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Abstract. A drawing of a family of cuts of a graph is an augmented
drawing of the graph such that every cut is represented by a simple closed
curve and vice versa.
We show that the families of cuts that admit a drawing in which every cut
is represented by an axis-parallel rectangle are exactly those that have a
cactus model that can be rooted such that edges of the graph that cross
a cycle of the cactus point to the root. This includes the family of all
minimum cuts of a graph. The proof also yields an efficient algorithm to
construct a drawing with axis-parallel rectangles if it exists.

1 Introduction

A cut of a graph is a partition of its vertex set into two non-empty subsets. In
a drawing of a graph, it is therefore natural to represent a cut by a closed curve
partitioning the plane into two regions containing one subset each.

When a set of cuts is drawn in this way, the curves can intersect so that their
union might contain closed curves that represent other cuts not contained in that
set. We are interested in families of cuts that can be drawn without creating con-
fusing non-members. In particular, we consider the problem of drawing families
of cuts such that every member is represented by an axis-parallel rectangle and
vice versa.

Our main result is a characterization of all families of cuts that can be repre-
sented by axis-parallel rectangles, namely those that can be modeled by a cactus
containing a certain, rootable, node. These include the important family of all
minimum cuts of a graph [4]. We give an algorithm to test this property. Pro-
vided a set of cuts of a graph with n vertices and m edges is represented by a
cactus model, the test works in O(nm) time. We also show how to construct a
drawing with axis-parallel rectangles if one exists. The construction works in two
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steps. First, we solve the problem for families of minimal cuts of a planar con-
nected graph. Then, we use similar planarization techniques as in [3] to extend
the result to general graphs.

The paper is organized as follows. In Sect 2, we define drawings of families
of cuts. In Sect. 3, we introduce the cactus model and show that its existence is
necessary for the existence of a drawing with axis-parallel rectangles. Using hier-
archically clustered graphs (briefly introduced in Sect. 4), we give an additional
necessary condition for families of cuts that admit a drawing with axis-parallel
rectangles in Section 5 and show how to test it. To show that the conditions are
also sufficient, we construct a drawing in Section 6.

2 Drawing Families of Cuts

Throughout this paper, let G = (V, E) denote a simple, connected undirected
graph with n vertices and m edges. A drawing D of G maps vertices on distinct
points in the plane and edges on simple curves connecting the drawings of their
incident vertices. The interior of an edge must not contain the drawing of a
vertex. A drawing is planar, if edges do not intersect but in common end points.
Let S, T ⊆ V . With G(S) we denote the subgraph of G that is induced by S
and with E(S, T ) we denote the set of edges that are incident to a vertex in S
and a vertex in T . A cut of G is a partition C = {S, S} of the vertex set V into
two non-empty subsets S and S := V \ S. We say that the cut {S, S} is induced
by S. The edges in E(C) = E(S, S) are the cut-edges of C. A minimum cut is
a cut with the minimum number of cut-edges among all cuts of G. A minimal
cut is a cut {S, S} that is inclusion-minimal, i.e. there is no cut {T, T} with
E(T, T ) � E(S, S). Note that both, G(S) and G(S), are connected if {S, S} is
a minimal cut of the connected graph G.

A drawing of a cut C = {S, S} of G in a drawing D(G) is a simple closed
curve γ, such that
– γ separates S and S, i.e. the drawings of edges and vertices in G(S) and

G(S), respectively, are in different connected regions of R2 \ γ, and
– |D(e)∩γ| = 1 for e ∈ E(C), i.e. the drawing of a cut-edge crosses the drawing

of the cut exactly once.

Let C be a set of cuts of a graph G. A mapping D is a (planar) drawing of a
graph G and a family of cuts C of G, if
1. D(G) is a (planar) drawing of G and
2. D(C) is a drawing of C in D(G) for every cut C ∈ C, and
3. every simple closed curve γ ⊆

⋃
C∈C D(C) is a drawing of some cut in C.

Note that the third condition eliminates any potential ambiguity regarding
which cuts are in the family.

A drawing D of a graph and a family C of cuts is a drawing with axis-
parallel rectangles, if every cut is drawn as an axis-parallel rectangle – more
precisely, if every simple closed curve in

⋃
C∈C D(C) is an axis-parallel rectangle.

See Fig. 1(a) for a planar drawing with axis-parallel rectangles of the set of all
minimum and minimum+1 cuts of a graph.
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Fig. 1. A drawing of the family of all minimum and minimum+1 cuts of a graph with
axis-parallel rectangles. In the cactus model of the cuts, ϕ is indicated by node labels,
and cycle-replacement nodes in the inclusion tree constructed from the cactus are
shown in grey. The auxiliary graph is shown in a c-planar drawing of the hierarchical
clustering represented by the inclusion tree.

3 Necessity of a Cactus Model

A cactus is a connected graph in which every edge belongs to at most one cycle.
A cactus model for a set C of cuts of a graph G = (V, E) is a pair (G, ϕ) that
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consists of a cactus G = (V, E) and a mapping ϕ : V → V such that C is modeled
by the minimal cuts of G, i.e.,

C = {{ϕ−1(S), ϕ−1(S)}; {S, S} is a minimal cut of G}.

To avoid confusion, the vertices of the cactus G are called nodes. A node ν ∈ V
is called empty if ϕ−1(ν) = ∅.

An important family of cuts that has a cactus model is the set of all minimum
cuts of a connected graph [4]. A cactus model for the minimum and minimum+1
cuts of the graph in Fig. 1(a) is given in Fig. 1(b).

While not every family of cuts has a cactus model, we show that only those
that do can have a drawing with axis-parallel rectangles. Two cuts {S, S} and
{T, T} cross, if and only if the four corners S ∩ T , S \ T , T \ S, and S ∪ T
are non-empty. The four cuts induced by the four corners of two crossing cuts,
respectively, are called corner cuts. The cut induced by (S \T )∪ (T \S) is called
the diagonal cut.

Theorem 1 ([5]). A set C of cuts of the graph G can be modeled by a cactus if
and only if, for any two crossing cuts {S, S} and {T, T} in C,

– the four corner cuts are in C, and
– the diagonal cut is not in C.

If a cactus model exists, there is always one with O(n) nodes.

The properties of crossing cuts in this characterization are implied by over-
lapping axis-parallel rectangles.

Lemma 1. If a set of cuts has a drawing with axis-parallel rectangles, it has a
cactus model.

Proof. Let D be a drawing of a set C of cuts with axis-parallel rectangles and
suppose that C contains crossing cuts {S, S} and {T, T}. There are essentially
the seven cases indicated in Fig. 2 for the drawings of two crossing cuts by axis-
parallel rectangles. Since the cases in Fig. 2(a) contain simple closed curves that
are not axis-parallel rectangles, only the case in Fig. 2(b) needs to be considered.

Let DS , DT ⊆ R2 be the rectangular regions bounded by D({S, S}) and
D({T, T}), respectively. Then regions DS ∩DT , DS \DT , DT \DS , and DS ∪DT

are bounded by axis-parallel rectangles in D({S, S}) ∪ D({T, T}). These are
drawings of the four corner cuts of {S, S} and {T, T}. Hence, they are in C.

On the other hand, suppose the diagonal cut C induced by (S \ T ) ∪ (T \ S)
is in C and let DC be the rectangular region bounded by its drawing D(C).
Without loss of generality, suppose that D(S) ⊂ DS and D(T ) ⊂ DT . Either
DC contains D(G(S \ T )) and D(G(T \ S)), but not D(G(S ∩ T )), or it contains
D(G((S \ T ) ∪ (T \ S))), but not D(G(S \ T ∪ T \ S)). In the first case, the
drawing contains a simple closed curve bounding the region DC ∩DS ∩DT (thus
inducing an empty cut), and in the second case the union of the three rectangles
contains a simple closed curve that is not an axis-parallel rectangle. �	
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Fig. 2. Drawings of two crossing cuts {S, S} and {T, T} with axis-parallel rectangles.

4 Cactus-Induced Hierarchical Clusterings

Since a cactus model is necessary for a drawing to exist, we can make use of
a transformation originally developed for drawing the particular family of all
minimum cuts of a planar connected graph [1]. Given a cactus model (G, ϕ) of
a family C of G, we use the tree T = T (G, ϕ) that is constructed as follows.

1. Choose a node r of G as root.
2. Replace each cycle c of G by a star, i.e. delete every edge of c, add a new

empty node νc – called cycle-replacement node of c – to G, and for every
node ν of c, add an edge {νc, ν} to G.

3. For each v ∈ V , add v to the vertex set of G and add an edge {v, ϕ(v)} to G.

The construction is illustrated in Fig. 1(c) and yields a triple (G, T, r) of

– a graph G = (V, E),
– a tree T , and
– an inner vertex r of T
– where the set of leaves of T is exactly V .

This is the hierarchically clustered graph model introduced by Feng et al. [6]. G
is called the underlying graph and T the inclusion tree of (G, T, r). Inner vertices
of T are called nodes. We denote the tree T rooted at r by (T, r). Each node
ν of T represents the cluster Vr(ν) of leaves in the subtree of (T, r) rooted at
ν. Note that {{Vr(ν), Vr(ν)}; ν 
= r node of T (G, ϕ)} equals the subset C‖ of
non-crossing cuts of C, i.e. the set of cuts in C that do not cross any other cut
in C. A c-planar drawing of a hierarchically clustered graph (G, T, r) consists of

– a planar drawing of the underlying graph G and
– an inclusion representation1 of the rooted tree (T, r) such that
– each edge crosses the boundary of the drawing of a node of T at most once.

1 In an inclusion representation of a rooted tree (T, r), each node of T is represented
by a simple closed region bounded by a simple closed curve. The drawing of a node
or leaf ν of T is contained in the interior of the region representing a node µ of T if
and only if µ is contained in the path from ν to r in T . The drawings of two nodes µ
and ν are disjoint if neither µ is contained in the path from ν to r nor ν is contained
in the path from µ to r in T .
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Note that the vertices of G are the leaves of T and thus have the same drawing.
Also note, that a c-planar drawing of (G, T (G, ϕ), r) contains a planar drawing
of the set of all non-crossing cuts C‖. A hierarchically clustered graph (G, T, r)
is c-planar if it has a c-planar drawing. It is completely connected, if each clus-
ter and the complement of each cluster induces a connected subgraph of G. A
hierarchically clustered graph with planar underlying graph does not have to
be c-planar. However, a completely connected hierarchically clustered graph is
c-planar if only the underlying graph is planar [2].

According to the construction in [1,9], we associate an auxiliary graph GD
with a c-planar drawing D of a hierarchically clustered graph. Let V ′ be the
set of points, in which drawings of edges and boundaries of drawings of clusters
intersect. Then the vertex set of GD is V ∪ V ′. The edge set of GD contains two
types of edges. For an edge e = {v, w} of G, let v1, . . . , vk be the points in D(e)∩
V ′ in the order they occur in the drawing of e from v to w. Then GD contains
the edges {v, v1}, {v1, v2}, . . . , {vk, w}. Let ν 
= r be a node of T . Let v1, . . . , vk

be the points in ∂D(ν) ∩ V ′ in the order they occur in the boundary ∂D(ν) of
the drawing of ν. Then GD contains the edges {v1, v2}, . . . , {vk−1, vk}, {vk, v1}.
The cycle v1, . . . , vk of GD is called the boundary cycle of ν. (To avoid loops and
parallel edges, additional vertices of degree two may be inserted into boundary
cycles). See Fig. 1(d).

5 Towards a Characterization

Another necessary condition for families of cuts that have a drawing with axis-
parallel rectangles depends also on the edges in the graph. Let (G, ϕ) be the
cactus model of a set C of cuts of a graph G. For a cycle c : ν1, . . . , νk in G
let Vi := Vνc

(νi), i = 1, . . . , k. An edge {v, w} of G crosses cycle c if there are
1 ≤ i, j ≤ k such that

v ∈ Vi, w ∈ Vj , and i − j 
≡ ±1 mod k.

If (G, ϕ) is the cactus of all minimum cuts of G, then no edge of G crosses a
cycle of G. In general, it depends on the edges that cross a cycle of the cactus
model, whether a set of cuts has a drawing with axis-parallel rectangles. More
precisely, if C has a drawing D with axis-parallel rectangles and e crosses the
cycle c then there exists an i ∈ {1, . . . , k} such that e is incident to a vertex in
Vi and the drawing of Vi is contained in the simple region bounded by D(Vi, Vi).
This statement is further formalized in the next lemma.

Lemma 2. A family of cuts that has a cactus model (G, ϕ) has a drawing with
axis-parallel rectangles only if the root r of T (G, ϕ) can be chosen such that

(R) each edge of G that crosses a cycle c of G is incident to a vertex in V \Vr(νc).

Proof. Suppose that the set of cuts modeled by (G, ϕ) has a drawing D with
axis-parallel rectangles. Let r be a node of T = T (G, ϕ) such that for every
node ν 
= r of T the set Vr(ν) is contained in the simple region bounded by
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D({Vr(ν), Vr(ν)}). Using the fact that Vr(µ) = Vµ(r) for two adjacent nodes r
and µ of T , it can be shown that such a node r exists.

Let c be a cycle of G and let e be an edge of G that crosses c. Let ν1, . . . , νk

be the descendents of νc such that ν1, . . . , νk is a path in c. Suppose that e
is not incident to a vertex in V \ Vr(νc). Then e ∈ E(Vr(νi), Vr(νj)) for some
1 < i + 1 < j ≤ k. Let S =

⋃i+1
�=1 Vr(ν�) and T =

⋃k
�=i+1 Vr(ν�). Then, on

one hand, e ∈ E(S \ T, T \ S). But, on the other hand, {S, S} and {T, T} are
two crossing cuts that are modeled by (G, ϕ) such that S and T are contained
in the simple closed region DS and DT bounded by D({S, S}) and D({T, T}),
respectively. Hence, we have again the situation as indicated in Fig. 2(b). By the
definition of drawings of cuts, the drawing of the edges and vertices of G(S ∪ T )
has to be contained inside DS ∪DT and the drawing of the edges and vertices of
D(G(S ∩ T )) may not intersect DS ∩ DT . This implies that E(S \ T, T \ S) = ∅.

�	

In the following, a node of the inclusion tree T = T (G, ϕ) is called rootable, if
it fulfills Condition (R) of the previous lemma. We give an algorithm for finding
all rootable nodes of the inclusion tree T = T (G, ϕ). We assume that the size of
G is in O(n).

We use a node and edge array crossed on T to store the information about
edges of G that cross a cycle of the cactus. Let c be a cycle of G. crossed(νc)
is true if and only if there is an edge of G that crosses c. crossed({νc, ν}) is
true for an edge {νc, ν} of T if and only if crossed(νc) is true and each edge
that crosses c is incident to a vertex in Vνc(ν). For all other edges and nodes
of T crossed is false. Clearly, it can be tested in linear time, which cycles are
crossed by an edge. Hence, crossed can be computed in O(mn) time. The next
lemma is a reformulation of Condition (R).

Lemma 3. A node r of T is rootable if and only if for each node ν of T with
crossed(ν) = true there exists an adjacent node µ of ν with crossed{ν, µ} =
true such that r is contained in the subtree of (T, ν) rooted at µ.

Hence, we can obtain the possible roots for constructing a drawing with axis-
parallel rectangles of C – possibly including some cycle-replacement nodes – by
deleting for all marked nodes ν the subtrees of (T, ν) rooted at those adjacent
nodes µ of ν for which {ν, µ} is not marked. Proceeding first from the leaves to
an arbitrary root and then from this root to the leaves of T , this can be done in
time O(n).

By constructing a drawing, we show in the next section that the conditions
in Lemma 2 are also sufficient.

6 The Drawing

Let (G, ϕ) continue to be a cactus model of a set C of cuts of the graph G and
let T = T (G, ϕ) be the inclusion tree constructed in Sect. 4. We assume that
the root r of T is a rootable node. We show how to construct a drawing with
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axis-parallel rectangles for C. In a first step, we consider the case that C is a set
of minimal cuts of a connected planar graph. Using planarization, we generalize
the result to general sets of cuts of not necessarily planar graphs.

6.1 Planar Graphs

In this section, we assume that C is a set of minimal cuts of a planar connected
graph G. We show how the ideas for drawing the set of all minimum cuts of a
planar graph [1] yield a drawing with axis-parallel rectangles of C. We briefly
sketch the general construction and explain in more details the parts that differ
from the case of drawings for the set of minimum cuts. The construction starts
with a c-planar drawing D of the hierarchically clustered graph (G, T, r). Such
a c-planar drawing always exists: Since C is a set of minimal cuts of a connected
graph it follows that (G, T, r) is completely connected and hence c-planar.

Let c : ν1, . . . , ν� be a cycle of G. Suppose that νc is a descendent of ν�

in the tree T rooted at r. Let Vi = Vνc(νi), i = 1, . . . , � and let V0 = V�. Let
i ∈ {1, . . . , �−1} and let e1, . . . , ek be the sequence of edges incident to a vertex in
Vi in the cyclic order around Vi. Then E(Vi, Vi−1) and E(Vi, Vi+1) are non-empty
subsequences of e1, . . . , ek, i.e. suppose e1 ∈ E(Vi, Vi−1) and ek /∈ E(Vi, Vi−1),
then there are indices 1 < k1 ≤ k2 < k3 ≤ k such that

e1, . . . , ek1︸ ︷︷ ︸
E(Vi,Vi−1)

, ek1+1, . . . , ek2︸ ︷︷ ︸
E(Vi,V�)

, ek2+1, . . . , ek3︸ ︷︷ ︸
E(Vi,Vi+1)

, ek3+1, . . . , ek
︸ ︷︷ ︸

E(Vi,V�)

. (1)

Further, E(V�, V1) and E(V�, V�−1) are non-empty subsequence of the edges
around V \ V�. This observation can be proved in the following two steps.

1. Since G is connected and C is a set of minimal cuts, it follows that the sets
E(Vi, Vi−1), E(Vi, Vi+1), i = 1, . . . , � − 1 are non-empty.

2. It follows from Step 1 and the c-planarity that E(Vi, Vi−1), E(Vi, Vi+1), i =
1, . . . , � − 1 are subsequences of the cyclic sequence of edges around Vi and
that E(V�, V1), E(V�, V�−1) are subsequences of the cyclic sequence of edges
around V \ V�.

Besides, let e ∈ E(Vi, Vj) for some i, j ∈ {1, . . . , �}, i 
= j. Then c-planarity
implies that the two vertices in the auxiliary graph GD that represent the inter-
section of e with the boundary of νi and νj (or the boundary of νc, if i = � or
j = �), respectively, are adjacent. Hence the situation in the auxiliary graph GD
is as indicated in Fig. 3a. For i ∈ {1, . . . , � − 1}, let p±

i be the path in GD that
is induced by the intersection of the edges in E(Vi, Vi±1) with the boundary of
νi. Similarly, let p+

0 (p−
� ) be the path in GD that is induced by the intersection

of the edges in E(V�, V1) (E(V�, V�−1)) with the boundary of νc.
A planar drawing of C with axis-parallel rectangles can now be obtained as

follows. First, for each i, paths p+
i and p−

i+1 are united to one path. The parts
of the boundary-cycle of νc that are not in p+

0 or p−
� are removed. The result

can be seen in Fig. 3b. Finally, at each end of each thus united path p+
i /p−

i+1,
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i = 1, . . . , � − 2, an additional vertex is inserted as indicated in Fig. 3c. In
the following, we refer to these vertices as cycle-path end-vertices. Let G′ be
the graph that results from GD by doing this for every cycle of G. Applying
a min-cost flow approach for quasi-orthogonal drawings [10,8,7,11] with some
restriction on the flow to G′ yields a drawing of C with axis-parallel rectangles.
There are two restrictions on the flow necessary

1. the flow over a boundary edge from outside a boundary cycle into the inside
of a boundary cycle is zero

2. the flow from a cycle-path end-vertex into the inside of a boundary cycle is
minimum, i.e. there is a rectangle.

It can be shown that there is always a feasible flow for the thus restricted flow
network.

Fig. 3. Constructing a drawing for a set of cuts from a c-planar drawing.

6.2 General Graphs

In this section, we extend the results on planar drawings for families of minimal
cuts to not necessarily planar drawings. Similar to the method described in [3] for
hierarchically clustered graphs, the idea for the construction uses planarization
techniques. Recall that (G, ϕ) is a cactus model for a family of cuts of G. We
assume again that the root r of T = T (G, ϕ) is rootable.

1. Let GP = (V, EP ) be a planar connected graph on the same set of vertices
as G, such that G models a set of minimal cuts and each edge of GP that
crosses a cycle c of G is incident to a vertex in V \ Vr(νc).

2. Construct the auxiliary graph G′
P for (GP , G, ϕ) as it is described in Sect. 6.1.

3. Construct a planar graph G′, by inserting the remaining edges of G into G′
P

such that each edge crosses the boundary cycle of a cut at most once.
4. Apply an algorithm for quasi-orthogonal drawings with the restrictions in-

dicated in Sect. 6.1 to G′.
5. Delete the edges that do not correspond to original edges in G.
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Remarks to Step 1. It is not always possible to choose the graph GP with the
properties required in Step 1 as a subgraph of G. The following lemma shows,
however, that at least some graph with the properties required in Step 1 exists.

Lemma 4. Let (G, ϕ) be a cactus model for a set of cuts of a graph with vertex
set V . Then there exists a planar connected graph H with vertex set V such that

1. G models a set of minimal cuts of H and
2. no edge of H crosses a cycle of G.

Proof. Let µ be a node of T that is adjacent to a leaf v. In a first step, we start
with an empty graph. Proceeding from bottom to top of the tree T rooted at µ,
we can construct a graph H0 = (V, E0) such that

1. for any node ν 
= µ the subgraph of H0 induced by Vµ(ν) is a path,
2. no edge of H0 crosses a cycle of G, and
3. E0(Vµ(ν), Vµ(ν)) = ∅ if ν is adjacent to µ.

In a second step, for each node ν of T that is adjacent to µ let v1 and v2 be
the two vertices of degree one or let v1 = v2 be the vertex of degree zero in the
subgraph of H0 induced by Vµ(ν), respectively. Add edges {v, v1} and {v, v2} to
H0. Finally, for all leaves w 
= v of T that are adjacent to r, add an edge {v, w}
to H0.

It is now easy to see that no edge of the thus constructed graph H crosses a
cycle of G and that G models a set of minimal cuts. H is a cactus and hence it
is planar and connected. �	

Let H = (V, EH) be the graph from the previous lemma and let GP be a maximal
planar subgraph of (V, E ∪ EH) such that H is a subgraph of GP . Then GP is
planar and connected, G models a set of minimal cuts of GP and r is rootable.
Hence, GP fulfills the properties required in Step 1.

Fig. 4. A non-planar graph G and a cactus model. Deleting the grey edge yields a
maximal planar subgraph. Solid thick black edges induce a spanning path in every
cluster S �= V of (G, T (G, ϕ), r). All solid black edges indicate the graph H constructed
in the proof of Lemma 4.
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Remarks to Step 3. We use an extention of planarization-techniques that is
similar to the method introduced by Di Battista et al. [3] for drawing non-planar
hierarchically clustered graphs. Edges in G that are not represented in GP are
routed iteratively through the dual graph of G′

P , replacing every crossing of an
edge and a dual in the rout by a vertex of degree four. Suppose, we want to insert
an edge {v, w}. Let F be the set of faces of G′

P . Let E∗
{v,w} be the following set

of arcs. For every edge e of G′
P , let f1, f2 ∈ F be the faces that are incident

to e. Then E∗
{v,w} contains the dual arcs (f1, f2)e and (f2, f1)e. Further, E∗

{v,w}
contains the arcs (f, x), (x, f), x ∈ {v, w}, f ∈ F , f incident to x. There are no
other arcs contained in E∗

{v,w}. In general, any simple path in the extended dual
G∗

{v,w} = ({v, w} ∪ F, E∗
{v,w}) from v to w can be used as a rout for the edge

{v, w}. To achieve that the drawing of {v, w} does not cross a boundary cycle
twice, we use a restricted version of the extended dual. Let v = ν1, ν2 . . . , ν� = w
be the path in T between v and w. Let k ∈ {2, . . . , �− 1} be such that νk−1 and
νk+1 are descendants of νk. For each boundary edge e of G′

P ,

– if e is contained in the drawing γ of {Vr(νi), Vr(νi)}, i = 2, . . . , k − 1, delete
the dual arc of e that is directed from the outside of γ to the inside of γ
from E∗

{v,w}.

– if e is contained in the drawing γ of {Vr(νi), Vr(νi)}, i = k + 1, . . . , � − 1,
delete the dual arc of e that is directed from the inside of γ to the outside
of γ from E∗

{v,w}.

– if e is contained in the drawing of a cut {Vr(ν), Vr(ν)} for a node ν 
= νi, i =
2, . . . , k − 1, k + 1, . . . , � − 1 of T , delete both dual arcs of e from E∗

{v,w}.

Fig. 5. a) Black edges show a connected component of the restricted extended dual
for adding the edge {5, 4} from 5 to 4 of the graph in Fig. 4. Bidirected edges are
indicated by simple curves without arrows. b) A drawing with axis-parallel rectangles
for the family of cuts modeled by (G, ϕ) in Fig. 4.

The thus restricted dual (see Fig. 5 for an illustration) guarantees that any path
from v to w crosses any boundary cycle at most once. On the other hand, there
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is a path from v to w in the restricted dual if and only if either νk is not a cycle-
replacement node or νk is a cycle-replacement node and νk−1, νk+1 are adjacent
in G. Hence, by Condition (R), there is a path from v to w. Summarizing, we
have shown the following characterization

Theorem 2. A family C of (minimal) cuts of a (planar) graph G has a (planar)
drawing with axis-parallel rectangles if and only if

1. C has a cactus model (G, ϕ) and
2. the root r of T (G, ϕ) can be chosen such that each edge that crosses a cycle

c is incident to a vertex in V \ Vr(νc).

Provided a cactus model is given, it can be tested in time O(nm) whether a
drawing with axis-parallel rectangles exists.
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