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Abstract

Geographical information plays an important role in the physical representation
of the Net as well as for algorithmic problems like finding paths and connections.
For query intensive applications like web searching one can benefit from geographical
information. Users in such a scenario continuously enter their requests and the main
goal is to reduce the (average) response time for answering a query. The algorith-
mic core problem that underlies the above applications is a special case of the single
source shortest path problem and the method of choice is Dijkstra’s algorithm. The
first phase of this deliverable was devoted to studying the algorithmic issues short-
est paths computation in large networks. Techniques from route planning systems,
spatial databases and web searching were considered with respect to their general
applicability.
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Geographical information plays an important role in the physical representation of the
Net as well as for algorithmic problems like finding paths and connections. For query
intensive applications like web searching one can benefit from geographical information.
Users in such a scenario continuously enter their requests and the main goal is to reduce
the (average) response time for answering a query. The algorithmic core problem that
underlies the above applications is a special case of the single source shortest path problem
and the method of choice is Dijkstra’s algorithm [5]. The first phase of this deliverable
was devoted to studying the algorithmic issues shortest paths computation in large net-
works. Techniques from route planning systems, spatial databases and web searching were
considered with respect to their general applicability.

The application of shortest path computations in travel networks is widely covered in
the literature; see e.g., [2, 10]. One of the important features in our scenario is the fact that
the network does not change for a certain period of time while there are many queries for
shortest paths. This justifies a heavy preprocessing of the network to speed up the queries.
Although pre-computing and storing the shortest paths for all pairs of nodes would give us
“constant-time” shortest-path queries, the quadratic space requirement for traffic networks
with more than 105 nodes makes it prohibitive. The most commonly used approach for
answering shortest path queries concerns variants of Dijkstra’s algorithm [10], targeting at
reducing its search-space (number of nodes visited by the algorithm).

In [9], we explore the possibility to reduce the search space of Dijkstra’s algorithm
by using precomputed information that can be stored in O(n + m) space. Our main
contribution is that we use the given layout of the graph to extract geometric information
to answer the on-line queries fast. In fact, this paper shows that storing partial results
reduces the number of nodes visited by Dijkstra’s algorithm to only 10%. We use a very
fundamental observation on shortest paths. In general, an edge that is not the first edge
on a shortest path to the target can be safely ignored in any shortest path computation
to this target. More precisely, we apply the following concept. In the preprocessing, for
each edge e a set of nodes S(e) is computed which are the nodes that can be reached by a
shortest path starting with e. While running Dijkstra’s algorithm, those edges e for which
the target is not in S(e) are ignored.

As storing all sets S(e) would need O(mn) space, we relax the condition by storing a
geometric object for each edge that contains at least the nodes in S(e). The shortest path
queries are then answered by Dijkstra’s algorithm restricted to those edges for which the
target node is inside their associated geometric object. Note that this method does in fact
still lead to a correct result, but may increase the number of visited nodes to more than
the strict minimum (i.e., the number of nodes in the shortest path). In order to generate
the geometric objects, a layout is used. For the application of travel information systems,
such a layout is given by the geographic locations of the nodes. It is however not required
that the edge lengths are derived from the layout. In fact, for some of our experimental
data this is not even the case.

We present an extensive experimental study comparing the impact of different geometric
objects using real-world test data from traffic networks, a typical field of application for the
considered scenario. It turns out that a significant improvement can be achieved. Actually,
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in some cases the speed-up is even a factor of about twenty.
The second contribution concerns the dynamic version of the above mentioned scenario;

namely, the case where the graph may dynamically change over time as streets may be
blocked, built, or destroyed, and trains may be added or canceled. In this work, we present
new algorithms that dynamically maintain geometric containers when the weight of an edge
is increased or decreased (note that these cases cover also edge deletions and insertions).
We also report on an experimental study with real-world railway data. Our experiments
show that the new algorithms are 2-3 times faster than the naive approach of recomputing
the geometric containers from scratch.

Our dynamic algorithms are perhaps the first results towards an efficient algorithm
for the dynamic single source shortest path problem without using the output complexity
model under which algorithms for the dynamic single source shortest path problem are
usually analyzed. We would also like to mention that existing approaches for the dynamic
all-pairs shortest paths problem (see e.g. [11] for a recent overview) are not applicable to
maintain geometric containers, because of their inherent quadratic space requirements.

The last contribution concerns methodological issues regarding our implementations,
which have been carried out in C++. Implementing and supporting that many variations
of Dijkstra’s algorithm in C++ is a tedious task if it is not planned carefully. We employ
several techniques to maintain a common code base that is at the same time small, flexible
and efficient. We use a blend of the design pattern template method [6], parameterized
inheritance [3], and template meta-programming [1, 7].

Adding functionality to graph algorithms can be achieved by the design pattern template
method [6] or an extension of the design pattern visitor, the approach of the BOOST graph
library [4]. Our work deviates from the latter and is closer to the former, which it actually
enhances to grasp parts of aspect-oriented programming.

Of course, many techniques are known to speed-up Dijkstra’s algorithm heuristically,
while optimality of the solution can still be guaranteed. In most studies, such techniques
are considered individually. The focus of [8] is the combination of speed-up techniques for
Dijkstra’s algorithm. All possible combinations of four known techniques, namely goal-
directed search, bi-directed search, multi-level approach, and shortest-path bounding boxes,
are considered. It is illustrated how these can be implemented. In an extensive experimen-
tal study the performance of different combinations is compared and it is analyzed how
the techniques harmonize when applied jointly. Several real-world graphs from road maps
and public transport and two types of generated random graphs are taken into account.

References

[1] A. Alexandrescu; Modern C++ design: generic programming and design patterns
applied ; Addison-Wesley; 2001

[2] C. Barrett, K. Bisset, R. Jacob, G. Konjevod, M. Marathe; Classical and contemporary
shortest path problems in road networks: Implementation and experimental analysis of

3



the TRANSIMS router; Proc. 10th European Symposium on Algorithms (ESA 2002),
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