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Abstract. We consider variations of two well-known centrality mea-
sures, betweenness and closeness, with a different model of information
spread. Rather than along shortest paths only, it is assumed that in-
formation spreads efficiently like an electrical current. We prove that
the current-flow variant of closeness centrality is identical with another
known measure, information centrality, and give improved algorithms for
computing both measures exactly. Since running times and space require-
ments are prohibitive for large networks, we also present a randomized
approximation scheme for current-flow betweenness.

1 Introduction

Centrality measures are an important tool in network analysis [6]. In social,
biological, communication, and transportation networks alike, it is important to
know the relative structural prominence of nodes or links to identify key elements
in the network. The structure of a network is represented by a graph, so we will
speak of vertices and edges in the following.

In social network analysis [22], the two most frequently used measures are ver-
tex betweenness and vertex closeness centrality. They are based on the assump-
tion that information (or whatever else is the content of linkages) is transmitted
along shortest paths. While betweenness centrality measures the degree to which
a vertex is between pairs of other vertices, i.e. on shortest paths connecting them,
closeness is just the inverse of the average distance to other vertices.

A common criticism for shortest-paths based measures is that they do not
take into account spread along non-shortest paths, and are thus not appropri-
ate in cases where link content distribution is governed by other rules [4]. A
betweenness measure based on network flow has been proposed in [10], and re-
cently a variation of betweenness based on the flow of electrical current has
raised considerable attention [18].

We here generalize closeness in the latter spirit and proof that the resulting
measure is exactly what is already known under the name of information central-
ity. Despite its wide recognition, information centrality is not frequently utilized
because its foundations are not very intuitive and therefore hard to understand
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by substantively oriented social scientists. Our new derivation thus provides an
intuition that builds on well-known concepts and should therefore find easier
reception.

Moreover, we give improved algorithms for computing current-flow based
measures and describe a probabilistic approach for approximating them in large
networks. The performance of the latter algorithm is evaluated on real-world
and random instances.

2 Preliminaries

In this section, we recall basic definitions and facts about electrical networks
(see, e.g., [3]). Throughout the paper, we only consider graphs G = (V,E) that
are simple, undirected, connected and have n ≥ 3 vertices. An electrical network
N = (G; c) is such a graph together with positive edge weights c : E → IR>0
indicating the conductance or strength of an edge. Equivalently, the network
can be defined in terms of positive edge weights r : E → IR>0 indicating the
resistance or length of an edge, where conductance and resistance are related by
c(e) = 1/r(e) for all e ∈ E.

We are interested in how current flows through an electrical network. A vector
b : V → IR called supply defines where current externally enters and leaves the
network. A vertex v ∈ V with b(v) �= 0 is called an outlet ; it is called a source, if
b(v) > 0, and a sink otherwise. Since there should be as much current entering
the network as leaving it,

∑
v∈V b(v) = 0 is required. Actually, we will only

consider the case in which a unit current enters the network at a single source
s ∈ V and leaves it at a single sink t ∈ V \ {s}, i.e. we consider unit st-supplies

bst(v) =


1 v = s,
−1 v = t,
0 otherwise .

To account for the directionality of flow, each edge is given an arbitrary
orientation. While the actual choice of orientation is of no importance, we denote
by −→e the directed edge corresponding to the orientation of e ∈ E, and by

−→
E the

set of all oriented edges.

Definition 1. Let N = (G; c) be an electrical network with supply b. A vector
x :

−→
E → IR is called (electrical) current, if it satisfies

1. Kirchhoff’s Current Law (KCL)∑
(v,w)∈−→

E

x(v, w) −
∑

(u,v)∈−→
E

x(u, v) = b(v) for all v ∈ V ,

2. Kirchhoff’s Potential Law (KPL)
k∑

i=1

x(−→ei ) = 0 for every cycle e1, . . . , ek in G .
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Lemma 1. For an electrical network N = (G; c) and any supply b, there is a
unique current x :

−→
E → IR.

A value x(−→e ) > 0 is interpreted as current flowing in the direction of −→e ,
whereas x(−→e ) < 0 denotes current flowing against the direction of −→e . For an
st-supply, the corresponding current is called an st-current and denoted by xst.

Currents are related to potential differences (or voltages) p̂ :
−→
E → IR by

Ohm’s Law, p̂(−→e ) = x(−→e )/c(e) for all e ∈ E. A vector p : V → IR is said to
assign absolute potentials if p̂(v, w) = p(v) − p(w) for all (v, w) ∈ −→

E .

Lemma 2. Let N = (G; c) be an electrical network with supply b. For any
fixed vertex v1 ∈ V and constant p1 ∈ IR, there are unique absolute potentials
p : V → IR with p(v1) = p1.

Again, we use p̂st and pst to indicate that the potential differences and abso-
lute potentials are based on an st-supply. Potentials are easily computed from a
given current and vice versa.

Absolute potentials can be computed directly using the Laplacian matrix
L = L(N) of N = (G; c) defined by

Lvw =


∑

e : v∈e c(e) if v = w
−c(e) if e = {v, w}
0 otherwise

for all v, w ∈ V . Note that the rows of L correspond to the left-hand side of
KCL.

Lemma 3. The absolute potentials of an electrical network N = (G; c) with
supply b are exactly the solutions of Lp = b.

Since G is connected, the rank of L is n − 1 with a kernel spanned by 1 =
(1, . . . , 1)T. This implies that any two assignments of absolute potentials differ
only by an additive constant. Let there be a fixed vertex ordering v1, . . . , vn

defining matrices and vectors. For brevity, we sometimes use i as an index instead
of vi. A way to choose an absolute potential is to fix, say, p(v1) = 0, so that we
obtain a restricted system

L̃p̃ = b̃ ,

where L̃ ∈ IRn−1×n−1 is the matrix obtained from L by omitting the row and
column of v1, and p̃ and b̃ are obtained from p and b by omitting the entry of
v1. Since L̃ is positive definite, and in particular regular, we get

p =
(
0 0T

0 L̃−1

)
︸ ︷︷ ︸

=:C

· b . (1)

Matrix C will play a crucial role in computing centralities.



536 U. Brandes and D. Fleischer

3 Current-Flow Measures of Centrality

Two of the most widely used centrality measures are based on a model of non-
splitting information transmission along shortest paths. Note that in the follow-
ing, distances may well be defined in terms of an edge length (or resistance)
r : V → IR>0.

(Shortest-path) betweenness centrality [1, 9] cB : V → IR≥0 is defined by

cB(v) =
1
nB

∑
s,t∈V

σst(v)
σs,t

where σs,t denotes the number of shortest paths from s to t, σst(v) denotes
the number of shortest paths from s to t with v as an inner vertex, and nB =
(n− 1)(n− 2) is a normalizing constant (nB = n(n− 1) if v may also be a start
or end vertex). It thus measures the degree to which a vertex is participating in
the communication between pairs of other vertices.

(Shortest-path) closeness centrality [2] cC : V → IR>0 is defined by

cC(v) =
nC∑

t�=v

dG(v, t)

where dG(v, w) denotes the length of a shortest path between v and w and
nC = n − 1 is a normalizing constant. It thus measures the degree to which a
vertex is close to other vertices (on average).

Both measures assume that information (or whatever else is being modeled)
flows along shortest paths, and does not split. We next describe two alternative
measures that build on the same intuition, but let information flow and split like
current in an electrical network.

3.1 Current-Flow Betweenness Centrality

In electrical networks, the analog of the fraction of shortest st-paths passing
through a vertex (or an edge) is the fraction of a unit st-current flowing through
that vertex (or edge). Given a supply b, we therefore define the throughput of a
vertex v ∈ V to be

τ(v) =
1
2

(
−|b(v)| +

∑
e:v∈e

|x(−→e )|
)
,

where the term −|b(v)| accounts for the fact that only inner vertices are consid-
ered in the definition of shortest-path betweenness centrality. To include start
and end vertex, it should be replaced by +|b(v)|. Accordingly, the throughput
of an edge e ∈ E is defined as

τ(e) = |x(−→e )| .
Let τst denote the throughput in case of an st-current.
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Definition 2 ([18]). Let N = (G; c) be an electrical network. Current-flow
betweenness centrality cCB : V → IR≥0 is defined by

cCB(v) =
1
nB

∑
s,t∈V

τst(v) for all v ∈ V ,

where nB = (n− 1)(n− 2).

Current-flow betweenness is well-defined because of Lemma 1. For the follow-
ing reason, it is also called random-walk betweenness. A simple random st-walk
is a random walk that starts at s, ends in t and continues at vertex v �= t by
picking an incident edge e ∈ E with probability c(e)/

∑
e′:v∈e′ c(e′). Then, given

an st-current, the amount of current flowing through a particular edge −→e equals
the expected difference of the number of times that the simple random st-walk
passes edge −→e along and against its orientation (see, e.g., [3]).

3.2 Current-Flow Closeness Centrality

Similar to the above variation of betweenness centrality, we utilize the analog of
shortest-path distance in electrical networks to introduce a variant of closeness
centrality.

Definition 3. Let N = (G; c) be an electrical network. Current-flow closeness
centrality cCC : V → IR>0 is defined by

cCC(s) =
nC∑

t�=s

pst(s) − pst(t)
for all s ∈ V .

Current-flow closeness centrality is well-defined, because by Lemma 2 any two
absolute potentials differ only by an additive constant. Since we only consider
unit st-currents, the term pst(s) − pst(t) corresponds to the effective resistance,
which can be interpreted as an alternative measure of distance between s and t.

Though not derived in the same fashion, it turns out that current-flow close-
ness has actually been considered before. Information centrality cI : V → IR>0
is defined by

cI(s)−1 = nCI
ss + trace(CI) − 2

n
, (2)

where CI = (L+J)−1 with Laplacian L and J = 11T [20]. Information centrality
is often referred to, but not frequently used; most likely because its underlying
intuition is not widely understood.

Theorem 1. Current-flow closeness centrality equals information centrality.

Proof. We first note that Eq. (2) can be rewritten in terms of matrix elements
only,

cI(s)−1 =
∑
t∈V

CI
ss + C

I
tt − CI

st − CI
ts . (3)
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On the other hand, current-flow closeness can be rewritten into the same
form, though with matrix C introduced in Eq. (1),

cCC(s)−1 =
∑
t�=s

pst(s) − pst(t) =
∑
t�=s

Css − Cst − (Cts − Ctt)

=
∑
t∈V

Css + Ctt − Cst − Cts .

We show that these terms are actually equal using a matrix D with CI =
C +D that contributes zero to the common summation scheme.

For i = 1, . . . , n let ei = (0, . . . , 0, 1, 0, . . . , 0)T, with 1 in the ith position,
and let C•i and CI

•i denote the ith column of the corresponding matrix. The
columns of C are uniquely determined by

LC•i = ei − e1 and C1i = 0

and those of CI satisfy
(L+ J)CI

•i = ei (4)

by definition. Projecting Eq. (4) onto the kernel of L, i.e. multiplying both sides
with 1

n11
T from the left, yields

JCI
•i = (1TCI

•i)1 =
1
n
1 .

Eq. (4) is therefore equivalent to

LCI
•i = ei − 1

n
1 and 1TCI

•i =
1
n
.

Now let q be a vector with Lq = L(CI
•i − C•i) = e1 − 1

n1. Then we have
CI

•i = C•i + q + di1 for some constants di (choosing q such that q1 = 0 yields
di = CI

1i). In matrix notation we thus obtain CI = C +D with

D =

q1+d1 q1+d2 · · ·
q2+d1 q2+d2 · · ·

...
...

. . .

 .

It is easily verified that D contributes zero when subjected to the summation
scheme of (3). ��

4 Improved Exact Computation

For comparison note that shortest-path betweenness and closeness can be com-
puted in O(nm + n2 log n) time and O(n + m) space using an efficient imple-
mentation of Dijkstra’s algorithm [5].
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For current-flow betweenness centrality, matrix C defined in Eq. (1) is de-
termined by inverting the reduced Laplacian. Since pst = Cbst and x(v, w) =
(p(v) − p(w)) · c({v, w}), we can use the incidence matrix B = B(N) ∈ IRn×m,
defined by

Bve =


c(e) if −→e = (v, w) for some w
−c(e) if −→e = (u, v) for some u
0 otherwise ,

to compute st-currents xst = BCbst. From the entries of current-flow matrix
F = BC the centrality scores are then determined via

cCB(v) =
1
nB

∑
s,t∈V

τst(v)

=
1
nB

∑
s,t∈V

1
2

(
−|bst(v)| +

∑
e : v∈e

|xst(−→e )|
)

=
1

2 − n +
1
nB

∑
s,t∈V

∑
e : v∈e

1
2
|Fes − Fet|

=
1

2 − n +
1
nB

∑
s<t∈V

∑
e : v∈e

|Fes − Fet| ,

where vi < vj if and only if i < j (recall that we assume a fixed vertex ordering).
The total time to compute current-flow betweenness is thus in O(I(n − 1) +
mn2) [18], where I(n) ∈ O(n3) is the time required to compute the inverse of
an n× n-matrix. Note that I(n) ∈ Ω(n2 log n) for arbitrary real matrices.

This can be improved as follows (see Alg. 1).

Theorem 2. Current-flow betweenness can be computed in O(I(n−1)+mn log n)
time.

Proof. We refer to Alg. 1. We can compute cCB(v) by summing up only the
inflows, i.e. positive current on an edge directed to v or negative current on an
edge leaving v, as follows. Note that for every non-outlet the inflow is equal to
the outflow by KCL. We will later take care of the outlets. The total inflow τin
into v equals

τin(v) =
1
nB

∑
(v,w)∈−→

E

∑
s<t:

Fes<Fet

|Fes − Fet| + 1
nB

∑
(w,v)∈−→

E

∑
s<t:

Fes>Fet

|Fes − Fet|

=
1
nB

∑
(v,w)∈−→

E

n∑
i=1

(i− pos({v, w}, vi)) · Fevi

+
1
nB

∑
(w,v)∈−→

E

n∑
i=1

(n+ 1 − i− pos({w, v}, vi)) · Fevi .
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Algorithm 1: Current-flow betweenness
Input: electrical network N = (G; c) with vertices v1, . . . , vn

Output: current-flow betweenness cCB : V → IR≥0

begin
cCB ← 0
C ←

(
0 0T

0 L̃−1

)
for e ∈ E do

Fe• ← (BC)e•
sort row Fe• in non-increasing order1.1

pos(e, v)← rank of Fev in sorted row Fe•
for i = 1, . . . , n do

increase cCB(source(−→e )) by (i− pos(e, vi)) · Fevi

increase cCB(target(−→e )) by (n + 1− i− pos(e, vi)) · Fevi

for i = 1, . . . , n do
cCB(vi)← (cCB(vi)− i + 1) · 2/nB1.2

end

Inflows include the vanishing unit current whenever v is the sink. In the summa-
tion over all pairs s < t this will be the case i−1 times, namely when v = vi. Note
that the inflow of the source is always zero. Subtracting the vanishing currents
from the total inflow yields half of the current-flow betweenness. The relation

cCB(vi) = 2(τin(vi) − i+ 1) ,

is accounted for in Line 1.2 of the algorithm.
The computational bottleneck after determining C by matrix inversion is

the sorting of rows in Line 1.1, which takes O(mn log n) time. Note that F
is computed by multiplying C with an incidence matrix, so that it takes only
O(mn) time. ��

Information centrality can be computed by determining matrix CI defined in
the previous section and evaluating Eq. (2) [20]. The total running time is thus
O(I(n) + n).

Using the new interpretation as current-flow closeness centrality, we see that
it can also be determined from C rather than CI (see Alg. 2). Thus sparseness
is preserved and only one matrix inversion is required to compute both close-
ness and betweenness, which corresponds nicely to the fact that shortest-path
betweenness and closeness can be computed during the same traversals.

A straightforward approach for matrix inversion uses Gaussian elimination,
leading to a computation time of O(n3). For networks from many application
areas, however, sparse matrix techniques are appropriate. Since L̃ is symmetric
and positive definite, the conjugate gradient method (CGM) can be used with an
incomplete LU -decomposition as a preconditioner. This yields a running time of



Centrality Measures Based on Current Flow 541

O(mn
√
κ), where κ is the condition number of L̃ times its approximate inverse

obtained by applying the preconditioner. A rough estimate for the condition
number is κ ∈ Θ(n) [12], leading to a running time of O(mn1.5) which is faster
than the subsequent summation before its improvement to O(mn log n).

The inverse of L̃ can be computed column-by-column as needed in Line 2.1
of the algorithm for closeness centrality. Its memory requirement is in O(m).

For betweenness centrality, O(n2) memory is required in the worst case.
Here it is the current-flow matrix F that is processed row-by-row, implying that
columns of L̃−1 corresponding to vertices u and w with {u,w} ∈ E are needed
simultaneously. Therefore, the column v ∈ V needs to be determined only when
the first row Fe• with v ∈ e is encountered, and it can be dropped from memory
when the last such row has been processed.

To reduce the memory requirements of Alg. 1, we therefore seek an ordering
that minimizes the maximal number of columns that have to be kept in memory
at the same time. That is, we would like to determine a one-to-one mapping
π : V → {1, . . . , n} where

δ(π) = max
1≤i≤n

|{u ∈ V : ∃ w ∈ V, {uw} ∈ E with π(u) ≤ i < π(w)}| ≤ n

is minimum. Unfortunately, this is an NP-hard problem known as vertex sepa-
ration [17], or, equivalently [15], minimum pathwidth.

Heuristically, we can find a good ordering π∗ by using algorithms for
bandwidth- and envelope-reduction of matrices, since the bandwidth (of the
Laplacian matrix of N ordered by π∗) is an upper bound for δ(π). Algorithm 1
is easily modified to use any precomputed ordering. The proven reverse Cuthill-
McKee heuristic [7]) does not increase the asymptotic running time, while it
reduces the memory requirement to O(δ(π∗)n). Note that it can also be em-
ployed in the inversion of L̃.

Algorithm 2: Current-flow closeness
Input: electrical network N = (G; c)
Output: current-flow closeness cCC : V → IR>0

begin
cCC ← 0
for v ∈ V do

C•v ←
(

0 0T

0 L̃−1

)
•v

2.1

for w ∈ V do
increase cCC(v) by Cvv − 2Cwv

increase cCC(w) by Cvv

for v ∈ V do
cCC(v)← 1/cCC(v)

end
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5 Probabilistic Approximation

In large networks, both running time and space requirements of the algorithm
for current-flow betweenness are prohibitive. Note that shortest-path closeness
can be approximated quickly [21].

We show that a similar approach can be used to reduce not only the running
time, but also the space requirements of (approximate) current-flow betweenness
computations. For large data sets, this is often even more important.

The basic idea is that the betweenness of a vertex, i.e. the throughput over
all st-currents, can be approximated using a small fraction of all pairs s �= t ∈ V .
A fully polynomial randomized approximation scheme is given in Alg. 3.

Theorem 3. There is a randomized algorithm that, in O( 1
ε2m

√
κ log n) time

and O(m) space, approximates current-flow betweenness to within an absolute
error of ε with high probability.

Proof. Let X(1)
v , . . . , X

(k)
v be independent random variables that return τst(v),

for a pair s �= t ∈ V , picked uniformly at random. With c∗ = n(n− 1)/nB ,

E

(
c∗

k

k∑
i=1

X(i)
v

)
= c∗E(X(1)

v ) =
1
nB

∑
s∈V

∑
t�=s

τst(v) = cCB(v) ,

i.e. the scaled expected throughput of k st-currents is equal to the current-flow
betweenness. Since 0 ≤ τst(v) ≤ 1, Hoeffding’s bound [14] gives

IP

(∣∣∣∣∣c∗k
k∑

i=1

Xv
i − cCB(v)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(−2(ε/c∗)2k
) ≤ 2

n2�

when choosing k = - · �(c∗/ε)2 log n� pairs for arbitrary -.
For each selected pair s �= t ∈ V , the restricted system in Line 3.1 of Alg. 3

can be solved in O(m
√
κ) time and O(m) space using CGM. ��

Algorithm 3: Randomized approximation scheme for current-flow betweenness
Input: electrical network N = (G; c), threshold ε > 0, constant �
Output: current-flow betweenness approximation c′

CB : V → IR≥0

begin
c′

CB ← 0 and k ← � · �(c∗/ε)2 logn�
for i=1,. . . k do

select s 	= t ∈ V uniformly at random and solve L̃p̃ = b̃st

for v ∈ V \ {s, t} do3.1
for e = {v, w} ∈ E do increase c′

CB(v) by c(e) · |p̃(v)− p̃(w)| · c∗/2k

end
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6 Discussion

Current-flow betweenness and closeness are variants of (shortest-path) between-
ness and closeness centrality for an alternative model of information spreading.
In particular, we introduced current-flow closeness and proved that it is equal
to information centrality, the original definition of which is rather unintuitive.

There is one and only one path between each pair of vertices in a tree, and
the length of this path equals its resistance. We thus have the following result.

Theorem 4. The two shortest-path and current-flow measures agree on trees.

Corollary 1. Betweenness and closeness can be computed in O(n) time and
space on trees.

Proof. A bottom-up followed by a top-down traversal similar to [19]. ��
Finally, we want to remark that there is a straightforward extension of

shortest-path betweenness to edges (simply replace the numerators by the num-
ber of shortest st-paths that use the edge) [1]. A similar extension of current-flow
betweenness, that can be computed by slight modification of Alg. 1, is given by

cCB(e) =
1
nB

∑
s �=t∈V

τst(e) for all e ∈ E .
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A Experimental Evaluation

We provide empirical evidence that the proposed algorithms for (approximate)
computation of current-flow betweenness is practical. It has been implemented in
Java using the yFiles1 graph data structure and the JMP2 linear algebra package.
All experiments were performed on a regular PC with 2.4 GHz clock-speed and
3 GB main memory. Constant - = 1 for the approximation. See Fig. 1.

Fig. 1. Comparison of total running time for current-flow betweenness on random
graphs with average degree 6, 8, . . . , 20 and maximum error of approximation on 6 ran-
dom and 6 AS graphs with approximately 9000 vertices and 20000 edges each

1 www.yworks.de
2 www.math.uib.no/˜bjornoh/jmp/index2.html
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