From statistical physics we know that a system entering into the critical region exhibits large scale fluctuations and is very sensitive to presence of external fields.

T1.1. Description of static and dynamic correlations functions for network structure and nodes internal dynamics. We will check if special kinds of fluctuation-dissipation theorems exist that join correlation functions with network susceptibility to external forces and allow to predict network response in the face of environmental perturbations. (...)

Part B1 of the proposal:

Scientific and technological objectives of the project

The objective of this project is:

a) to develop new methods to recognize emerging critical events in complex networks

b) to apply these methods to the analysis of the emergence of new research topics (scientific avalanches) and possible crises in a social institution – the public trust in science.
The Ising Model:

Applications
✓ simple magnet
✓ opinion formation model

Definition of the model:
✓ Suppose one have a network (lattice)
✓ Each site in such a network can have two states ↑ or ↓ (s_i = ±1)
✓ Neighboring nodes have an energetic preference to have the same value
✓ External force H that supports one state (↑ or ↓)

\[M = \sum_{i=1}^{N} s_i \]

Order parameter – which measures how many nodes have the same state

\[\chi = \frac{\partial\langle M \rangle}{\partial H} \]

Magnetic susceptibility measures the strength of the response of the magnetization \(M \) to changes in the field \(H \)

Fluctuation–Dissipation Relation

\[\chi = \frac{\partial\langle M^2 \rangle}{\partial H} = \frac{\langle M^2 \rangle - \langle M \rangle^2}{kT} \]

The fluctuation-dissipation theorems are interesting for a number of reasons:
1. They join both microscopic description and macroscopic properties of the considered system.
2. They relate the actual state of the system (fluctuations) to its future behavior (response).
3. Due to fluctuation-dissipation relations phase transitions certified by singularities in susceptibilities can also be reported by large scale fluctuations.
It is not a trivial task how to perform averages over random networks

Random networks as random representatives of an ensemble
The same meaning as in the case of a random variable

• Specify a set of graphs which one wants to study (e.g. simple graphs, digraphs, weighted graphs)
 \[\Omega = \{ G_1, G_2, \ldots \} \]

• Establish probability distribution \(P(G) \) over the ensemble.

Information-theoretic approach to random networks (1)
Up to now, there has been proposed different weight assignment strategies to networks
(mainly due to Z. Burda, S. Doregorter, I. Fudus and M.E.J. Newman)

In our study we take advantage of the maximum-entropy principle.

We maximize the Shannon entropy

\[S = - \sum_G P(G) \ln P(G), \]

subject to the constraints

\[\langle x_i \rangle = \sum_G x_i(G) P(G) \]

for \(i = 1, 2, \ldots, r \), plus the normalization condition

\[\sum_G P(G) = 1. \quad (3) \]

Constraints
1. Trivial: Expected number of connections \(\langle m \rangle \)
2. Realistic: Expected degree sequence

\[\{ (k_1), (k_2), \ldots, (k_N) \} \]

(e.g. resulting in SF degree distribution)
The Lagrangian for the above problem is given by the below expression

\[\mathcal{L} = -\sum_{G} P(G) \ln P(G) + \alpha (1 - \sum_{G} P(G)) + \sum_{i=1}^{N} \theta_{i}(x_{i} - \sum_{G} x_{i}(G)P(G)), \]

where the multipliers \(\alpha \) and \(\theta_{i} \) are to be determined by (2) and (3).

Differentiating \(\mathcal{L} \) with respect to \(P(G) \) and then equating the result to zero one obtains the desired probability distribution over the ensemble of graphs with given properties (2)

\[P(G) = \frac{e^{-H(G)}}{Z}, \]

where \(H(G) \) is the network Hamiltonian

\[H(G) = \sum_{i=1}^{N} \theta_{i}x_{i}(G), \]

and \(Z \) represents the partition function

\[Z = \sum_{G} e^{-H(G)} = e^{\alpha N}. \]

Maximum-entropy networks with an expected degree sequence

\(\{ (k_1), (k_2), \ldots, (k_N) \} \)

In this case the network Hamiltonian is

\[H(G) = \sum_{i=1}^{N} \theta_{i}k_{i}(G), \]

where

- \(k_{i}(G) \) represents degree of the node \(i \)
- \(\theta_{i} \) is conjugate field that is coupled to degree, (like magnetization \(M \) and external field \(H \))

Network of scientists:

What is the field which couples to the connectivity of a scientist?

- age, # publications, # citations, # patents, money

One can prove the following fluctuation-dissipation relations:

1. \[\chi = \frac{\partial \langle k_i \rangle}{\partial \theta_i} = \langle k_i^2 \rangle - \langle k_i \rangle^2 \]

where the averages are taken over all nodes that have the same value of the assigned potential (hidden attribute).

2. \[\chi_{ij} = \frac{\partial \langle k_i k_j \rangle}{\partial \theta_j} = \langle k_i k_j \rangle - \langle k_i \rangle \langle k_j \rangle \]

where the nodes \(k_i \) are assumed to have the same potential \(\theta_i \), whereas the nodes \(k_j \) are characterized by \(\theta_j \).
A few ideas

Population of scientists:

Points – scientists
Parameters characterizing scientists – # papers (k_i)
Field (i.e. hidden attribute) coupled to the # of papers – year of the first publication (θ_i - i-index of a subpopulation)
(Is the ‘year of the first publication’ the correct field coupled to the #papers???)

The whole population
Specification of sub-populations due to the year of the first publication

Field:
- 1975
- 1976

Network of scientists:

Nodes – scientists
Parameter characterizing a scientist – # collaborators (degree k_i)
Field (i.e. hidden attribute) coupled to the # collaborators – # citations (θ_i - i-index of a subpopulation)
(Is # citations the correct field coupled to the #collaborators ???)

The whole network
Specification of sub-populations due to the year of the first publication

#citations
- 0-20
- 20-50

Left-H-S: differential derivative
Right-H-S: variance

\[H(G) = \sum_{i=1}^{N} \theta_i k_i(G) \]
\[\chi = \frac{\partial \langle k_i \rangle}{\partial \theta_i} = \langle k_i^2 \rangle - \langle k_i \rangle^2 \]