Clustering and Comparing Clusterings

Robert Görke Dorothea Wagner Silke Wagner

University of Karlsruhe
Faculty of Computer Science
Department of Theoretical Computer Science
Why Cluster?

- Need for structural information about a network
- Most applications on large networks fall within two cases:
 - Interested in small section (e.g. for queries) → reduction
 - Interested in coarse structure (e.g. for visualization) → abstraction

Detect groups/clusters as basic structural units
Why Cluster?

- Need for structural information about a network
Why Cluster?

- Need for structural information about a network
Why Cluster?

- Need for structural information about a network
- Most applications on large networks fall within two cases

- Interested in small sections (e.g., for queries) → reduction
- Interested in coarse structure (e.g., for visualization) → abstraction
Why Cluster?

- Need for structural information about a network
- Most applications on large networks fall within two cases
 - Interested in small section (e.g. for queries,...) → reduction
 - Interested in coarse structure (e.g. for visualization)
Why Cluster?

Need for structural information about a network

Most applications on large networks fall within two cases

- Interested in small section (e.g. for queries,...)
 → reduction

- Interested in coarse structure (e.g. for visualization)
 → abstraction
Why Cluster?

- Need for structural information about a network
- Most applications on large networks fall within two cases
 - Interested in small section (e.g. for queries,...) → reduction
 - Interested in coarse structure (e.g. for visualization) → abstraction
- Detect groups/clusters as basic structural units
How to Cluster

Abstract Idea

Given: (un)weighted, (un)directed graph $G = (V, E)$

Find: partition of V into clusters C_1, \ldots, C_k such that
Given: (un)weighted, (un)directed graph $G = (V, E)$
Find: partition of V into clusters C_1, \ldots, C_k such that

(1) intra-cluster density is maximized
How to Cluster

Abstract Idea

Given: (un)weighted, (un)directed graph \(G = (V, E) \)

Find: partition of \(V \) into clusters \(C_1, \ldots, C_k \) such that

1. intra-cluster density is maximized
2. inter-cluster sparsity is maximized
How to Cluster

Abstract Idea

Given: (un)weighted, (un)directed graph \(G = (V, E) \)

Find: partition of \(V \) into clusters \(C_1, \ldots, C_k \) such that

1. intra-cluster density is maximized
2. inter-cluster sparsity is maximized

Typically, a clustering algorithm tries to maximize a quality function that captures (1) and/or (2)
How to Cluster

Quality Functions

- Coverage:

\[c(C) = \frac{\text{# intra-cluster edges}}{\text{# edges}} \]
How to Cluster

Quality Functions

- Coverage:
 \[c(C) = \frac{\text{# intra-cluster edges}}{\text{# edges}} \]

- Performance:
 \[c(P) = \frac{\text{# intra-cluster edges} + \text{# absent inter-cluster edges}}{\text{# point pairs}} \]
How to Cluster
Quality Functions

- Coverage:
 \[c(C) = \frac{\text{# intra-cluster edges}}{\text{# edges}} \]

- Performance:
 \[c(\mathcal{P}) = \frac{\text{# intra-cluster edges} + \text{# absent inter-cluster edges}}{\text{# point pairs}} \]

- Conductance: measure for sparse cuts (bottlenecks)
How to Cluster

Quality Functions

- **Coverage:**
 \[
 c(C) = \frac{\text{# intra-cluster edges}}{\text{# edges}}
 \]

- **Performance:**
 \[
 c(P) = \frac{\text{# intra-cluster edges} + \text{# absent inter-cluster edges}}{\text{# point pairs}}
 \]

- **Conductance:** measure for sparse cuts (bottlenecks)

- ...
How to Cluster

Quality Functions

- Coverage:
 \[c(C) = \frac{\text{# intra-cluster edges}}{\text{# edges}} \]

- Performance:
 \[c(P) = \frac{\text{# intra-cluster edges} + \text{# absent inter-cluster edges}}{\text{# point pairs}} \]

- Conductance: measure for sparse cuts (bottlenecks)
- \[\overline{QF_1} = QF - E[QF] \]
- \[\overline{QF_2} = \frac{QF}{E[QF]} \]
Finding global optimum of quality function is (in general) NP-hard
Finding global optimum of quality function is (in general) **NP-hard**

⇒ Approximate with greedy algorithms
How to Cluster
Methodologies

- Bottom-up: Start with singletons \Rightarrow merge clusters
- Top-down: Start with the one-cluster \Rightarrow split clusters
- Morphing: Start with random clustering \Rightarrow migrate nodes

Other techniques
- Spectral clustering (eigendecomposition of adjacency matrix)
- Identifying structures directly (Cliques, Coresets, ...)

Universität Karlsruhe (TH) Faculty of Informatics
Görke, Wagner, Wagner

Algorithmics
http://i11www.ira.uka.de
How to Cluster
Methodologies

- Bottom-up: Start with *singletons*
How to Cluster

Methodologies

- Bottom-up: Start with *singletons* ⇒ merge clusters
How to Cluster
Methodologies

- **Bottom-up**: Start with *singletons* ⇒ merge clusters
How to Cluster
Methodologies

- **Bottom-up**: Start with *singletons* \Rightarrow *merge clusters*
How to Cluster
Methodologies

- Bottom-up: Start with *singletons* ⇒ merge clusters
How to Cluster
Methodologies

- Bottom-up: Start with *singletons* \(\Rightarrow\) merge clusters
- Top-down: Start with the *one-cluster*
How to Cluster

Methodologies

- Bottom-up: Start with *singletons* ⇒ merge clusters
- Top-down: Start with the *one-cluster* ⇒ split clusters
How to Cluster
Methodologies

- Bottom-up: Start with *singletons* ⇒ merge clusters
- Top-down: Start with the *one-cluster* ⇒ split clusters
- Morphing: Start with random clustering
How to Cluster
Methodologies

- Bottom-up: Start with *singletons* ⇒ merge clusters
- Top-down: Start with the *one-cluster* ⇒ split clusters
- Morphing: Start with random clustering ⇒ migrate nodes
How to Cluster

Methodologies

- **Bottom-up**: Start with *singletons* ⇒ merge clusters
- **Top-down**: Start with the *one-cluster* ⇒ split clusters
- **Morphing**: Start with random clustering ⇒ migrate nodes
How to Cluster

Methodologies

- Bottom-up: Start with *singletons* ⇒ merge clusters
- Top-down: Start with the *one-cluster* ⇒ split clusters
- Morphing: Start with random clustering ⇒ migrate nodes

Other techniques
- Spectral clustering (eigendecomposition of adjacency matrix)
How to Cluster

Methodologies

- Bottom-up: Start with *singletons* ⇒ merge clusters
- Top-down: Start with the *one-cluster* ⇒ split clusters
- Morphing: Start with random clustering ⇒ migrate nodes

Other techniques

- Spectral clustering (eigendecomposition of adjacency matrix)
- Identifying structures directly (Cliques, Coresets, . . .)
How to Cluster
Methodologies

- Bottom-up: Start with *singletons* ⇒ merge clusters
- Top-down: Start with the *one-cluster* ⇒ split clusters
- Morphing: Start with random clustering ⇒ migrate nodes

Other techniques
- Spectral clustering (eigendecomposition of adjacency matrix)
- Identifying structures directly (Cliques, Coresets,...)
Granularity

Which solution is desired?

fine
Granularity

Which solution is desired?

course
Granularity

Which solution is desired?

coarse

algorithmic optimum ⇔ desired clustercount
Cheating a Criterion

Any single optimization criterion can be fooled

Example (Coverage (very simple))

The following two clusterings have the same coverage value
Any single optimization criterion can be fooled

Example (Coverage (very simple))

The following two clusterings have the same coverage value

Similar (more sophisticated) examples exist for any criterion
Which criterion works well for which kind of graph?
Problems and Questions of Static Clustering

- Which criterion works well for which kind of graph?
- Best method/algorithm for optimizing a certain criterion?
Problems and Questions of Static Clustering

- Which criterion works well for which kind of graph?
- Best method/algorithm for optimizing a certain criterion?

Comparability of clusterings/algorithms
- How similar are two clustering results?
- How close is a result to optimal solution (if known)?
Problems and Questions of Static Clustering

- Which criterion works well for which kind of graph?
- Best method/algorithm for optimizing a certain criterion?

- Comparability of clusterings/algorithms
 - How similar are two clustering results?
 - How close is a result to optimal solution (if known)?
 - ⇒ need for similarity/distance measures for clusterings
Dynamic Situation

Given: Graph $G = (V, E)$; clustering algorithm A; update operation $\Delta: G \mapsto G' = (V', E')$
Dynamic Situation

Given: Graph $G = (V, E)$; clustering algorithm A; update operation $\Delta : G \mapsto G' = (V', E')$

Possible updates:
Dynamic Situation

Given: Graph $G = (V, E)$; clustering algorithm A; update operation $\Delta : G \mapsto G' = (V', E')$

Possible updates:
- insertion of an edge
- deletion of an edge
Dynamic Situation

Given: Graph $G = (V, E)$; clustering algorithm A; update operation $\Delta : G \mapsto G' = (V', E')$

Possible updates:

- insertion of an edge
- deletion of an edge
- insertion of a node (and its incident edges)
- deletion of a node (and its incident edges)
Dynamic Situation

Given: Graph $G = (V, E)$; clustering algorithm A; update operation $\Delta : G \mapsto G' = (V', E')$

Possible updates:

- insertion of an edge
- deletion of an edge
- insertion of a node (and its incident edges)
- deletion of a node (and its incident edges)

Find: efficient method for calculating $A(\Delta G)$ from $A(G)$
Typical Clustering Dynamics

Consistent with intuition:

- Insertion of an intra-cluster edge strengthens the cluster.
- Deletion of an inter-cluster edge strengthens the disjunction.

Contrary to intuition:
- Insertion of an intra-cluster edge can cause the splitting of the cluster.
- Deletion of an inter-cluster edge can cause the merge of clusters.
Typical Clustering Dynamics

Consistent with intuition:

- insertion of intra-cluster edge strengthens cluster

Contrary to intuition:

- insertion of intra-cluster edge can cause splitting of cluster
- deletion of inter-cluster edge can cause merge of clusters
Typical Clustering Dynamics

Consistent with intuition:
- insertion of intra-cluster edge strengthens cluster
- deletion of inter-cluster edge strengthens disjunction
Typical Clustering Dynamics

Consistent with intuition:
- insertion of intra-cluster edge strengthens cluster
- deletion of inter-cluster edge strengthens disjunction

Contrary to intuition:
- insertion of intra-cluster edge can cause splitting of cluster
- deletion of inter-cluster edge can cause merge of clusters
Typical Clustering Dynamics

Consistent with intuition:
- insertion of intra-cluster edge strengthens cluster
- deletion of inter-cluster edge strengthens disjunction

Contrary to intuition:
- insertion of intra-cluster edge can cause splitting of cluster
Typical Clustering Dynamics

Consistent with intuition:
- insertion of intra-cluster edge strengthens cluster
- deletion of inter-cluster edge strengthens disjunction

Contrary to intuition:
- insertion of intra-cluster edge can cause splitting of cluster
- deletion of inter-cluster edge can cause merge of clusters
Clustering Issues

- All problems inherited from static clustering
Clustering Issues

- All problems inherited from static clustering
- New problems due to dynamics
Clustering Issues

- All problems inherited from static clustering
- New problems due to dynamics
 - Can we calculate the exact update?
Clustering Issues

- All problems inherited from static clustering
- New problems due to dynamics
 - Can we calculate the exact update?
 - Complexity?
Clustering Issues

- All problems inherited from static clustering
- New problems due to dynamics
 - Can we calculate the exact update?
 - Complexity?
 - Are there good approximations?
Clustering Issues

- All problems inherited from static clustering
- New problems due to dynamics
 - Can we calculate the exact update?
 - Complexity?
 - Are there good approximations?
 - Distance: approximation \leftrightarrow reclustering?
Example (Simple Algorithm)

Clustering algorithm A: connected components \equiv clusters
Example (Simple Algorithm)

Clustering algorithm A: connected components \bowtie clusters
Full run: $O(m + n)$
Update of a Clustering
Running Time

Example (Simple Algorithm)

Clustering algorithm A: connected components \sim clusters
Full run: $O(m + n)$

Complexity of updates:

- Edge deletion: $O(\sqrt{n})$
- Edge insertion: $O(\sqrt{n})$

Most clustering criterions are highly non-trivial!
Update of a Clustering
Running Time

Example (Simple Algorithm)

Clustering algorithm A: connected components \cong clusters

Full run: $O(m + n)$

Complexity of updates:

- Edge deletion: $O(\sqrt{n})$
Example (Simple Algorithm)

Clustering algorithm A: connected components \cong clusters

Full run: $O(m + n)$

Complexity of updates:
- Edge deletion: $O(\sqrt{n})$
- Edge insertion: $O(\sqrt{n})$
Update of a Clustering

Running Time

Example (Simple Algorithm)

Clustering algorithm A: connected components \supseteq clusters

Full run: $O(m + n)$

Complexity of updates:
- Edge deletion: $O(\sqrt{n})$
- Edge insertion: $O(\sqrt{n})$

Most clustering criterions are highly non-trivial!
Similarity measures for clusterings

Existing similarity / distance measures can be divided into 3 groups:

1. measures based on **counting pairs**
2. measures based on **set cardinality**
3. measures based on **mutual information**
Counting Pairs

Count the number of node pairs that are grouped in the same way by both clusterings.
Counting Pairs

- Count the number of node pairs that are grouped in the same way by both clusterings
- Example: Rand’s index (Rand, 1971)

\[R(C, C') = \frac{2(n_{11} + n_{00})}{n(n - 1)} \]

where
- \(n_{11} \) = # pairs in the same cluster under both, \(C \) and \(C' \)
- \(n_{00} \) = # pairs in different clusters under \(C \) and \(C' \)
Counting Pairs

- Count the number of node pairs that are grouped in the same way by both clusterings
- Example: Rand’s index (Rand, 1971)

\[
\mathcal{R}(C, C') = \frac{2(n_{11} + n_{00})}{n(n - 1)}
\]

where \(n_{11} = \) # pairs in the same cluster under both, \(C \) and \(C' \)
\(n_{00} = \) # pairs in different clusters under \(C \) and \(C' \)

- Problem: \(\mathcal{R}(C, C') \to 1 \) for \(k \to n \)
Set Cardinality

- Find a "best match" for each cluster and add up the contributions of the matches
Set Cardinality

- Find a "best match" for each cluster and add up the contributions of the matches
- Example: Van Dongen (2000):

\[D(C, C') = 2n - \sum_{i=1}^{k} \max_{j} n_{ij} - \sum_{j=1}^{k'} \max_{i} n_{ij} \]

where \(n_{ij} = |C_i \cap C_j|, i = 1, \ldots, k, j = 1, \ldots, k' \)
Set Cardinality

- Find a "best match" for each cluster and add up the contributions of the matches
- Example: Van Dongen (2000):

\[D(C, C') = 2n - \sum_{i=1}^{k} \max_{j} n_{ij} - \sum_{j=1}^{k'} \max_{i} n_{ij} \]

where \(n_{ij} = |C_i \cap C_j|, i = 1, \ldots, k, j = 1, \ldots, k' \)

- Drawbacks:
 - Depending on \(n \)
 - Ignores what happens in unmatched part of the clusters
Mutual Information

- Derived from information theory
Mutual Information

- Derived from information theory
- Entropy of a clustering:

\[H(C) = - \sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n} \]

Pick node randomly, uncertainty which cluster it is in?
Mutual Information

- Derived from information theory
- Entropy of a clustering:

\[H(C) = - \sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n} \]

Pick node randomly, uncertainty which cluster it is in?

- Mutual information \(I(C, C') \): Knowing cluster \(C_i \) of node in clustering \(C \), reduction of uncertainty about cluster in \(C' \).
Mutual Information

- Derived from information theory
- Entropy of a clustering:

$$\mathcal{H}(C) = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

*Pick node randomly, **uncertainty** which cluster it is in?*

- Mutual information $I(C, C')$: Knowing cluster C_i of node in clustering C, **reduction of uncertainty** about cluster in C'.

- Variation of Information (Meila, 2002):

$$\mathcal{VI}(C, C') = \mathcal{H}(C) + \mathcal{H}(C') - 2I(C, C')$$

Information we lose, going from C to C' plus extra information we have to gain (geometric difference)
\[\overline{QF}_1 = QF - \text{E}[QF] \quad \overline{QF}_2 = \frac{QF}{\text{E}[QF]} \]
Research Areas

- $\overline{QF_1} = QF - E[QF]$ \hspace{1cm} \overline{QF_2} = \frac{QF}{E[QF]}$
- Formalizing clustering
Research Areas

- $QF_1 = QF - E[QF]$
 $QF_2 = \frac{QF}{E[QF]}$

- Formalizing clustering
- Quality \iff Similarity

Universität Karlsruhe (TH)
Faculty of Informatics
Görke, Wagner, Wagner
Algorithmics
http://i11www.ira.uka.de
Research Areas

\[\overline{QF}_1 = QF - E[QF] \quad \overline{QF}_2 = \frac{QF}{E[QF]} \]

- Formalizing clustering
- Quality \(\iff\) Similarity
- Map classes of graphs to suitable clustering techniques
 - Find global optimum in polynomial time
 - Find criterion that fits certain classes
Thank you!
Thank you!

Questions?