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Typical Clustering Dynamics

Consistent with intuition:

insertion of intra-cluster edge strengthens cluster

deletion of inter-cluster edge strengthens disjunction

Contrary to intuition:

insertion of intra-cluster edge can cause splitting of cluster

deletion of inter-cluster edge can cause merge of clusters
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All problems inherited from static clustering

New problems due to dynamics

Can we calculate the exact update?
Complexity?
Are there good approximations?
Distance: approximation ↔ reclustering?
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Example (Simple Algorithm)

Clustering algorithm A: connected components =̂ clusters

Full run: O(m + n)
Complexity of updates:

Edge deletion: O(
√

n)

Edge insertion: O(
√

n)

Most clustering criterions are higly non-trivial!

Universität Karlsruhe (TH)
Faculty of Informatics

Görke, Wagner, Wagner Algorithmics
http://i11www.ira.uka.de



Introduction
Dynamic Clustering

Comparing Clusterings

Basics
Example

Update of a Clustering
Running Time

Example (Simple Algorithm)

Clustering algorithm A: connected components =̂ clusters
Full run: O(m + n)

Complexity of updates:

Edge deletion: O(
√

n)

Edge insertion: O(
√

n)

Most clustering criterions are higly non-trivial!

Universität Karlsruhe (TH)
Faculty of Informatics

Görke, Wagner, Wagner Algorithmics
http://i11www.ira.uka.de



Introduction
Dynamic Clustering

Comparing Clusterings

Basics
Example

Update of a Clustering
Running Time

Example (Simple Algorithm)

Clustering algorithm A: connected components =̂ clusters
Full run: O(m + n)
Complexity of updates:

Edge deletion: O(
√

n)

Edge insertion: O(
√

n)

Most clustering criterions are higly non-trivial!

Universität Karlsruhe (TH)
Faculty of Informatics

Görke, Wagner, Wagner Algorithmics
http://i11www.ira.uka.de



Introduction
Dynamic Clustering

Comparing Clusterings

Basics
Example

Update of a Clustering
Running Time

Example (Simple Algorithm)

Clustering algorithm A: connected components =̂ clusters
Full run: O(m + n)
Complexity of updates:

Edge deletion: O(
√

n)

Edge insertion: O(
√

n)

Most clustering criterions are higly non-trivial!

Universität Karlsruhe (TH)
Faculty of Informatics

Görke, Wagner, Wagner Algorithmics
http://i11www.ira.uka.de



Introduction
Dynamic Clustering

Comparing Clusterings

Basics
Example

Update of a Clustering
Running Time

Example (Simple Algorithm)

Clustering algorithm A: connected components =̂ clusters
Full run: O(m + n)
Complexity of updates:

Edge deletion: O(
√

n)

Edge insertion: O(
√

n)

Most clustering criterions are higly non-trivial!

Universität Karlsruhe (TH)
Faculty of Informatics

Görke, Wagner, Wagner Algorithmics
http://i11www.ira.uka.de



Introduction
Dynamic Clustering

Comparing Clusterings

Basics
Example

Update of a Clustering
Running Time

Example (Simple Algorithm)

Clustering algorithm A: connected components =̂ clusters
Full run: O(m + n)
Complexity of updates:

Edge deletion: O(
√

n)

Edge insertion: O(
√

n)

Most clustering criterions are higly non-trivial!

Universität Karlsruhe (TH)
Faculty of Informatics

Görke, Wagner, Wagner Algorithmics
http://i11www.ira.uka.de



Introduction
Dynamic Clustering

Comparing Clusterings

Overview
Types of measures

Similarity measures for clusterings

Existing similarity / distance measures can be divided into 3
groups:

1 measures based on counting pairs
2 measures based on set cardinality
3 measures based on mutual information
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Comparing Clusterings

Overview
Types of measures

Counting Pairs

Count the number of node pairs that are grouped in the
same way by both clusterings

Example: Rand’s index (Rand, 1971)

R(C, C′) =
2(n11 + n00)

n(n − 1)

where n11= # pairs in the same cluster under both, C and C′

n00= # pairs in different clusters under C and C′

Problem: R(C, C′) → 1 for k → n
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Dynamic Clustering

Comparing Clusterings

Overview
Types of measures

Set Cardinality

Find a ”best match” for each cluster and add up the
contributions of the matches

Example: Van Dongen (2000):

D(C, C′) = 2n −
k∑

i=1

max
j

nij −
k ′∑

j=1

max
i

nij

where nij = |Ci ∩ C′
j |, i = 1, . . . , k , j = 1, . . . , k ′

Drawbacks:
Depending on n
Ignores what happens in unmatched part of the clusters
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Dynamic Clustering

Comparing Clusterings

Overview
Types of measures

Mutual Information

Derived from information theory

Entropy of of a clustering:

H(C) = −
k∑

i=1

ni

n
log

ni

n

Pick node randomly, uncertainty which cluster it is in?

Mutual information I(C, C′): Knowing cluster Ci of node in
clustering C, reduction of uncertainty about cluster in C′.

Variation of Information (Meila, 2002):
VI(C, C′) = H(C) +H(C′)− 2I(C, C′)
Information we lose, going from C to C′ plus extra
information we have to gain (geometric difference )
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Research Areas

QF1 = QF− E[QF] QF2 = QF
E[QF]

Formalizing clustering

Quality ⇐⇒ Silimarity
Map classes of graphs to suitable clustering techniques

Find global optimum in polynomial time
Find criterion that fits certain classes
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End

Thank you!

Questions?
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