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Abstract

One purpose of network analysis especially of social networks is to identify im-
portant actors, crucial links, subgroups, roles, network characteristics, and so on, to
answer substantive questions about structures. There are three main levels of inter-
est: the element, group, and network level. On the element level, one is interested in
properties (both absolute and relative) of single actors, links, or incidences. Exam-
ples for this type of analyses are bottleneck identification and structural ranking of
network items. On the group level, one is interested in classifying the elements of a
network and properties of subnetworks. Examples are actor equivalence classes and
cluster identification. Finally, on the network level, one is interested in properties of
the overall network such as connectivity or balance. Algorithmic aspects concern the
efficient computation of centrality indices, of groups and clusters, density, Clustering
coefficient and transitivity. For this deliverable, algorithms for indices forming the
basis of most studies were developed and implemented. A focus is on more efficient
algorithms and robust and flexible implementations.

In many experimental studies, network indices computed for real world data are
compared with randomly generated graphs satisfying certain properties. As the net-
works under consideration are large, efficiency is again a crucial issue. Therefore, new
efficient generators have been designed and implemented to create graphs according
to popular stochastic models such as random graphs, small worlds, and evolving
graphs with preferential attachment.
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Element Level – Vertex Indices

The starting point for this deliverable is the efficient computation of network indices on the
element level. Algorithms for vertex indices forming the basis of most studies are developed
and implemented. Most implementations are integrated in visone, a tool that facilitates
the visual exploration of social networks [8]. The complete list of currently implemented
indices is given in Figure 1. Moreover, a robust and flexible library of algorithms for vertex
indices is developed based on the algorithms and data structure library LEDA [19]. This
tool is described in [15]. It consists in suitable design patterns and basic algorithms for the
most popular network indices, as e.g. the centrality and status indices listed in Figure 1.
With methods from discrete statistics, we are able to visualize and summarize these results
for large networks. Furthermore, we talk about heuristical speed-up and approximation
techniques to handle even networks that are too large to get the correct results in an
acceptable time.

A goal for future work in this deliverable is the design of unified and more efficient
algorithms for network indices. For betweenness centrality, in particular, a substantial
improvement over previous algorithms has already been achived. In [6] a new and more
efficient algorithm is presented that computes betweenness centrality in time O(nm) (in-
stead of O(n3)) by solving an augmented single-source shortest path problem from each
vertex. Note that this is a significant speed-up for sparse graphs and thus for many real
world data.

Group Level – Clustering

Clustering is a common technique to analyze and explore large data sets. Its main purpose
is the identification of natural groups within the data. In the special case of graph clus-
tering and network clustering, respectively, these groups represent grouped entities. For
example, single web sites are merged into sets of common topics, or individual actors are
abstracted to communities having the same interests and behavioral pattern. Although the
notion of clustering seems to be clear with respect to our intuition, various different formal
concepts have been proposed. The understanding of quality measurements and compari-
son techniques is still at a very basic level. Moreover, there exists no conclusive evaluation
of algorithms that focuses on these aspects. For this deliverable we studied fundamental
problems as well as real-world applications.

Experimental Evaluations

As a first step towards a better understanding of clustering and quality concepts, we concen-
trated on indicators based on intra-cluster density and inter-cluster sparsity. We presented
the most important indices and an experimental evaluation in [7]. This benchmark suit
tests already-known algorithms as well as our own one. The results showed clearly that
every index had some weaknesses and could not be used for quality measurements on its
own. However, we observe that the combination of several indices could cope them quite
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index definition reference

local measures

degree cv =
∑

e∈instar(v)∪outstar(v)

ω(e) –

indegree cv =
∑

e∈instar(v)

ω(e) –

outdegree cv =
∑

e∈outstar(v)

ω(e) –

distance measures

betweenness cv =
∑

s 6=v 6=t∈V

σG(s, t|v)
σG(s, t)

[1, 11, 6]

where σG(s, t) and σG(s, t|v) are the number of
all shortest st-paths and those passing through v

closeness cv =
1∑

t∈V
δ(v, t)

[4, 22]

eccentricity cv =
1

max
t∈V

δ(v, t)
[16]

radiality cv =

∑
t∈V

(diam(G) + 1 − δ(v, t))

(n − 1) · diam(G)
[23]

feedback measures

status cv = α ·
∑

(u,v)∈instar(v)

(1 + cu) [17]

where α = min{max
v∈V

indeg(v), max
v∈V

outdeg(v)}−1

eigenvector cv = µ−1
∑

(u,v)∈instar(v)

ω(u, v) · cu [5]

where µ is the largest eigenvalue of A(G)

pagerank cv = γ · 1
n

+ (1 − γ)
∑

(u,v)∈instar(v)

cu [9]

where 0 < γ < 1 is a free parameter
authority cv = µ−1 ·

∑
(u,v)∈instar(v)

ω(u, v) ·
∑

(u,w)∈outstar(u)

ω(u, w)cw [18]

where µ is the largest eigenvalue of A(G)T A(G)
hub cv = µ−1 ·

∑
(v,w)∈outstar(v)

ω(v, w) ·
∑

(u,w)∈instar(w)

ω(u,w)cu [18]

where µ is the largest eigenvalue of A(G)A(G)T

Figure 1: Available vertex centralities. Note that most indices have been generalized with
respect to the original references, and all are rescaled to percentages.
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well. Another interesting fact is that different algorithms behaved differently with respect
to the density of the graphs. It seems that some algorithms are more suitable for sparse
graphs than dense graphs and vice versa. Although graphs retrieved from real-world prob-
lems are typically sparse, complex networks often contain very dense parts as well. Thus
algorithms are needed that can handle a large variety of densities.

Topics in News

It is usually very hard to find data sets that possess a already-known ideal clustering.
In [10] we studied networks that consist of articles form the Wall Street Journal together
with a similarity relation. The news are partial classify (by humans) with respect to
different topics. Thus giving us the opportunity to compare our clusterings with an ideal
one. Our algorithm (introduced in [7]) is very compatible with the given classification,
i.e. many topics are identically found, some topics are merged and others split into many.
Altogether, the results seem to be promising and can lead to an automatic classification
scheme for news articles.

Clustering the graph of Autonomous Systems

In [12] we applied clustering techniques from [7] to the graph of the Autonomous Systems.
Like other researchers before we found groups that reflect geographic and business-interests
issues, see [14] for an example. However we focused more on dynamic aspects and associated
effects. See also deliverable D17 for more details on this topic.

Graph Level – Computing Clustering-Coefficient and Transitivity

Since its introduction in [24], the clustering-coefficient has become a frequently used tool for
analyzing graphs. In [20] the transitivity was proposed as an alternative to the clustering-
coefficient. However, as we illustrate in [21] by several examples both parameters may differ
vastly. On the other hand, an extension of the definitions to weighted versions provides
the formal relation between them. It should be also mentioned that there is some variation
in the literature with respect to nodes of degree less than two. Sometimes the clustering-
coefficient is defined to be either zero or one. Alternatively, those nodes are not taken into
account. However, the choice of the definition is important as can be seen from our results
for the AS-graph. As many networks considered in complex systems are huge, the efficient
computation of such network parameters is crucial. Several algorithms with polynomial
running time can be derived from results known in graph theory. The main contribution of
our work [21] is a new fast approximation algorithm for the weighted clustering-coefficient
which also gives very efficient approximation algorithms for the clustering-coefficient and
the transitivity. By an experimental study we demonstrate the performance of the proposed
algorithms on real-world data as well as on generated graphs. These results also support
the assumption that normally the values of clustering-coefficient and the transitivity differ
considerably.
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Generators

Random networks are frequently generated, for example, to investigate the effects of model
parameters on network properties or to test the performance of algorithms. Recent interest
in statistics of large-scale networks results in a growing demand for network generators that
can generate large numbers of large networks quickly. Therefore, new efficient generators
have been designed and implemented to create graphs according to popular stochastic
models such as random graphs [13], small worlds [24], and evolving graphs with preferential
attachment [2]. Time and space complexity of these generators is only linear in the size of
the graph generated, and they are easily implemented [3].
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