 11.2.4).

312 M. Brinkmeier and T. Schank

Another type of reparametrization affects the locality of local statistics and
distributions. In some situations it may useful to change the set of graph elements
on which a certain statistic is defined. For example one may change a vertex-
based statistic λG(v) to an edge-based statistic λ′

G(e) via the general relation

λ′
G(e) := f(λG(u), λG(v))

where e = {u, v}, and f is an arbitrary function with two arguments (like sum,
average, product etc.).

An example for this transformation is the eccentricity (Section 11.2.2), where
the notion of locality is transformed from ‘a pair of vertices’ to ‘a single vertex’.

Localization. To construct a local distribution Λ from a global statistic γ, one
may choose a subgraph H(x, t) ⊆ G for each graph element x ∈ XG and each
parameter t ∈ P . Then set

ΛG(x, t) := γH(x,t).

Of course this requires that the statistic γ is defined on the subgraph H(x, t).
An example for the choice of H(x, t) is:

– The ball of radius t around x, i.e., the subgraph induced by the t-neighborhood
Neight(x) (all vertices v with d(x, v) ≤ t) of x ([486, 540]).

– The largest/smallest subgraph of G containing x and satisfying a certain cri-
terion, possibly depending on t, e.g. the largest subgraph among all subgraphs
containing x and having edge connectivity ≥ t.

Similarly, a local statistic λ can be derived from a global statistic γ by choosing
a subgraph H(x) depending only on x and setting

λG(x) := γH(x).

An example for the choice of H(x) is:

– The union of the cliques containing x that have largest size among all cliques
containing x.

The localization of a global distribution Γ can be done in a similar manner to
that described above. If the subgraph H(x) is chosen solely based on the graph
element x, this leads to the local distribution

ΛG(x, t) := ΓH(x)(t).

The last type of localization constructs a local distribution from a local statis-
tic. Again a subgraph H(x, t) is chosen for each graph element x ∈ XG. But this
time it additionally depends on a new parameter t ∈ P . This leads to

ΛG(x, t) := λH(x,t)(x).

Transformations of these types can be found in [486, 540].

11 Network Statistics 313

11.7.2 Visualization

A single-valued global statistic γ is simply a value. Hence its visualization is
trivial. It becomes more interesting if several graphs of a class G are examined.
If the graphs depend on a parameter t, then one may examine the distribution
γG(t) where G(t) is a graph with parameter t. This distribution may be treated
like the distributions on a single graph, as described in the following.

Global distributions Γ : P → Y are maps from the set of parameters to the set
of values. Hence they may be visualized as functions in the usual way. Further-
more this interpretation allows the application of techniques like interpolation
or regression to obtain a functional description based on a set of parameters.
Since we assume that the reader is familiar with these notions and techniques,
we do not go into detail about them here.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06

N
um

be
r o

f v
er

tic
es

Indegree

Fig. 11.4. The absolute indegree distribution of the 2001 Crawl of WebBase [566] with
logarithmic scale

Figures 11.4 and 11.5 show two examples of visualizations of this type. They
show the absolute in- and outdegree distributions of the 2001 WebBase Crawl
[566]. Both diagrams have logarithmic scale and show a linear relation, indicating
a power law (see Section 11.1).

For local statistics and distributions the visualization is more tricky. For a
single-valued statistic λG(x), one could choose an order x1, x2, . . . on the graph

314 M. Brinkmeier and T. Schank

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000

N
um

be
r o

f v
er

tic
es

Outdegree

Fig. 11.5. The absolute outdegree distribution of the 2001 Crawl of WebBase [566]
with logarithmic scale

elements and plot the resulting pairs (i, λG(xi)). But the resulting diagram heav-
ily depends on the chosen order. A better approach would be counting or aver-
aging, and then using the global distributions or statistics, leading to a global
distribution.

Different local statistics of the same graph, based on the same set XG of
graph elements, may be visualized using a scatter plot. Let λG and λ′

G be two
local statistics over the same set XG of graph elements. Then the scatter plot of
λG and λ′

G consists of the pairs (λG(x), λ′
G(x)) for all graph elements x ∈ XG.

The scatter plot visualizes the relation between λ and λ′ in the underlying graph
G. If the resulting diagram is an unstructured cloud, the two statistics seem to
be unrelated. If, on the other hand, the resulting diagram allows a functional
description (obtained via regression, interpolation or similar techniques), the two
statistics seem to be closely related – at least in the given graph.

Figure 11.6 shows the scatter plot of the absolute in- and outdegrees of the
2001 WebBase Crawl in logarithmic scale. Each cross represents one or more
vertices having the corresponding combination of in- and outdegree. Since the
resulting diagram is a very dense cloud, the two types of degree do not seem to
be directly related.

11 Network Statistics 315

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

O
ut

de
gr

ee

Indegree

Fig. 11.6. The scatter plot of the in- and outdegrees of the 2001 Crawl of WebBase
[566] with logarithmic scale

11.7.3 Sampling of Local Statistics

As we have seen, many network statistics are computationally expensive on large
graphs, even though they require only polynomial space and time. Hence it seems
sensible to use approximations.

Assume that σG is an arbitrary local or global statistic derived from a local
statistic λG based on graph elements x ∈ XG. Then one very common and
accepted technique for the approximation of σG is sampling. Instead of using the
values λG(x) for all graph elements x ∈ XG for the calculation of σ, only the
values for some samples x ∈ Xsamples ⊂ XG are used.

In general, the sampling of a (global) statistic σG from a local statistic
λG : XG → Y has the following form:

1. Choose a set Xsamples of samples in XG. (This may be done completely at
random or using a specific strategy.)

2. Calculate λG(x) for each sample x ∈ Xsamples.
3. Calculate σG from the set {λG(x) | x ∈ Xsample}.

Of course, this description is very rough. Depending on the concrete situation,
adaptations might be necessary or useful. For example the strategy for the choice
of the samples often determines the quality of the approximation. On the other
hand, the calculation of the approximation of σG from the samples may require

316 M. Brinkmeier and T. Schank

changes in the definition or calculation of σG to improve the quality or to obtain
reasonable values.

In any case the quality of this approximation has to be certified either by
experiments or by analysis of the specific graph models. In general it is clear that
an increase of the number of samples directly results in a better approximation.

For example the relative hop plot of a graph can be estimated quite easily
using sampling (see Algorithm 25). For l = n one obtains the exact values P̄ .
The runtime of this algorithm is O(ln2 logn) and the space requirements are
O(n) (in addition to the graph). Unfortunately, we do not know of any results
about the quality of the estimates.

Algorithm 25: A simple example for sampling: The relative hop plot

Input: A graph G = (V, E).

begin
Set P (h) = 0 for h = 0, 1, 2, . . . , diam(G)
for i ∈ {1, . . . , l} do

Choose an unused vertex ui

Calculate the distances d(ui, v) for all v ∈ V by solving the SSSP for
source ui

for v ∈ V do
for h ∈ {d(ui, v), . . . , diam(G)} do

P (h) ← P (h) + 1;

p(h) ← P (h)
ln

end

11.8 Chapter Notes

The first articles mentioning the power law distribution of the degrees of large
‘naturally’ occurring networks are [16, 40, 197]. Following that, more detailed
studies were done. During these and the initial studies a power law was found
for several distributions. These include

– the hop plot of the Internet (see Section 11.2.3) [197],
– the distribution of the eigenvalues of the Internet (see Chapter 14) [197],
– the size of certain components of the WWW [102].

Other examples of power law distributions can be found in [405, 147].
Recently, the seeming universality of the power law was questioned (e.g.

[117]). Furthermore Bu and Towsley observed in [104] that the complementary
cumulative distribution of degrees of the Internet seems to fit better with the
power law than the degree distributions did. More precisely, this means that

D(k) := |{v | d(v) ≤ k}| = ckλ

11 Network Statistics 317

for some constants c and λ.
The average (connected) distance of networks is used in [573, 16, 102, 104].
The eccentricity of the Internet on the level of autonomous systems is ex-

amined by Magoni and Pansiot in [405]. They observe a mean eccentricity of 7,
while the radius is 5.

The eccentricity also appears in [540], where it is called node diameter.
In [486, 540] Tangmunarunkit et al. use the average of absolute and relative

hop plots over all vertices in the graph. They call their statistic expansion.
In [197] Faloutsos et al. give an alternative definition of the effective diameter,

which relies on a power law distribution of the hop plot. They observe that the
absolute hop plot P (h) satisfies P (1) = n + 2m (distance 1 is given by the
edges) and therefore P (h) = (n+2m)hH for a constant exponent H. Then their
effective diameter δeff is the value such that P (δeff) = (n+2m)δHeff = n2, leading

to δeff =
(

n2

n+2m

)1/H
. Therefore their effective diameter estimates the maximal

distance under the assumption that the hop plot satisfies the power law exactly.
The number of distinct shortest paths is used in [405]. There the fraction of

all pairs of vertices with a certain number of distinct shortest paths is measured.
Tangmunarunkit et al. apply the distortion in [486, 540] to analyze the net-

work of autonomous systems of the Internet. They sample the distortion over a
collection of spanning trees, generated by unspecified heuristics using the num-
ber of all-pairs-shortest-paths traversing a specific link. This global statistic is
localized with balls of radius h around a vertex v, leading to a local distribution.
This in turn is globalized by averaging over all center nodes.

The term clustering coefficient might be somewhat misleading. Clustering in
networks, see Chapter 8, is based on many concepts. There are graphs with high
clustering coefficient that are contrary to most of these concepts. A relatively
high clustering coefficient together with a small diameter is known as the small
world property of a network [573], see also Section 13.1.2 for details.

Also the term transitivity as used in Section 11.5 is somewhat misleading. In
a directed graph the edge (u,w) is called transitive if there is a path consisting
of the two edges (u, v) and (v, w). In this sense the term transitivity ratio was
defined by Harary and Kommel in 1979 [280]. The equivalent index of transitivity
was defined in the context of linguistics even earlier, in the year 1957 [282]. The
transitivity of Newman, Watts and Strogatz [447] is an undirected version of the
above terms. Interestingly the term triple also appeared already in its directed
version in [280].

	Degree Statistics
	Distance Statistics
	Average or Characteristic Distance
	Radius, Diameter and Eccentricity
	Neighborhoods
	Effective Eccentricity and Diameter
	Algorithmic Aspects
	ANF – The Approximate Neighborhood-Function

	The Number of Shortest Paths
	Distortion
	Clustering Coefficient and Transitivity
	Definitions
	Relation Between C and T
	Computation
	Approximation

	Network Motifs
	Algorithmic Aspects

	Types of Network Statistics
	Transformation of Types of Statistics
	Visualization
	Sampling of Local Statistics

	Chapter Notes

