visone - Analysis and Visualization of Social Networks

Michael Baur

Fakultät für Informatik Universität Karlsruhe (TH)

CREEN-Meeting June 2005

イロン イボン イヨン イヨン

Overview

What Is visone?

Example: Centrality Analysis

Design Model Analysis Visualization Graph Generators

Planned Features

イロン イボン イヨン イヨン

What Is visone?

 interactive analysis and visualization of social networks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- provide new methods
- be easy to use

What Is visone?

present focus on

- social science
- small and medium size networks

イロト イポト イヨト イヨト 一座

- element level analysis
- interaction, not dynamics

Example: Centrality Analysis

Aquarius Corp.

- supplies horoscopes for magazines
- 8 employees: Anne, Boris, Carla, Dirk, Eva, Frank, Gerda, and Hans
- examine the collaboration
- means: questionnaire

< □ > < 同 > < 三 > <

Question 1: Who Are Your Friends?

symmetric binary relation

Result:

- ► Anne: Boris, Frank
- Boris: A, C, D, E, H
- Carla: B, F
- Dirk: B, E, G
- ▶ Eva: B, G, H
- Frank: Carla, Hans
- Gerda: D, E
- Hans: B, F, E

ヘロト 人間 ト ヘヨト ヘヨト

Question 1: Who Are Your Friends?

- symmetric binary relation
- inconsistencies are possible:
 - Anne names Frank
 - Frank doesn't name Anne

Result:

- Anne: Boris, Frank
- Boris: A, C, D, E, H
- Carla: B, F
- Dirk: B, E, G
- ▶ Eva: B, G, H
- Frank: Carla, Hans

- Gerda: D, E
- Hans: B, F, E

Question 1: Who Are Your Friends?

- symmetric binary relation
- inconsistencies are possible:
 - Anne names Frank
 - Frank doesn't name Anne
- how to represent relations?
- how to handle inconsistencies?

Result:

- Anne: Boris, Frank
- Boris: A, C, D, E, H
- Carla: B, F
- Dirk: B, E, G
- Eva: B, G, H
- Frank: Carla, Hans
- Gerda: D, E
- Hans: B, F, E

- classical representation:
 - ► 8 × 8-matrix
 - correction needed

	Α	В	С	D	Ε	F	G	Н
Α	•	1	0	0	0	1	0	0
В	1		1	1	1	0	0	1
С	1	1		0	0	1	0	0
D	0	1	1		1	0	1	0
Ε	0	1	0	0		0	1	1
F	0	0	1	0	0	•	0	1
G	0	0	0	1	1	0	•	0
Н	0	1	0	0	1	1	0	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- classical representation:
 - ► 8 × 8-matrix
 - correction needed

	Α	В	С	D	Ε	F	G	Н
Α	•	1	0	0	0	0	0	0
В	1		1	1	1	0	0	1
С	0	1		0	0	1	0	0
D	0	1	0		0	0	1	0
Ε	0	1	0	0		0	1	1
F	0	0	1	0	0	•	0	1
G	0	0	0	1	1	0	•	0
Н	0	1	0	0	1	1	0	•

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

classical representation:

- analysis:
 - degree
 - betweenness

	degree	betw.
Α	1	0
В	5	52
С	2	6
D	2	6
Ε	2	15
F	3	2
G	2	2
Н	3	15

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

classical representation:

►

\blacktriangleright 8 \times 8-matrix		aegree	Detw.
 correction needed 	Α	1	0
analysis:	В	5	52
 dearee 	С	2	6
 betweenness 	D	2	6
disadvantages:	Ε	2	15
modified data	F	3	2
 little descriptive 	G	2	2
presentation	Н	3	15

all a service of the section of

Question 1: Who Are Your Friends?

- representation in visone:
 - undirected graph
 - node attribute confirmation

Question 1: Who Are Your Friends?

- representation in visone:
 - undirected graph
 - node attribute confirmation
- analysis through layout:
 - degree

イロト イポト イヨト イヨト 一座

Question 1: Who Are Your Friends?

- representation in visone:
 - undirected graph
 - node attribute confirmation
- analysis through layout:
 - degree
 - betweenness

イロト イポト イヨト イヨト 一座

Question 1: Who Are Your Friends?

- representation in visone:
 - undirected graph
 - node attribute confirmation
- analysis through layout:
 - degree
 - betweenness
- advantages:
 - all-in-one data
 - visualization of results
 - customizable analysis

ヘロト ヘ回ト ヘヨト ヘヨト

Question 1: Who Are Your Friends?

- representation in visone:
 - undirected graph
 - node attribute confirmation
- analysis through layout:
 - degree
 - betweenness
- advantages:
 - all-in-one data
 - visualization of results
 - customizable analysis

ヘロト 人間 ト ヘヨト ヘヨト

Question 2: To Whom Do You Give Advice?

asymmetric binary relation

- I give advice to · :
 - Anne: C
 - Boris: C, D, H
 - Carla:
 - Dirk: C, E, G
 - Eva: D, H
 - Frank: C, H
 - Gerda: E
 - Hans: B, F

ヘロト ヘ回ト ヘヨト ヘヨト

Question 2: To Whom Do You Give Advice?

- asymmetric binary relation
- verification by inverse question: From whom do you get advice?

- I get advice from · :
 - Anne:
 - Boris: H
 - ► Carla: A, B, F
 - Dirk: B, E
 - Eva: G
 - Frank: A, H
 - Gerda: D
 - Hans: B, E, F

프 에 에 프 어

Question 2: To Whom Do You Give Advice?

- asymmetric binary relation
- verification by inverse question: From whom do you get advice?
- combined relation:
 - Who gives advice to whom?

- I get advice from · :
 - Anne:
 - Boris: H
 - Carla: A, B, F
 - Dirk: B, E
 - Eva: G
 - Frank: A, H
 - Gerda: D
 - Hans: B, E, F

프 에 에 프 어

Question 2: To Whom Do You Give Advice?

- asymmetric binary relation
- verification by inverse question: From whom do you get advice?
- combined relation:
 - Who gives advice to whom?
 - inconsistencies are possible

inconsistency

- Dirk: "I give advice to Carla."
- Carla: "I get no advice from Carla!"

★ 문 ► ★ 문 ►

Question 2: To Whom Do You Give Advice?

- representation in visone:
 - directed graph
 - node attribute confirmation

イロン 不得 とくほ とくほう 一座

Question 2: To Whom Do You Give Advice?

- representation in visone:
 - directed graph
 - node attribute confirmation
- analysis through layout:
 - closeness

イロン イボン イヨン イヨン

Question 2: To Whom Do You Give Advice?

- representation in visone:
 - directed graph
 - node attribute confirmation
- analysis through layout:
 - closeness
- advantages:
 - all-in-one data
 - visualization of results
 - customizable analysis

くロト (過) (目) (日)

Model Analysis Visualization Graph Generators

Model

- a social network consists of
 - set of actors, i.e., persons, organizations, etc.
 - binary relations between actors
- different types of relations
 - directed, undirected
 - confirmed, unconfirmed
- various attributes of actors and relations
 - strings (i.e., actor names)
 - numerical values (i.e., weights for relations)

くロト (過) (目) (日)

Model Analysis Visualization Graph Generators

Model – GraphML

- XML-based graph file format
- main features
 - undirected, directed, and mixed graphs
 - hierarchical graphs
 - application-specific attribute data
 - extensible
- meets visone's demands
- prefered file format

<?xml version="1.0" ?>
<graphml>
 <graph id="6">
 <graph id="6">
 <graph id="6">
 <ure content id="n3"/>
 <ure content id="n2"/>
 <ure content id="n1"/>
 <ure content id="n0"/>
 <ure content id="n6"/>
 <ure content id="6" source="n1
 <ure content id="6" source="n2

ヘロト ヘアト ヘヨト ヘヨト

Model Analysis Visualization Graph Generators

Analysis

- mainly at element level
- structural indices for actors
 - assign one value to each actor
 - evaluate only relations
 - same structural properties result in same value

Analysis – Three Types of Structural Indices

- degree, in- and outdegree
- shortest paths based
 - closeness sum of distances
 - betweenness number of shortest paths
 - graph, stress, radiality
- eigenvector based
 - PageRank
 - Hubs & Authorities
 - eigenvector, Katz' status

ヘロト 人間 ト ヘヨト ヘヨト

Model Analysis Visualization Graph Generators

Analysis – Modifications

- adjustments to fit visone's network model
- standardization of values
 - only non-negative values
 - unit sums
- probability distribution
- share of a node in total importance

ヘロト 人間 ト ヘヨト ヘヨト

What Is visone? Model Example: Centrality Analysis Design Visualization Planned Features Graph Gener

Visualization

objectives:

- suit the analysis
- emphasize the importance
- visualize the graph structure

three analysis layout methods

イロト イポト イヨト イヨト

Model Analysis Visualization Graph Generators

Layout 1: Node Size

importance corresponds to node size

- multi-purpose, generic
- neutral

ヘロト 人間 とくほとくほとう

What Is visone? Model Example: Centrality Analysis Oesign Visualization Planned Features Graph Gener:

Layout 2: Radial

important nodes are more central

- suits centrality indices
- very suggestive

ヘロト 人間 とくほとくほとう

Visualization

Layout 3: Layered

important nodes have higher status

- suits status indices
- very suggestive

<ロト <回 > < 注 > < 注 > 、

Model Analysis Visualization Graph Generators

Visualisation – General

- force-directed, organic
- circular
- spectral
- label placement
- edge routing

Model Analysis Visualization Graph Generators

Graph Generators

- ▶ random, G_{n,p}
- preferential attachment
- small world
- planar

<ロ> (四) (四) (三) (三) (三)

Planned Features

- improvements
 - advanced structural indices
 - nicer layouts
- new functions
 - grouping, clustering
 - structural equivalence
- focus on
 - larger networks
 - dynamics

イロト イポト イヨト イヨト

More Informations

- visit the homepage www.visone.de
- and ask us
 - Thomas
 - Michael

イロト イポト イヨト イヨト 三連