Identifying a Topic Lifecycle

- Research Objectives
- Research Plan I (Kick-off meeting in Warsaw)
- System Implementation (Part I)
- Experimental Procedure
- The Blog Data Used
- Experimental Result
- Research Plan II (Project meeting in Karlsruhe)
- Identify a topic lifecycle
- Extension to the Existing System Implementation
- Summary

Research Objectives

- Identify emerging topics about public science debates (*topic identification*), such as GM foods and foot-and-mouth disease;
- Keep track of the flow/spreading of the emerging topics (*topic tracking*).

Research Plan I

- Extract a set of terms from a collection of texts.
- Apply a technique to select a set of significant terms which may represent emerging topics about science debates.
- Group the significant terms into a number of blogs.

System Implementation (Part I)

Experimental Procedure

- Apply three term selection methods independently, in order to select a set of significant terms on a certain date. These are chi-square statistics, mutual information and information gain.
 - Build 2x2 contingency table, so that chi-square and mutual information values can be computed.
 - Build a table which stores the entropy value of each date, so that information gain can be computed
- Select a number of topics manually as a starting point.
- Select a number of significant terms with respect to each topic automatically.
- Group the significant terms into a number of blogs.

The Blog Data Used

#Blog	#Raw data	#Item	#Term	#Inverted	#term
				file	/item
3,702	50 MB	117,652	264,994	1,076,152	4.06
19,587	350 MB	880,536	1,736,715	8,436,624	4.86
19,587	1.34 GB	-	-	-	-

Experimental Results

Top 10 Topics	#Tuple
tsunami	2037
aids + hiv	799
pollution	755
agriculture	568
bird-flu	494
breast-cancer	433
climate-chage	326
terrorism + bioterrorism	282
global-warming	257
diabetes	255

#Item	#Term	#Topic	#Blog
			node
117,652	264,994	36	127
880,536	1,736, 715	44	2157

Research Plan II

- Identify a set of emerging topics
- Track the lifecycle of the emerging topics, from the time they were born, until the time they are fading away.
- Two approaches have been considered.
 - Link-based approach
 - Term-based approach

Identifying a Topic Lifecycle: a Link-Based Approach

- Existing type of links
 - Permalink (= Permanent link).
 - Trackback link (= Tracking the person who makes a comment on a particular posting (or item)).
 - Blogrolls (= a collection of blog URLs within a blog).
- Trackback links are suitable for link analysis, but there are not too many trackback links on the Blog sites available.
- Blogrolls should not be used for tracking a certain topic without the use of trackback links.

A Link-Based Scenario about Marla Ruzicka

Identifying a Topic Lifecycle: a Term-Based Approach

- Using probabilistic entropy, the one Loet describes in his email, to identify a critical event.
- Using Kleinberg's topic burst detection algorithm, which is based on the rate of messages per time unit (e.g. per hour/per day).
- Using a thesaurus to identify the relationship between terms, such as WordNet and Wikipedia to analyse the contexts in which a term occurs, e.g. the nouns / modifiers which co-occur with the term.

Extension to the Existing System Implementation

The Construction of a Network Structure of Topic Spreading between Bloggers: the Assumptions

- The occurrence of a phrase within two blog nodes, i.e. a source node and a target node, on a consecutive day may indicate that there is a link between the two blog nodes. It is especially significant if the number of edges between the two blog nodes are greater than a threshold value.
- The source and target nodes are determined based on the phrase publication date, where
 source_node.pub_date(phrase) < target_node.pub_date(phrase)
- All self-links are discarded, since they do not represent the spreading of a topic.
- Then, an undirected graph is constructed.

The Construction of a Network Structure of Topic Spreading between Bloggers: an Illustration (#node = 2,157 & #edge = 12,069)

Input :

CREEN meeti		
Date	Bl	og
22/12/2004		1
23/12/2004	1	, 2
24/12/2004	1	, 2
25/12/2004		3

Knowledge Domain Visualisation							
Date	Blog						
23/12/2004	2						

3

25/12/2004

Output :

The Construction of a Network Structure of Topic Spreading between Bloggers: the Issues

- Either blog rolls or the occurrence of a phrase within two blog nodes cannot be used to draw a conclusion, but to indicate that there is a connection between the two nodes.
- Trackbacks offer a better mechanism to show the connection between two nodes, but they are quite sparse. Thus, the coverage level of a network structure can become an issue. Given 100 blogs, 11 blogs contain trackback labels; 5 of which contain trackback links.
- Combined approach: Blog rolls + the occurrence of a phrase + trackbacks ?

The Visualisation of Topic Spreading between Bloggers (time_period <= 1 day & min_num_of_edges = 3)

The Visualisation of Topic Spreading between Bloggers (time_period <= 7 days & min_num_of_edges = 3)

The Visualisation of Topic Spreading between Bloggers (time_period <= 14 days & min_num_of_edges = 3)

The Visualisation of Topic Spreading between Bloggers (time_period <= 1 year & min_num_of_edges = 3)

The Visualisation of Topic Spreading between Bloggers (min_num_of_edges = 25)

The Visualisation of Topic Spreading between Bloggers (min_num_of_edges = 25)

#Node & #Edge

Time period (in days)	#Node	#Edge					
1	21	37					
7	26	60					
14	27	62					
30	27	63					
60	27	63					
90	27	63					
120	27	63					
150	27	63					
180	27	63					
210	27	63					
240	27	63					
270	27	63					
300	27	63					
330	27	63					
365	27	63					

min_num_of_	edges	= 3
Time period (in days)	#Node	#Edge
1	179	717
7	207	855
14	220	893
30	224	905
60	224	913
90	224	914
120	224	914
150	225	915
180	225	915
210	225	915
240	225	915
270	225	915
300	225	915
330	225	915
365	225	916

Edge Frequency

Edge-	Count	Edge-	Count	Edge-	Count	Edge	Count
Freq		Freq		Freq		-Freq	
1	9601	16	4	32	2	51	1
2	1554	17	11	34	2	52	1
3	336	18	7	35	2	57	1
4	164	19	2	36	2	61	1
5	98	20	3	37	2	69	1
6	51	21	6	38	1	71	2
7	36	22	4	39	3	76	1
8	27	23	4	41	2	77	1
9	22	24	4	42	1	79	1
10	8	25	2	43	1	80	1
11	16	26	2	44	4	81	1
12	22	27	2	45	2	90	1
13	11	29	1	46	2	95	2
14	9	30	5	49	2	98	1
15	6	31	5	50	1	104	1

Indications I

- Bloggers are interested in writing something, or commenting on other blogger postings over a period of time, e.g. within 7 days until 3 months.
- They compose a cluster which may represent their common interest in a certain topic.
- The smaller the edge frequency, the larger the number of the edges w.r.t the edge frequency.
- The number of edges which have the largest edge frequency are the smallest. This indicates that only few bloggers have a strong communication between them.

The Visualisation of Topic Spreading between Bloggers (01/12/2004 – 31/01/2005)

<=1 day; 3 edges; without tsunami #node = 75 (43.6% reduction) #edge = 294 (50.84% reduction) The Visualisation of Topic Spreading between Bloggers (01/12/2004 - 31/01/2005), <=1 day, min_num_of_edges = 25 edges

#node = 7, #edge = 11

The Visualisation of Topic Spreading between Bloggers (01/12/2004 - 31/01/2005), <= 14 days, min_num_of_edges = 25 edges

Indications II

- The occurrence of a significant event, such as Tsunami, changes the structure of a blogosphere.
- An existing node can enter the main circle.
- An existing cluster may connect to the main circle.
- Some nodes can increase their edge frequency significantly, create a new cluster, and connect to the main circle

Summary

- A collection of blog data were processed to extract a number of significant terms on a certain date.
- The output is a blog node list which contains a number of significant terms for each blog on a certain date.
- Based on the blog node list, the lifecycle of a topic will be identified.
- Two approaches have been considered: link-based and term-based approaches.
- Since link-data is sparse, it is likely that the term-based approach will be used to identify the lifecycle of a topic, or the combination of both approaches.
- The occurrence of a significant event changes the structure of a blogosphere.