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Introduction

There are several ways to think of a graph and many of them involve drawing pictures.
In the most classical visualization vertices are considered as points in the plane and
edges as continuous curves connecting two points, such as in the top-left of Figure 1.
Indeed, graph properties of eminent importance, e.g., planarity, are defined with
respect to those drawings.

Other popular graph visualizations include intersection representations. For exam-
ple, every vertex is depicted as a point set in the plane and an edge between two
vertices is described by an intersection of the corresponding point sets, such as in the
bottom-left of Figure 1. In a contact representation the point set for each vertex is
compact and those sets are pairwise interior disjoint. Then intersections involve only
boundaries, as in the right of Figure 1, and are thus called contacts.

Figure 1: A drawing, an intersection, and a contact representation of a graph.
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Introduction

Many kinds of intersection graphs have been considered, ranging back from Koebe’s
“Kissing Coins Theorem” [Koe36] in 1936, up to segment representations of planar
graphs due to Chapolin and Gonçalves in 2009 [CG09], and further.

Within this thesis we investigate two types of intersection graphs, in both of which
vertices are represented by polygonal objects in the plane. We measure the com-
plexity of a polygonal object by the number of its corners. We are then particularly
interested in a low polygonal complexity for every vertex, i.e., we want the maximum
complexity over all vertices to be as low as possible. Chapter 2 deals with side contact

representations with one simple polygon for every vertex. Every graph that admits
such a representation is necessarily planar. The major part of Chapter 2 concerns
hole-free rectilinear representations, i.e., those in which every side of every polygon is
either horizontal or vertical, and where the union of all polygons does not leave any
holes. The right of Figure 2 shows such a contact representation. We consider here
maximally planar graphs only, which is a natural (and almost necessary) assumption
in this setting. One of our results is a new proof that polygons of complexity 8 are
always sufficient and sometimes necessary for a hole-free rectilinear representation of
a maximally planar graph.

In Chapter 3 we investigate what happens if we additionally prescribe the area
of each and every polygon in the representation. A representation that respects a
set of desired areas is known as a cartogram. For example, we prove that one can
require any set of areas without increasing the worst-case maximum complexity of a
hole-free rectilinear representation, i.e., 8-gons are still sufficient for every cartogram
of a maximally planar graph.

The second type of intersection graph is investigated in Chapter 4. In an EPG

representation vertices are represented as polygonal paths with solely horizontal and
vertical segments, and an edge occurs whenever two paths overlap along some part
of non-zero length, i.e., neither a touching point nor a crossing causes an edge. An
example of such a representation is provided in the left of Figure 2. This time, every
graph admits an EPG representation. However, we again want the polygonal com-
plexity, i.e., the number of corners, per path to be low. The least possible maximum
complexity over all paths for a given graph is the bend-number. We give several new
upper and lower bounds on the maximum bend-number for certain graph classes,
such as, planar and outer-planar graphs, complete bipartite graphs, graphs of certain
tree-width, maximum degree, or degeneracy.

This is how the thesis is organized.

Chapter 1: This chapter introduces the basic concepts and notation we use within
this thesis. Section 1.1 is about vertex orderings and in particular building
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Figure 2: A planar graph with an EPG representation on the left and a side contact
representation on the right.

sequences associated with them. Those building sequences underlie many of the
constructive proofs presented in subsequent chapters. We define the degeneracy
and the tree-width of a graph in terms of vertex orderings. For maximally planar
graphs, we review the concepts of canonical orders and Schnyder woods, and
outline some aspects of their close relation to each other. Furthermore, we
define the separation-tree of an embedded maximally planar graph and deduce
the level-i subgraphs from it. In Section 1.2 we consider orientations with
prescribed out-degrees, so-called α-orientations, review their most important
properties and present an algorithm that computes the minimal α-orientation
in near-linear time. We close the preliminaries with Section 1.3, in which we
briefly introduce rectangle-representations and transversal structures.

Chapter 2: In this chapter we investigate side contact representations of planar
graphs, i.e., vertices are represented by simple polygons which are pairwise in-
terior disjoint, and edges correspond to side contacts. In Section 2.1 we are
particularly interested in rectilinear hole-free representations with low polygo-
nal complexity. We present a general method to obtain such a representation
for a maximally planar graph from a Schnyder wood. In special cases, we obtain
a characterization of those maximally planar graphs that admit a non-rotated
rectilinear representation with complexity 4, and 6. Furthermore, we derive a
new compact floor plan for maximally planar graphs. In Section 2.2 we improve
a result of Sun and Sarrafzadeh [SS93] by presenting a linear-time algorithm
that constructs a rectilinear representation with complexity 6 based on a nesting
assignment. Our algorithm can be adjusted to construct non-rectilinear repre-
sentations of complexity 5, which in particular proves their existence under the
presence of a nesting assignment. At the end of this chapter in Section 2.3,
we provide a general method to compute lower bounds on the complexity of
side contact representations. From this we derive matching lower bounds for
all classes of planar graphs that we consider here. These bounds were known
before, but our examples and argumentation are significantly simpler.
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Chapter 3: We are interested here in side contact representations with an additional
requirement, that is, we prescribe the area of the representing polygon for each
and every vertex in the graph. Such representations are called cartograms.
Section 3.1 introduces area-universal layouts, a key-concept in this field. We
prove that every maximally planar graph admits an area-universal rectilinear
hole-free layout of complexity at most 8, which is an immediate strengthening
of the floor plan-result in Chapter 2. In Section 3.2 we present a different such
layout with the same complexity for Hamiltonian maximally planar graphs, for
which we can compute the actual cartogram in linear time, too. Based on this,
we investigate one-sided Hamiltonian cycles, since they reduce the cartogram’s
complexity to 6. Afterwards, we extend the method for computing lower bounds
on the polygonal complexity to cartograms in Section 3.3. We obtain better
lower bounds and present a matching upper bound for the case of planar 3-
trees. Finally, in Section 3.4 we discuss cartograms for 4-connected maximally
planar graphs. This class leaves a lot and the most challenging open questions,
for some of which we propose tailored approaches.

Chapter 4: This part of the thesis is not strongly related to the preceding chap-
ters. We are interested in EPG representations, i.e., vertices are represented by
polygonal paths in the plane square grid and edges correspond to paths that
share a grid edge. Every graph has an EPG representation, but each graph is
classified by the required maximum complexity of the paths involved – its bend-
number. In Section 4.1 we present lower and upper bounds on the bend-number
for complete bipartite graphs. Section 4.2 is concerned with outer-planar and
planar graphs. We give a worst-case optimal upper bound in the former and
new lower and upper bounds in the latter case. Section 4.3 relates the bend-
number of a graph to its degeneracy, tree-width and maximum degree. Again
we provide lower and upper bounds in each case, some of which are matching
or almost matching. Furthermore, we provide the first NP-completeness result
in the field in Section 4.4, i.e., we prove that recognizing single-bend graphs
is NP-complete. In the end, we briefly compare the bend-number to other
graph parameters, in particular the interval-number, local track-number, and
track-number. These connections seem to be worth further investigations.

Open Questions: We close the thesis with a list of selected open questions.
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Chapter 1

Preliminaries

This chapter introduces some basic notation and objects that are used throughout
the thesis.

Section 1.1: This section is about vertex orderings, which are a very general tool
for graphs. Here, we are particularly interested in the use of a vertex order-
ing as a building sequence of the corresponding graph. Many results in the
subsequent chapters are proven constructively along a certain such building se-
quence. We consider vertex orderings associated with the graph’s degeneracy
(Subsection 1.1.1) and tree-width (Subsection 1.1.2), as well as canonical orders
(Subsection 1.1.3), the closely related Schnyder woods (Subsection 1.1.4), and
so-called level-i subgraphs (Subsection 1.1.5).

Section 1.2: We briefly introduce α-orientations and mention some of their most im-
portant properties. In Subsection 1.2.1 we present an algorithm that computes
an α-orientation with near-linear running time.

Section 1.3: We introduce -representations, which are also known as rectangular
duals. A -representation of a near-triangulation G is a contact representations
of G with axis-aligned rectangles. We as well review the concept of transversal
structures, which are closely related to -representations.

1.1 Vertex Orderings

Let G = (V,E) be some n-vertex graph, and assume the vertices of G are labeled by
v1, . . . , vn according to some ordering. Formally, (v1, . . . , vn) is called a vertex order-

ing of G. Of course, for a fixed graph there are n! different vertex orderings, and some
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1. Preliminaries

may be more suitable for some purposes than others. Vertex orderings play a central
role in graph theory, as many important problems ask for a vertex ordering with
certain properties, e.g., the Hamiltonian cycle and path problems, the bandwidth
problem, several linear arrangement problems, the elimination degree sequence prob-
lem, and others. All these problems are known to be NP-complete [GJ79], but there
are equally important vertex orderings that can be computed in polynomial, even
linear time, for instance perfect elimination orderings, topological orders, canonical
orders, and orderings corresponding to the graphs degeneracy.

For a fixed vertex ordering (v1, . . . , vn) of a n-vertex graph G, we denote the sub-
graph of G induced by {v1, . . . , vi} by Gi, for i = 1, . . . , n. In particular, we have
Gi = G[v1, . . . , vi] and Gn =G.

• A building sequence of an n-vertex graph G is the sequence G0 ⊂ G1 ⊂ ⋯ ⊂ Gn

with respect to an underlying vertex ordering (v1, . . . , vn).

In a building sequence the vertices of the graph are added one at a time together
with all their edges to those vertices with smaller index. An example of a building
sequence is given in Figure 1.2 in Subsection 1.1.3.

1.1.1 Degeneracy

Definition 1.1.1. The degeneracy of a graph G = (V,E), denoted by d(G) is the
minimum number k, such that there exist a vertex ordering (v1, . . . , vn), such that
for every i = 1, . . . , n the degree of vi in Gi is at most k.

The degeneracy was introduced by Erdős and Hajnal [EH66] in 1966. It is not
difficult to see that d(G) equals the largest minimum degree of all subgraphs of G.
For instance, the degeneracy of a planar graph is at most 5. Figure 1.1 a) shows
a graph G with a vertex ordering, such that degGi

(vi) ≤ 2, i.e., every vertex has at
most two neighbors with a smaller label, and hence d(G) ≤ 2. Since the graph has
minimum degree 2, we conclude d(G) = 2. Note that for a given graph G = (V,E)
a vertex ordering with degGi

(vi) ≤ d(G) for every i = 1, . . . , n can be computed in
O(∣V ∣ + ∣E∣). To this end, identify a vertex of minimum degree, assign the highest
available label to it, remove it from the graph, and iterate. In Theorem 4.3.1 in
Section 4.3 we build up the graph along this vertex ordering.

Let us remark, that the concept of degeneracy is also known under the name
coloring number [KMv+09]. To be precise, col(G) = d(G) + 1, since every graph G

can be greedily vertex-colored with d(G) + 1 colors using the corresponding vertex
ordering.
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1.1. Vertex Orderings

replacemen
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Figure 1.1: a) A graph G with a vertex ordering, which shows d(G) ≤ 2. b) The
graph G is a subgraph of a 3-tree, which shows tw(G) ≤ 3. c) Another embedding of
the graph in b), which shows that G is a subgraph of a planar 3-tree.

1.1.2 Tree-Width

The tree-width was first introduced (under a different name) by Halin in 1976 [Hal76]
and independently by Robertson and Seymour in 1986 [RS86]. (However, there are
even earlier references [Wag37, HP68].) Tree-width and tree-decompositions play a
very central role in graph minor theory, and are intimately related to planar graphs.
For further reading we refer to the book of Diestel [Die10]. Within this thesis, we
consider tree-width with superficial attention only.

For a number k ≥ 1, a k-tree G with n vertices is either a complete graph with
k + 1 = n vertices, or it is obtained from a k-tree G′ with n − 1 vertices by adding a
vertex v to G′ and k edges joining v and all vertices of a k-clique in G′. Note that
1-trees are exactly trees. The recursive definition directly implies that any k-tree
has a vertex ordering (v1, . . . , vn), such that the neighborhood of vi in Gi is a clique
of size k. In particular, the degeneracy of a k-tree is at most k. (Since Kk+1 is a
subgraph of every k-tree, its degeneracy is exactly k.)

Definition 1.1.2. The tree-width of a graph G, denoted by tw(G), is the minimum
k such that G is a subgraph of a k-tree.

Given G with tw(G) = k, we usually denote by G̃ a k-tree that is a supergraph of
G. For example, Figure 1.1 b) shows that the graph G in Figure 1.1 a) is a subgraph
of a 3-tree G̃ drawn dashed and straight, i.e., tw(G) ≤ 3. (Indeed, since G contains
a K4-minor, its tree-width is exactly 3 [APC90].) By a result of El-Mallah and
Colbourn [EMC90], planar graphs of tree-width at most 3 are exactly the subgraphs
of those 3-trees that are planar. Planar 3-trees are specific maximally planar graphs,
sometimes called stacked triangulations [AC84], graphs of stack 3-polytopes [She74]
or Apollonian networks [AHAdS05], which are defined a follows. The complete graph
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1. Preliminaries

on four vertices K4 is a planar 3-tree, and any graph on at least five vertices is a
planar 3-tree if and only if there is a vertex of degree 3 in G, whose removal leaves a
planar 3-tree. Figure 1.1 c) shows another embedding of the graph in Figure 1.1 b)

illustrating that it is a subgraph of a planar 3-tree.

In general, we have tw(G) ≥ d(G), but both numbers can be far apart. For in-
stance, the planar n × n grid seen as a graph on n2 vertices has tree-width n and
degeneracy 2 [Hal76]. We remark, that many hard problems can be solved in poly-
nomial, often even linear, time in case of small tree-width, e.g., the Hamiltonian
cycle problem, the maximum independent set problem, or the 3-coloring problem.
Indeed, a graph of constant tree-width can be tested in linear time for every property
that can be defined in so-called monadic second-order logic [Cou90]. Unfortunately,
testing whether the tree-width of a given graph is at most some number k is NP-
complete [ACP87]. However, the recognition of graphs with tree-width at most k can
be done in polynomial time for fixed k (!) [RS86, ACP87].

Let us remark that an equivalent definition for the tree-width says that tw(G) + 1
equals the minimum size of a largest clique among all chordal supergraphs of G, where
a chordal graph is one without induced cycles of length four or more.

Within this thesis, we sometimes assume that the graph G of interest has (addi-
tionally) small tree-width, which enables us to derive certain representations for G.
There maybe no such representation for larger tree-width, or we simply fail to find
it. Anyways, these proofs rely on the building sequence for G, which is given from
the recursive definition of a k-tree G̃ that is a supergraph of G. In such a building
sequence, we maintain control over the neighborhood of vertex vi in Gi, i.e., it is a
clique in G̃, although not necessarily in G.

Considering planar graphs, we often analyze the case of tree-width 2 (c.f. Theo-
rem 4.2.1 and Lemma 4.3.5) and tree-width 3 (c.f. Theorem 3.3.4, Theorem 4.2.2, and
Lemma 4.2.3). Most importantly, outer-planar graphs have tree-width at most 2, and
maximally outer-planar graphs are 2-trees. Hence we get a building sequence here, in
which every new vertex is connected to at most two vertices in the already constructed
graph.

1.1.3 Canonical Orders

Canonical orders were first introduced by de Fraysseix, Pach, and Pollack [dFPP90]
for maximally planar graphs, and later generalized by Kant [Kan92, Kan96] to tri-
connected plane graphs. A further generalization are orderly spanning trees [CLL05].
Canonical orders have been proven to be a very valuable tool for many problems

8



1.1. Vertex Orderings

about planar graphs, such as straight line drawings [dFPP90, Kan96, BFM07], com-
pact graph representations [LLY03, CLL05], graph encoding [CGH+98], graph sam-
pling [PS03], and many others. Within this thesis, we use canonical orders only for
maximally planar graphs and hence define them only for this case. Recall that for
a given vertex ordering (v1, . . . , vn) of a graph G, the subgraph of G induced by
{v1, . . . , vi} is denoted by Gi, for i = 1, . . . , n.

Definition 1.1.3. Let G = (V,E) be an embedded maximally planar n-vertex graph
with outer vertices u, v, w in counterclockwise order. A vertex ordering (v1, . . . , vn) is
called a canonical order of G if v1 = u, v2 = v and vn = w, and the following conditions
are met for every 4 ≤ i ≤ n.

• The subgraph Gi−1 of G is bi-connected, and the boundary of its outer face is
a cycle Ci−1 containing the edge (v1, v2).

• The vertex vi lies in the outer face of Gi−1, and its neighbors in Gi−1 form an
(at least 2-element) subpath of the v1-to-v2 path Ci−1 ∖ (v1, v2).

Every maximally planar graph admits a canonical order and it can be computed
in linear time [dFPP90]. A canonical order can be easily used to construct a straight
line drawing of G without crossings. Let us consider the building sequence G3 ⊂

G4 ⊂ ⋯ ⊂ Gn of G. Putting i = 4 in Definition 1.1.3, it follows that Gi−1 = G3 is the
triangle {v1, v2, v3}. We embed G3 as an acute triangle with the edge (v1, v2) drawn
horizontally (and straight). For i ≥ 4, the vertex vi is connected to the vertices of
a subpath Pi (of length at least 2) of the v1-to-v2 path Ci−1 ∖ (v1, v2) in Gi−1. Let
out1(vi) and out2(vi) denote the start-vertex and end-vertex of Pi, respectively. For
convenience, we define out1(v3) = v1 and out2(v3) = v2. It is easy to see that there
is a position for the vertex vi in the plane, to the right of out1(vi), to the left of
out2(vi) and above all vertices in Pi, such that the resulting straight line embedding
remains planar. See Figure 1.2 for an example. However, for better readability the
embedding in Figure 1.2 is slightly stretched in some steps and some edges incident
to v11 and v12 are not drawn straight.

Consider the graph Gi for i = 3, . . . , n. We distinguish three kinds of vertices on
the outer cycle Ci of Gi. A vertex v ∈ Ci is called a hill vertex if all its neighbors
in Gi have smaller y-coordinate. A valley vertex is one that has to the left and to
the right a neighbor with larger y-coordinate. All other vertices on Ci are neither
hill nor valley vertices. We give a more formal definition of hill and valley vertices in
Lemma 1.1.7 in Subsection 1.1.4, from which follows that these terms depend only
on the canonical order and not on the particular straight line embedding. However,
for intuition one may think of the embedded Gi as having mountain shape with the
hill and valley vertices being the peaks and valleys, respectively.

9
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Figure 1.2: A maximally planar graph is built up using a canonical order. Hill and
valley vertices in each Gi are highlighted in light and dark grey, respectively. The
outer face cycle Ci is drawn bold.

1.1.4 Schnyder Woods

In 1989, Schnyder [Sch89, Sch90] introduced Schnyder woods and equivalent angle
labellings, so-called Schnyder labellings, for maximally planar graphs. He proved a
characterization of planar graphs in terms of the (order) dimension of the vertex-
edge incidence order. Moreover, he used Schnyder woods to give the first proof that
any n-vertex planar graph admits a straight line embedding on the (n − 2) × (n − 2)
grid without crossings. Today it is known [dFOdM01], that Schnyder woods are in
bijection with 3-orientations. (We define 3-orientations and explain this bijection
in Section 1.2.) Based on this bijection it was shown [OdM94, Bre00], that the set
of all Schnyder woods of a fixed plane graph carries the structure of a distributive
lattice. Felsner [Fel01, Fel03] presents a natural way to generalize Schnyder woods to
all tri-connected plane graphs.

For a comprehensive introduction to Schnyder woods and related objects we refer
to the PhD thesis of É. Fusy [Fus07]. The following definition is taken from there.

Definition 1.1.4. Let G = (V,E) be an embedded maximally planar n-vertex graph

10



1.1. Vertex Orderings

with outer vertices a1, a2, a3 in counterclockwise order. A Schnyder wood of G is an
orientation and labeling of the inner edges of G with labels in {1,2,3}, satisfying the
following rules.

• Each inner vertex v has exactly one outgoing edge of each label. The outgoing
edges e1, e2, e3 in each label {1,2,3} occur in counterclockwise order around v.
For i ∈ {1,2,3}, all edges entering v with label i are in the counterclockwise
sector between ei+1 and ei−1.

• For i ∈ {1,2,3}, all inner edges incident to ai are ingoing and have label i.

It is convenient to associate the three colors blue, green, and red with the three
labels 1, 2, and 3 in a Schnyder wood, respectively. Hence, every inner vertex v

has exactly three outgoing edges in every Schnyder wood, one blue edge (labeled
1), one green edge (labeled 2), and one red edge (labeled 3), which appear in this
counterclockwise order around v. We denote the end-vertex of the blue, green, and
red edge by out1(v), out2(v), and out3(v), respectively. If v has incoming blue edges,
then these appear in the sector at v between the green and the red outgoing edge not
containing the blue outgoing edge. And analogous statements hold for the incoming
green and red edges, respectively. We denote the set of neighbors of v that are
connected by a blue edge to v, which is incoming at v, by in1(v). If there is no
incoming blue edge at v, then in1(v) = ∅. Similarly, in2(v) and in3(v) are defined
w.r.t. green and red edges, respectively. Figure 1.3 a) illustrates the local rule at an
inner vertex v and the notation with outi and ini, for i = 1,2,3. In Figure 1.3 b) the
local rule at the outer vertices a1, a2, and a3 is indicated.

1
1

1

1

1

1

2

2

2

2

2

2
2

3

3 33

3 3 3out1 out2

out3

in1in2

in3 a1 a2

a3

a) b)

Figure 1.3: a) The local rule of a Schnyder wood at an inner vertex. b) The local
rule of a Schnyder wood at the outer vertices.

Schnyder [Sch89] proves that every maximally planar graph has a Schnyder wood.
An example is shown in Figure 1.4 below. It is called a wood because for each
i ∈ {1,2,3} the set of edges with label i forms a directed tree spanning all inner
vertices and ai, with ai being the root and every edge being directed towards the

11



1. Preliminaries

root. Hence, the direction of the edges can be recovered from the labels. (This
holds even the other way around, i.e., the labels of the edges can be recovered from
their directions [dFOdM01].) For i = 1,2,3, we denote the tree rooted ai by Ti,
formally, Ti = {(v, outi(v)) ∣ v ∈ V ∖ {a1, a2, a3}}. A Schnyder wood is then denoted
by (T1, T2, T3).

It turns out that the leaves of the three trees in a Schnyder wood play an important
role. For i = 1,2,3, let us denote set of leaves of Ti by Li. Sometimes, for example in
Theorem 2.1.8 in Section 2.1, it is desirable to have a Schnyder wood in which one
tree has few leaves.

Lemma 1.1.5 ([CLL05]). In every Schnyder wood (T1, T2, T3) of a n-vertex graph at

least one tree Ti has at most ⌊2n−5
3
⌋ leaves, i.e., ∣Li∣ ≤ ⌊2n−53

⌋.

Proof. The leaves of the Schnyder wood are in bijection with the acyclic inner faces
of the graph, where the orientation of edges is given by the Schnyder wood and a
vertex that is a leaf in more than one tree is counted with multiplicity. The bijection
is the following. For an inner vertex v that is a leaf in Ti, consider the face ∆ incident
to v, outi−1(v), and outi+1(v). The vertex v is the unique source in ∆, i.e., the only
vertex of which both incident edges in ∆ are outgoing. On the other hand, if v is
a source in some face ∆, then it has two outgoing edges that are consecutive in the
circular order around v. Hence, there is no incoming edge in the corresponding sector
and v is a leaf in one tree.

The statement now follows, since a maximally planar graph has precisely 2n − 5

inner faces and there are three trees in a Schnyder wood.

Let us remark that Lemma 1.1.5 is tight. Planar 3-trees are exactly those maximally
planar graphs that have a unique Schnyder wood, and this implies that every inner
face is acyclic. If the planar 3-tree is symmetric w.r.t. a1, a2, and a3, then each tree
in the Schnyder wood has the same number of leaves, namely exactly 2n−5

3
, where n

is the number of vertices.

With a canonical order (v1, v2, . . . , vn) we can associate a Schnyder wood in the
following natural way. Let a1 = v1, a2 = v2, and a3 = vn. (Indeed, whenever we
consider a canonical order and a Schnyder wood of one and the same (embedded)
graph, we assume that a1 = v1, a2 = v2, and a3 = vn.) Note that a1, a2, a3 appear
in this counterclockwise order around the outer face. Recall that for i ≥ 3 we have
defined out1(vi) and out2(vi) to be the first and last vertex on Ci−1 ∖ (v1, v2) (when
going from v1 to v2), that is a neighbor of vi. Giving every inner edge (vj , vk) that is
not labeled this way, the label 3 and orienting it from vj to vk if j < k, we have defined
a labeling and orientation of the inner edges of the graph. It is not difficult to check,

12



1.1. Vertex Orderings

that this actually is a Schnyder wood. Let us provide an example, which shows how
to get a Schnyder wood from the canonical order in Figure 1.2. See Figure 1.4.

a1 = v1 a2 = v2

a3 = vn

Figure 1.4: How to obtain a Schnyder wood from a canonical order. Hill and valley
vertices are highlighted in light and dark grey, respectively.

Indeed, every Schnyder wood is obtained from a canonical order via the above
procedure. In general, there are several different canonical orders that give the same
Schnyder wood. It is known [Fel04], that reversing all edges in any two trees of a
Schnyder wood results in an acyclic subgraph containing all inner edges. A topological

order of an acyclic graph on n vertices is a vertex ordering (v1, . . . , vn), such that if
there is a directed edge from vi to vj, then i < j.

Lemma 1.1.6. Let G be an embedded maximally planar graph with outer vertices a1,

a2, a3 in counterclockwise order. Then each of the following holds.

(a) A canonical order of G defines a Schnyder wood of G, where the outgoing edges

of a vertex v are to its first and last neighbor with smaller label in the counter-

clockwise order around v, and to its neighbor with the highest label.

(b) For a Schnyder wood (T1, T2, T3) every topological order of the acyclic graph

T −11 ∪ T
−1
2 ∪ T3 defines a canonical order, where T −1k is the tree Tk with the

direction of all its edges reversed.

13



1. Preliminaries

To be precise, we insert the edge (a1, a2) directed from a1 to a2 into T −1
1
∪T −1

2
∪T3, so

that every topological order starts with a1. Moreover, if (v1, . . . , vn) is the canonical
order defined by the Schnyder wood (T1, T2, T3), then the Schnyder wood that is
defined by (v1, . . . , vn) is again (T1, T2, T3). This way, we may associate to every
Schnyder wood (T1, T2, T3) the set of those canonical orders that define (T1, T2, T3).

The following lemma can be taken as the formal definition of hill and valley vertices
that was promised in the preceding subsection.

Lemma 1.1.7. Let (T1, T2, T3) be a Schnyder wood of a maximally planar graph G

and (v1, v2, . . . , vn) a topological order of T −11 ∪T
−1
2 ∪T3. Then for every i = 3, . . . , n−1

each of the following holds.

• The edge-set T1 ∩E(Gi) and T2 ∩E(Gi) is a sub-tree of T1 with root a1 and of

T2 with root a2, respectively.

• The v1-to-v2 path Ci∖(v1, v2) along the outer face of Gi consists of an alternat-

ing sequence of paths in T1 oriented towards v1 and paths in T2 oriented towards

v2, beginning with a T1-path and ending with a T2-path.

• The hill vertices in Gi are those vertices on Ci that are the start-vertex of a

T1-path and a T2-path on Ci. A hill vertex is a leaf in T1∩E(Gi) and T2∩E(Gi).
• The valley vertices in Gi are those vertices on Ci that are the end-vertex of a

T1-path and a T2-path on Ci. A valley vertex is neither a leaf in T1∩E(Gi) nor

in T2 ∩E(Gi).

1.1.5 Separation-Trees and Level-i Subgraphs

We introduce the separation-tree of a maximally planar graph with a fixed plane
embedding. Based on this we define the level-i subgraph G[i] of G, which enables us
to build up G by iteratively inserting 4-connected pieces to the already constructed
part of G.

Given a fixed embedding of a maximally planar graph G, a triangle ∆ in G, i.e.,
a set {u, v,w} of three pairwise adjacent vertices, is called non-empty if it is not an
inner face in G. In particular, there is at least one further vertex inside the bounded
region enclosed by ∆. The non-empty triangles are precisely the separating triangles
and the outer triangle (if ∣V (G)∣ ≥ 4), where a separating triangle is a set of three
pairwise adjacent vertices that do not form a face in any embedding of G. We say
that a triangle ∆1 is contained in a triangle ∆2, if the bounded region enclosed by
∆1 is strictly contained in the one enclosed by ∆2. For example, the outer triangle
contains every triangle in the graph (except itself), and no triangle in G is contained
in an inner facial triangle.

14



1.1. Vertex Orderings

Definition 1.1.8. Let G be a maximally planar graph with a fixed plane embedding.
The separation-tree of G is the rooted tree TG whose vertices are the non-empty
triangles in G, with ∆ being a descendant of ∆′ if and only if ∆ is contained in ∆′.

The separation-tree has been considered for example in [SS93]. It is easy to see,
that TG is indeed a tree with the outer triangle as a root (provided ∣V (G)∣ ≥ 4). For
example, Figure 1.5 c) shows the separation-tree of the maximally planar graph in
Figure 1.5 a).

a)

b) c)

Figure 1.5: a) A maximally planar graph G with a fixed plane embedding. b) The
level-1 subgraph G[1] of G. c) The separation-tree TG. For each non-empty triangle
∆ the graph G∆ is depicted “inside” the vertex corresponding to ∆.

For a non-empty triangle ∆ = {u, v,w}, equivalently a vertex in TG, we define the
graph G∆ as follows.

• The vertex set of G∆ consists of u, v and w, and every vertex x that lies inside
∆ but not inside any triangle ∆′, which is contained in ∆.

• The edge set of G∆ consists of all the edges of G induced by the vertices of G∆.

15



1. Preliminaries

It is not difficult to see that G∆ is a maximally planar graph with outer triangle ∆.
Moreover, G∆ does not contain any separating triangles and hence G∆ is either the
complete graph on four vertices or it is the (unique) 4-connected maximally planar
subgraph of G containing u, v, w, and at least one further vertex x that lies inside
∆. In Figure 1.5 c) the graph G∆ for each non-empty triangle ∆ is shown inside the
corresponding vertex in the separation-tree.

The depth of a vertex in a rooted tree is its distance (measured by the number
of edges) from the root. The depth of the rooted tree is the maximum depth of its
vertices. We now define the level of a vertex v ∈ V (G) based on the depth of a certain
vertex ∆ ∈ TG.

Definition 1.1.9. Let TG be the separation-tree of G, ∆0 be its root, and d be its
depth. The level of a vertex v ∈ V (G) is the minimum depth of a non-empty triangle
∆ in TG, such that v ∈ V (G∆).

For i = 0, . . . , d, the level-i subgraph of G is the subgraph G[i] of G induced by all
vertices of level at most i.

In other words, the level-i subgraph G[i] of G is the union of all graphs G∆ with
depth of ∆ in TG at most i. For example, Figure 1.5 b) shows the level-1 subgraph
G[1] of the maximally planar graph G in Figure 1.5 a). If ∆0 denotes the outer
triangle of G, then G[0] = G∆0

. For example, the level-0 subgraph of G is depicted
in the root of TG in Figure 1.5 c).

Sometimes, we prove a statement for a maximally planar graph G by an iterative
procedure based on the level-i subgraphs of G. Suppose, we can show our statement
for 4-connected maximally planar graphs. We may start with G[0], and insert all
graphs G∆ with ∆ being at depth 1 in the separation-tree one after another, while
always maintaining the required statement. We have then proven the statement for
G[1], and iterating this procedure, we may end up with a proof for G[d] = G, where
d is the depth of the separation-tree. Theorem 2.2.4 in Section 2.2 and Theorem 4.2.6
in Section 4.2 are proven in this fashion.

1.2 Orientations with Prescribed Out-Degrees

This section briefly introduces orientations with prescribed out-degrees, so-called α-
orientations. These have been introduced and investigated by Felsner [Fel04] and
independently by Ossona de Mendez [OdM94]. An orientation of an undirected graph
G is a directed graph, whose underlying undirected graph is G. In other words, an
orientation of G fixes a direction/orientation for each edge in G.
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1.2. Orientations with Prescribed Out-Degrees

Definition 1.2.1. Given a graph G = (V,E) and a mapping α ∶ V → N, an orientation
of the graph’s edges is called an α-orientation if out-deg(v) = α(v) for every vertex
v ∈ V , i.e., the mapping α prescribes the out-degree at every vertex.

We restrict our attention to planar graphs here. There are several reasons for this,
one being the following result, which is of significant importance. It was independently
proved by Felsner [Fel04] and Ossona de Mendez [OdM94], and many more times for
particularly special cases, as discussed further below.

Theorem 1.2.2 ([Fel04, OdM94]). Let G be a plane graph and α ∶ V (G) → N be a

mapping. The set of α-orientations of G carries an order-relation which is a distribu-

tive lattice.

Figure 1.6 shows an example of a plane graph and its set of five different α-
orientations for a fixed mapping α. The orientations are depicted with the distributive
lattice structure given by Theorem 1.2.2. We remark that different plane embeddings
of G give rise to different distributive lattices for the α-orientations. However, we fix
here any plane embedding of G.

Consider some α-orientation of G and a directed cycle in this, now directed, graph.
Then reorienting every edge on the cycle results in a new orientation of G, which again
is a (different) α-orientation. It is not difficult to see that every α-orientation of G
can be transferred into any other by a sequence of cycle reversals. (This holds even in
the non-planar case.) The essential cycles of G w.r.t. α are an inclusion-minimal set
of cycles that is needed to get from every α-orientation to every other. The essential
cycles can be chosen in such a way that the interiors of any two such cycles are either
disjoint or contained in each other. In the latter case, the cycles are edge-disjoint.
An edge is called rigid w.r.t. α if it has the same direction in every α-orientation of
G. For example, both edges incident to the vertex in the bottom-right in Figure 1.6
are rigid. In case there are no rigid edges, we may choose the set of all inner faces
as the essential cycles of G w.r.t. α. The essential cycles for the graph in Figure 1.6
w.r.t. the chosen α are the three inner facial cycles that are highlighted in grey in
the top-most orientation.

The minimal α-orientation is defined to be the unique α-orientation of G in which
no essential cycle is oriented counterclockwise. Indeed, it then follows that no cycle
in G is counterclockwise. Moreover, an α-orientation covers another α-orientation
in the distributive lattice if and only if the first arises from the second by reversing
an essential cycle from clockwise to counterclockwise. Here covering means that the
first α-orientation lies above the second in the distributive lattice and that there is
no third, which lies above the second and below the first.

• A reversal of an essential cycle from clockwise to counterclockwise is called a
flip.
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Figure 1.6: The distributive lattice on the set of all α-orientations of a plane graph
G. The mapping α ∶ V (G) → N is indicated at every vertex and the essential cycles
that are reversed w.r.t. the minimal α-orientation are highlighted in grey.
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1.2. Orientations with Prescribed Out-Degrees

• The inverse operation, i.e., from reversing from counterclockwise to clockwise,
is called a flop.

In Figure 1.6, in each graph the set of essential cycles that are flipped w.r.t. the
minimal orientation is highlighted in gray. Note that in general, this set is a multi-set.

Many combinatorial graph structures can be encoded as α-orientations. We have
already mentioned in Subsection 1.1.4, that Schnyder woods are encoded by 3-
orientations [dFOdM01]. To be precise, if G is an embedded maximally planar graph
with outer vertices a1, a2, and a3, we remove the three outer edges from G and de-
fine α(v) = 3 for v ∉ {a1, a2, a3}, as well as α(a1) = α(a2) = α(a3) = 0. Such an
α-orientation is called a 3-orientation of G. Clearly, every Schnyder wood induces
a 3-orientation by disregarding all edge-labels. Conversely, one can show that every
3-orientation induces a Schnyder wood and that this is a bijection between Schnyder
woods and 3-orientations.

There are many more examples of bijections between α-orientations for a particular
mapping α ∶ V (G) → N and certain combinatorial objects associated with G. In par-
ticular, every such bijection gives a distributive lattice structure on the set of these
combinatorial objects by Theorem 1.2.2. The following lists structures that are in bi-
jection with α-orientations of an associated graph. For many of them the distributive
lattice given by Theorem 1.2.2 was already known before – the corresponding results
are listed as well.

• Domino and lozenge tilings of a plane region (Rémila [Rém04] and others based
on Thurston [Thu90])

• Spanning trees in planar graphs (Gilmer and Litherland [GL86], Propp [Pro93])
• Perfect matchings in planar bipartite graphs (Lam and Zhang [LZ03])
• d-factors in planar bipartite graphs (Felsner [Fel04], Propp [Pro93])
• Schnyder woods of a maximally planar graph (Brehm [Bre00], Ossona de Men-

dez [OdM94])
• Eulerian orientations of a planar graph (Felsner [Fel04])

Let us remark, that there are more general graph objects that carry a distribu-
tive lattice structure, which include α-orientations as a special case. For instance,
Bernardi and Fusy introduce k-fractional orientations with prescribed out-degrees of
a planar graph [BF10a], as well as Schnyder decompositions of a plane d-angulations
of girth d [BF10b]. And already in 1993, Propp [Pro93] introduced c-orientations,
which we address in the next subsection. For a comprehensive investigation of lat-
tice structures on planar and non-planar graphs we refer to the work of Felsner and
Knauer [FK09, FK11]. The PhD thesis of K. Knauer [Kna10] gives a nice and com-
prehensive survey.
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1.2.1 Near-Linear Time Computation

We present an algorithm that given an n-vertex planar graph G and a mapping
α ∶ V (G) → N computes an α-orientation of G, or decides that one does not exist.
Actually, our algorithm computes the minimal α-orientation of G. We also show
how to compute the minimal α-orientation in linear time, provided we are given any
α-orientation of G.

Although our algorithm is an immediate application of known results, it has not
been stated in relation with α-orientations before (to the best of our knowledge).
Previous algorithms for computing an α-orientation [Fel04, Fus07] rely on flow com-
putations with running time O(n3/2). Our algorithm solves a single-source shortest
path problem in a directed planar graph with possibly negative integer edge-lengths,
which can be done in O(n log2(n)/ log logn) due to a recent result of Mozer and
Wulff-Nilsen [MWN10], which improves the (equally recent) O(n log2(n))-algorithm
of Klein, Mozer and Weimann from 2010 [KMW10]. We remark that, there is a linear-
time algorithm for directed planar graphs with non-negative edge-lengths [KRRS94].

The main idea is the following: α-orientations of a plane graph G are in bijection
with the so-called c-orientations of the dual graph G∗ [Fel04]. The c-orientations,
introduced by Propp [Pro93], in turn are in bijection with particular flow circulations
with upper and lower capacities [Fel04]. Miller and Naor [MN95] reduced the problem
of finding such a flow circulation to a single source shortest path problem. Hence, by
this chain of reasoning finding an α-orientation can be reduced to finding a shortest-
path tree in an appropriate directed planar graph. Here we summarize the main steps
of this reduction, starting with the definition of a c-orientation.

Definition 1.2.3. Let G = (V,E) be a graph, with a number c(C) ≥ 0 and a fixed
order of traversal for every cycle C in G. An orientation of the graphs edges is called a
c-orientation if for every cycle C the number of forward-edges of C w.r.t. its traversal
order equals c(C).

A c-orientation prescribes the number of forward-edges of every cycle. It is enough
to prescribe these numbers for the cycles of a cycle base of the graph. In a plane
graph, we may choose the set of inner facial cycles as a cycle base. Now let G be a
plane graph and G∗ be its dual. Let v and fv be a vertex and the corresponding face
in G and G∗, respectively. Then the α-orientations of G are in bijection with the
c-orientations of G∗ by fixing the clockwise traversal order for every cycle and putting
c(fv) = α(v) for every v ∈ V (G). The bijection is then given by the right-hand-rule:

• Traversing a primal edge along its direction in an α-orientation of G, the dual
edge in the corresponding c-orientation of G∗ is crossing from left to right.
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1.2. Orientations with Prescribed Out-Degrees

We give an example in Figure 1.7 a). It shows the plane dual of the graph in Fig-
ure 1.6 equipped with the minimal α-orientation and the corresponding c-orientation.
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Figure 1.7: a) A plane graph with an α-orientation and its plane dual with the
corresponding c-orientation. b) The corresponding bi-directed graph with the RFS-
tree and the edge-lengths in red and π-values in blue.

It is known [FK09], that the set of c-orientations of a plane graph are in turn
in bijection with certain vertex potentials, called ∆-bonds. We make a series of
observations here from which the vertex potentials can be extracted. For the precise
definitions and proofs we refer to the work of Felsner and Knauer [FK09].

Let v∗ be an outer vertex in the dual graph G∗, for instance the vertex correspond-
ing to the outer face in the primal graph G. Let T be the right-first-search tree,
RFS-tree for short, of G∗. For example, in Figure 1.7 b) this tree is highlighted in
red. Suppose for the moment, that we know some c-orientation of G∗.

• For every vertex v ∈ V (G∗) we define πv to be the number of edges on the
unique v-to-v∗ path in T that are directed towards v∗.

The numbers πv are the blue numbers in Figure 1.7 b). For a non-tree edge (v,w)
we denote the unique cycle in T∪(v,w) by CT (v,w). Note that since T is a depth-first-
search tree, every non-tree edge connects two vertices that have ancestor-descendant
relation. Moreover, since T is a right -first-search tree, the clockwise traversal order
of CT (v,w) goes along (v,w) from the descendant to the ancestor. We make the
following three crucial observations.

• For every edge (v,w) ∈ T with v being the parent of w in T we have:

πv ≤ πw ≤ πv + 1 (1.1)
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• For every edge (v,w) ∉ T with v being an ancestor of w in T we have:

πv + c(CT (v,w)) − 1 ≤ πw ≤ πv + c(CT (v,w)) (1.2)

• For the vertex v∗ we have:
πv∗ = 0 (1.3)

Observation (1.1) is immediate, since (v,w) is directed either towards w, in which
case πw = πv, or towards v, in which case πw = πv+1. Observation (1.2) is similar, i.e.,
(v,w) is directed either towards w, in which case πw = πv + c(CT (v,w)), or towards
v, in which case πw = πv + c(CT (v,w)) − 1.

Note that conditions (1.1), (1.2), (1.3) do not depend on the c-orientation whose
knowledge we assumed. We have argued that our definition of {πv ∣ v ∈ V (G∗)} results
in a set of numbers satisfying the above conditions. In general, there are many such
sets, and even many with solely non-negative integer values. The c-orientation of the
dual graph corresponding to the minimal α-orientation of the primal graph is called
the minimal c-orientation. Then, the following holds.

Lemma 1.2.4 ([FK09]). The unique solution of (1.1), (1.2), (1.3), which minimizes

∑v∈V (G∗) πv is obtained from the minimal c-orientation of G∗ by

πv =#{edges in the v-to-v∗ path in T that are directed towards v∗}

By Lemma 1.2.4 the π-values corresponding to the minimal c-orientation are the
solution to the following problem. Once the π-values are known, the minimal c-
orientation can be easily recovered in linear time.

minimize ∑v∈V (G∗) πv
such that: πv ≤ πw ∀(v,w) ∈ T

πw ≤ πv + 1 ∀(v,w) ∈ T
πv ≤ πw + 1 − c(CT (v,w)) ∀(v,w) ∉ T
πw ≤ πv + c(CT (v,w)) ∀(v,w) ∉ T
πv∗ = 0

The above has an interpretation as a single source shortest path problem in a
directed planar graph G̃∗, which is defined as follows. Consider an edge (v,w) in G∗

and let v be an ancestor of w in T . (If (v,w) ∈ T , then v is the parent of w in T .)
There are two anti-parallel edges between v and w in G̃∗. The length of the edge
directed from v to w is 1 if (v,w) is a tree-edge, and CT (v,w) if it is not, and the
length of the edge directed from w to v is 0 if (v,w) is a tree-edge, and 1 −CT (v,w)
if it is not. Now it is easy to see that the solution of the above linear program equals
the shortest distances from v∗ in G̃∗ w.r.t. these edge-lengths. Figure 1.7 b) shows
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1.2. Orientations with Prescribed Out-Degrees

the bi-directed graph G̃∗, the RFS-tree T in red, the edge-lengths in red, and for each
vertex its distance from v∗ in blue.

We conclude the following theorem.

Theorem 1.2.5. For every planar n-vertex graph G = (V,E) and every mapping

α ∶ V (G) → N the minimal α-orientation problem for (G,α) can be solved by a

single source shortest path problem in a planar directed graph with (possibly neg-

ative) integer edge-lengths. Moreover, the currently fastest known algorithm takes

O(n log2(n)/ log logn) time [MWN10].

Remark 1.2.6. Above we have chosen the tree T to be the RFS-tree in G∗ rooted
at some outer vertex v∗. Actually, we may choose any tree T rooted at any vertex
v∗, and this would give us a (slightly more complicated) set of inequalities similar
to (1.1), (1.2), (1.3), and in consequence different edge-lengths for G̃∗. (Clearly, the
graph G̃∗ depends only on G∗.) Still, the distance of every vertex v from v∗ w.r.t.
these edge-lengths equals the number of edges on the v-to-v∗ path in T that are
oriented towards v∗ in the minimal c-orientation of G∗. Interestingly, every choice of
a tree T and a root vertex v∗ results in a set of edge-lengths of G̃∗, such that of every
two anti-parallel edges exactly one is on a shortest path from v∗.

One may ask in which cases the edge-lengths happen to be non-negative. We
could then apply a linear-time algorithm for the shortest path problem [HKRS97].
However, it is not difficult to see, that for a pair (T, v∗) of a tree and a root vertex, the
corresponding edge-lengths are non-negative if and only if every edge in T is oriented
away from v∗ in the minimal c-orientation. (Indeed, all edge-lengths are either 0 or 1
in this case.) However, knowing such a tree, one can directly read off the orientation
of every non-tree edge in the minimal c-orientation.

Furthermore, if some c-orientation is given, we can compute in linear-time the
corresponding π-values w.r.t. any rooted tree by counting edges that are oriented
towards the root. These π-values satisfy (1.1), (1.2), and (1.3), i.e., are a feasible ver-
tex potential of the shortest path problem. Based on this potential one can compute
the so-called reduced edge-lengths, which are non-negative and keep all the shortest
paths the same. (Indeed, every edge has length either 0 or 1 after the modification.)
Hence, we can compute the minimal c-orientation in linear time, provided some c-
orientation is given. Applying the bijection to α-orientations, we can compute the
minimal α-orientation in linear time, provided some α-orientation is given.

Let us close this section by remarking that the α-orientation problem is equivalent
to the arc-disjoint Menger problem. In the arc-disjoint Menger problem we are given
a directed graph G = (V,E) and an integer b(v) for every vertex v ∈ V . The task is
to compute a set P of arc-disjoint directed paths in G, such that the number of path
starting at v minus the number of paths ending at v equals b(v).
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1. Preliminaries

Suppose we are given a graph G = (V,E) and a mapping α ∶ V → N. Then we can
compute some directed graph G′ that is an orientation of G. Let P be a solution of
the arc-disjoint Menger problem for (G′, b′), where b′(v) = out-degG′(v) − α(v) for
every v ∈ V . Reversing every directed path in P then results in an α-orientation of
G.

On the other hand, suppose we are given a directed graph G = (V,E) and a mapping
b ∶ V → Z. Let G′ the underlying undirected graph and G′′ be a solution of the α-
orientation problem for (G′, α′), where α′(v) = out-degG(v) + b(v) for every v ∈ V .
Then the symmetric difference G∆G′′ is a set P of directed paths and cycles, where
the set of paths is a solution of the arc-disjoint Menger problem for (G,b).

Note that we require planarity neither for the α-orientation problem, nor for the arc-
disjoint Menger problem. However, having a planar graph in one problem translates
into a planar graph in the other problem. We summarize without formal proof.

Theorem 1.2.7. The α-orientation problem for directed and directed planar graphs is

equivalent to the arc-disjoint Menger problem for directed and directed planar graphs,

respectively.

The arc-disjoint Menger problem has been considered in the literature, and linear-
time algorithms are known only for very special cases. For instance, Brandes and
Wagner [BW00] present a linear-time algorithm in case b(v) = 0 for all but two
vertices in the graph.

1.3 Rectangle-Representations and Transversal Struc-

tures

In preparation for Chapter 2, this section is concerned with a special class of side
contact representations. Let us first define a near-triangulation to be a planar graph
G with at least five vertices, which admits a plane embedding with quadrangular
outer face and only triangular inner faces. In other words, a near-triangulation is
a maximally planar graph minus one outer edge. Throughout this thesis we are
interested only in near-triangulations that are 4-connected , i.e., that remain connected
under the removal of any set of three vertices. Sometimes and in especially within
this section, we simply say near-triangulation although we always mean 4-connected
near-triangulation.

For a near-triangulation G on n vertices, we always consider the embedding in
which the outer face has degree 4, and denote the outer vertices by v1, v2, vn, and
vn−1, in this counterclockwise order. For convenience, we assume that there is no
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1.3. Rectangle-Representations and Transversal Structures

inner vertex that is a common neighbor of v1 and vn, unless n = 5. Then the graph
G′ = G ∪ (v1, vn) is a 4-connected maximally planar graph, provided n > 5, i.e., G′

contains no separating triangle.

Definition 1.3.1. Let G = (V,E) be an embedded near-triangulation with outer
vertices v1, v2, vn, vn−1 in counterclockwise order. A -representation, or rectangle-

representation of G is a set Γ = {R(v) ∣ v ∈ V } of axis-aligned rectangles in R
2, one

for each vertex, such that

• Any two rectangles R(v), R(w), for v ≠ w, are interior disjoint.
• Two vertices v and w are connected by an edge in G if and only if R(v) and
R(w) have a side contact.

• The union of all rectangles in Γ is a rectangle itself whose left side and right side
is constituted by the left side of R(v1) and the right side on R(vn), respectively.

We define side contacts more formally in Definition 2.0.4 in Chapter 2. With the
definitions and notation from Chapter 2, a -representation is the same as a hole-free
rectilinear representation of G with complexity 4. For now, we just give an example
of a near-triangulation and a -representation of it in Figure 1.8 and leave it at the
intuitive meaning. We remark that a -representation of a near-triangulation G is
also known as a rectangular dual of G. For a nice survey on rectangle-representations
of planar graphs, we refer to the work of Felsner [Fel11].

v1

v2 vn

vn−1

R(v1)

R(v2)

R(vn)

R(vn−1)

Figure 1.8: A near-triangulation and a rectangle-representation of it.

The following theorem appears in several independent sources [Ung53, LL84, KK85,
Tho86, RT86], or can at least be derived from those.

Theorem 1.3.2. Every near-triangulation has a -representation and it can be com-

puted in linear time.

We make frequent use of Theorem 1.3.2 within this thesis, e.g., in Lemma 2.1.4,
Lemma 2.2.3, Theorem 4.2.4, and Theorem 4.2.6. Note that for instance, bipartite
and planar graphs, as well as outer-planar graphs, are subgraphs of 4-connected near-
triangulations, and thus some of the results in the thesis hold for these graphs as well.
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1. Preliminaries

It is known that -representations of near-triangulations are encoded by struc-
tures, which are similar to Schnyder woods. We define here transversal structures as
introduced by Fusy [Fus07], which were independently considered by He [He93] under
the name regular edge labellings. For a nice overview about regular edge labellings
and their relations to geometric structures we refer to the introductory article by
D. Eppstein [Epp10].

Definition 1.3.3. Let G = (V,E) be a near-triangulation on n ≥ 5 vertices with
outer vertices v1, v2, vn, vn−1 is counterclockwise order. A transversal structure of
G is an orientation and labeling of the inner edges of G with labels {1,2}, satisfying
the following rules.

• Each inner vertex v has at least one outgoing and incoming edge of each label.
In counterclockwise order around v occurs a set of outgoing edges of label 1, a
set of outgoing edges of label 2, a set of incoming edges of label 1, and a set of
incoming edges of label 2.

• For i ∈ {1,2}, all inner edges incident to vi are outgoing and have label i and
all inner edges incident to vn+1−i are incoming and have label i.

As for Schnyder woods, we associate colors with the labels, red for label 1 and blue
for label 2. Figure 1.9 a) illustrates the local rule at an inner vertex and Figure 1.9 b)

the local rule at outer vertices. For example, a (indeed the unique) transversal struc-
ture of the near-triangulation from Figure 1.8 is shown in Figure 1.9 c). A transversal
structure of a near-triangulation G can be interpreted as a combinatorial description
of a -representation Γ of G. Red and blue edges correspond to vertical and hori-
zontal side contacts, while the edge is oriented from the rectangle of the left or the
bottom to the rectangle on the right or on the top, respectively. Figure 1.9 d) il-
lustrates this correspondence. It is easy to see that every -representation defines
a transversal structure this way. In fact, this holds the other around, i.e., every
transversal structure comes from a -representation [KH97].

Fusy [Fus07] presents a bijection between transversal structures of G and the α4-
orientations of the angular map QG of G. Given an embedded near-triangulation G

the angular map QG is the graph on V (G) ∪ Fin(G), where Fin(G) denotes the set
of inner faces of G, whose edges are of the form (v, f) with f ∈ Fin(G) and v ∈ V (G),
v being incident to f . We define a mapping α4 ∶ V (QG)→ N as follows.

• α4(v) = 4 for every v ∈ V (G) ∖ {v1, v2, vn−1, vn}
• α4(v1) = α4(vn) = 0
• α4(v2) = α4(vn−1) = 2
• α4(f) = 1 for every f ∈ Fin(G)
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1.3. Rectangle-Representations and Transversal Structures

v1

v2 vn

vn−1

a) b) c) d)

Figure 1.9: a) The local rule at an inner vertex. b) The local rule at the outer
vertices. c) A transversal structure of a near-triangulation. d) The corresponding
rectangle-representation.

In Figure 1.10 we show the angular map for the near-triangulation in Figure 1.8 and
an α4-orientation of it. The α4-orientation has the following interpretation. Suppose
Γ is a -representation of G, then the vertices of G correspond to the rectangles in
Γ. The inner (triangular) faces f = {u, v,w} of G, which are drawn as white vertices
in Figure 1.10, correspond to those points puvw in the plane that are the common
intersection of the three rectangles R(u), R(v), R(w) in Γ. Exactly two of these
rectangles have a corner at puvw. Now the four outgoing edges at an inner vertex
v point to those faces f where R(v) has a corner, and the single outgoing edge at
an inner face points to the vertex, whose rectangle that does not have a corner at
the face. It is easy to check that this way every -representation of G defines an
α4-orientation of QG. Again, the converse is true as well, i.e., every α4-orientation of
QG comes from a -representation of G. For the details and proofs we refer to the
work of Fusy [Fus07] and just provide an example in Figure 1.10.

v1

v2 vn

vn−1

Figure 1.10: The angular map of a near-triangulation together with an α4-orientation.

Recall from Section 1.2 that the set of all α-orientations of a planar graph is con-
nected under flips an flops of essential cycles, i.e., under the reversal of directed such
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1. Preliminaries

cycles from clockwise to counterclockwise or vice versa. Moreover, the minimal α-
orientation is the unique such orientation, that contains no counterclockwise directed
cycle. The -representation of G that corresponds to the minimal α4-orientation
of QG is called the minimal -representation of G. Fusy [Fus07] has shown that
every essential cycle of the α4-orientations of an angular map QG is either a facial
cycle (of length 4), or a non-facial cycle of length 8. We illustrate the flip at such
an essential cycle and the corresponding local change in the -representation in the
top row and the bottom row of Figure 1.11, respectively. A flop, i.e., a cycle rever-
sal from counterclockwise to clockwise, is just the reverse operation. To close this
section, note that the minimal α4-orientation contains no counterclockwise directed
cycle. Correspondingly, the right-hand versions of the local details in Figure 1.11 do
not appear in the minimal -representation of G.

↝

↝↝

Figure 1.11: Top row: The two possibilities for facial cycle flips. Bottom row: A
flip of an essential cycle of length 8.
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Chapter 2

Side Contact Representations of

Planar Graphs

In the present and the next chapter we are dealing with side contact representations of
planar graphs with simple polygons. Two simple polygons P and P ′ in the plane may
intersect in several ways. The intersection P ∩P ′ may contain an interior point of P
(and hence of P as well), or not. Let us assume that the polygons are interior disjoint,
i.e., P ∩P ′ is empty or consists of points that are on the boundary of both polygons.
Seen as a point set in the plane, P ∩ P ′ is the union of some straight segments and
isolated points. Every such segment or isolated point is called a contact between P

and P ′, where segments are called side contacts and points are called point contacts.
A point contact is either a corner of both polygons or a corner of one is contained
in a side of the other polygon. Every side contact contains at least two corners of
the two polygons, and at most two corners from either of the two. For example the
intersection of the two interior disjoint polygons in Figure 2.1 consists of three point
contacts and three side contacts.

Figure 2.1: Two interior disjoint polygons with three point contacts and three side
contacts.

We consider side contact representations of planar graphs, i.e., vertices are repre-
sented by simple and pairwise interior disjoint polygons, and edges correspond to side
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2. Side Contact Representations

contacts between the polygons of two adjacent vertices. We proceed with the formal
definition of a representation. To be precise, a representation here is a side contact

representation, while a point contact representation is defined analogous using point
contacts instead of side contacts.

Definition 2.0.4. A representation of a planar graph G = (V,E) is a set Γ =

{P(v) ∣ v ∈ V } of simple polygons, one for each vertex, with the following prop-
erties.

• Any two polygons P(v), P(w), for v ≠ w, are interior disjoint.
• Two vertices v and w are connected by an edge in G if and only if P(v)∩P(w)

contains a side contact.

For example, Figure 2.2 b) shows a representation of the planar graph G in Fig-
ure 2.2 a). If (v,w) is an edge in G, then there may be several side contacts between
the two corresponding polygons. For example, in Figure 2.2 b) P(5) ∩P(6) consists
of three consecutive side contacts, and P(1) ∩ P(4) consists of two non-consecutive
side contacts. Note that for instance P(3)∩P(6) and P(1)∩P(5) consists of a point
contact only, and indeed each of (3,6), (1,5) is not an edge in G.

1

1
2

2
3

3

4

4
5

56
6

7
7

P(1)
P(2) P(3)

P(4)
P(5)

P(6)
P(7)

a) b) c)

Figure 2.2: a) A planar graph G. b) A representation Γ of G. c) A plane embedding
of G inherited from Γ.

With every representation Γ we can associate a plane embedding of the represented
graph G. We say that an embedding of G is inherited from the representation Γ, if
every (v,w) in G can be assigned to one side contact in P(v) ∩ P(w), such that the
clockwise order of assigned side contacts around P(v) is the same as the clockwise
order of incident edges around v in the embedding, for every v ∈ V (G). The presence
of multiple side contacts between polygons in Γ may cause different embeddings
to be inherited from the same representation. For example, Figure 2.2 c) shows an
embedding of the graph G in Figure 2.2 a), which is inherited from the representation
Γ of G in Figure 2.2 b). In the (necessarily plane) embedding every edge (v,w) is
drawn as a curve from v to w that passes (exactly once) through P(v)∩P(w) at the
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side contact the edge is assigned to. Note that assigning the edge (5,6) to any of
the three side contacts between P(5) and P(6) gives the same embedding. However,
assigning (1,4) to the other side contact between P(1) and P(4) corresponds to
replacing the embedded edge (1,4) in Figure 2.2 c) with the dashed edge, which
gives another, different, embedding of G. Moreover, note that the embedding of G in
Figure 2.2 a) is not inherited from Γ.

The complexity of a polygon is defined as the number of sides it has (or equiva-
lently, the number of its corners). For most purposes, polygons of low complexity
are desired, or even required. Moreover, every bounded and unbounded region of
R
2 ∖ Γ is a polygon itself, whose complexity also should be low. We call the polygon

corresponding to the unbounded region the (outer) boundary of Γ. The (polygonal)

complexity of a representation is the maximum complexity among its polygons.

Most of the results in this and the next chapter are of the following form. Given a
planar graph G, we show the existence of a representation Γ of G with certain (desir-
able) properties and certain (low) complexity. We remark that in almost every case
we assume G to be given with a fixed embedding, and construct the representation
Γ in such a way that the embedding of G is inherited from it. The only exception is
Theorem 3.2.2 and its corollaries Lemma 3.2.4 and Corollary 3.2.8.

We now define the set of desirable properties mentioned above. For a representation
Γ, a hole is a bounded component of R

2 ∖ Γ, i.e., a bounded subset of the plane
surrounded by polygons in Γ. The representation in Figure 2.2 b) has four holes, two
are surrounded by P(1), P(2), and P(4), and two further are surrounded by P(1),
P(3), P(4), and P(1), P(4), P(5), respectively. Some holes correspond to faces of
some embedding inherit from Γ, e.g., the first three mentioned above, and some do
not, e.g., the fourth of these holes. On the other hand, the polygons of even more
complex inner faces, such as {3,4,6,7} in the embedding in Figure 2.2 c), need not
surround a hole.

Of particular interest are representations without holes, which we call hole-free

representations. If the polygons corresponding to the vertices of an inner face do
not surround a hole, then there is a unique point in the plane that is the common
intersection of all those polygons. This point may be considered as the dual vertex
representing the inner face and the boundaries of the polygons as dual edges drawn
as polygonal lines. This way, a hole-free representation Γ of G can be interpreted as
a plane embedding of the dual graph of G minus the vertex for the exterior face. For
example Figure 2.3 c) shows this embedding of the dual of the graph G in Figure 2.3 a)

obtained from the hole-free embedding in Figure 2.3 b). However, it is convenient
to treat the unbounded subset R

2 ∖ Γ as (the complement of) a polygon itself. Then
Γ can be seen as an embedding of a graph G′ by putting a vertex on every point in
the plane that is shared by three or more polygons and considering the boundaries of
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2. Side Contact Representations

polygons as polyline edges. The plane dual of G′ without the vertex corresponding to
the outer face is again the graph G that is represented by Γ. Hence, G′ can be seen
as a “polygonal dual” of G. Figure 2.3 d) shows the embedded graph G′ associated
with the representation Γ from Figure 2.3 b).

a) b) c) d)

Figure 2.3: a) A planar graph G. b) A hole-free representation Γ of G. c) A plane
embedding of the dual of G inherited from Γ. d) A “polygonal dual” of G.

In consequence, the study of hole-free representations can be translated into the
study of plane embeddings with polyline edges. Indeed, several publications in this
area are written in the language of those embeddings rather than in the language of
side contact representations. We give some examples below.

As representations are often used for visualization purposes, their quality is often
measured by the “readability". This term is vague and most likely means different
things in different settings. However, one natural attempt to get “readable” repre-
sentations is to restrict oneself to polygons with right angles, so-called rectilinear

polygons. A polygon is rectilinear if every angle is a multiple of π
2

and a rectilinear

representation is one in which every polygon is rectilinear. In rectilinear represen-
tations, every side contact is either horizontal or vertical. Moreover, the minimum
complexity of a polygon is four, rather than three as in the general case. We usually
denote a 4-sided polygon in a rectilinear representation by R(v) rather than P(v) to
emphasize that it is a rectangle.

Another measure for readability is the so-called minimum feature size, which we
define here as the minimum length of a side of a polygon. A large minimum feature
size is supposed to increase the readability, and for instance rules out the possibility
of polygons with “long, skinny arms”. Clearly, nothing prevents us so far from scal-
ing a representation so that it has a huge feature size. However, if we require the
representation to fit into a small integer grid or have a prescribed area, it becomes
interesting to give lower bounds on the minimum feature size.

Most of the work concerning side contact representations actually deals with rec-

32



tilinear hole-free representations. In the language of polyline embeddings these are
called rectilinear duals or floor plans. Rectilinear duals were studied in graph theoretic
context [Tam87], and in the context of Very-Large-Scale Integrated (VLSI) layouts
and floor planning [Ott88, KP88]. Let us also refer to the survey of Eiglsperger et

al. [EFK01]. The case when every polygon is a rectangle, i.e., so-called rectangular

duals, received particular attention. The class of planar graphs that admit rectangu-
lar duals has been independently characterized several times [Ung53, LL84, KK85].
Buchsbaum et al. [BGPV08] provide some historical background and a summary of
the rectangle contact graphs literature.

Many researchers [Rin87, SS93, SY93, GHK10, GHKK10] are interested in the
following question.

Question 2.0.5. Given a graph class G, what is the minimum number k, such that
every graph G ∈ G has a representation with complexity at most k? What if we
require the representation to be hole-free and/or rectilinear?

A complete answer to Question 2.0.5 for a particular graph class G, would consist
of two parts. First, for every graph G ∈ G we have to find a representation of G with
polygonal complexity at most k. We sometimes call such a proof an “upper bound”
for the graph class. And second, for some graph G∗ ∈ G we have to show that every

representation of G∗ has polygonal complexity at least k, i.e., at least one polygon
has complexity k or more. Consequently, we call this a “lower bound”.

The table below summarizes all upper and lower bounds to Question 2.0.5 that
we know of for a set of some graph classes of interest. The columns in Table 2.1
labeled LB and UB contain the lower and upper bounds, respectively. We consider
here rectilinear and not necessarily rectilinear, as well as hole-free and not necessarily
hole-free representations. Note that we have matching upper and lower bounds in
every single case. Nonetheless, many interesting questions remain open – We address
some of these questions in Section 2.1. For example, we do not know a characterization
of those graphs that admit a non-rectilinear representation with polygonal complexity
at most k for k = 4,5. The case k = 3 becomes interesting when considering planar
graphs that are not necessarily maximally planar. For rectilinear representations, the
minimum size of the underlying grid is still unknown. We discuss this issue in more
detail in Section 2.1.

This chapter is organized as follows.

Section 2.1: We introduce non-rotated rectilinear representations and reveal a cor-
respondence of those to Schnyder woods. This enables us to characterize the
existence of a non-rotated rectilinear representation of polygonal complexity at
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Graph Class
Non-Rectilinear Rectilinear

Holes Hole-Free Holes Hole-Free
LB UB LB UB LB UB LB UB

Maximally 3 3 3 3 4 4 6 6

Outer-Planar [GHK10] [Rin87] [ABF+11a]
4-Connected 4 4 4 4 4 4 4 4

Near-Triangulation [GHK10], Lem. 2.3.2 [KK85]
Hamiltonian 5 5 5 5 6 6 6 6

Maximally Planar [GHKK10], Lem. 2.3.2 Cor. 2.2.5 [SS93], Cor. 2.2.5

Planar 3-Tree
6 6 6 6 8 8 8 8

[GHKK10], Lem. 2.3.2 [SY93]

Maximally Planar
6 6 6 6 8 8 8 8

[GHKK10] [SY93, LLY03], Thm. 2.1.8

Table 2.1: Summary of lower bounds and upper bounds for the polygonal complexity required for representations of all graphs
within some graph class. (LB = lower bound, UB = upper bound)
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2.1. Non-Rotated Representations and Schnyder Woods

most 4, 6 and 8, in terms of the existence of a Schnyder wood with certain prop-
erties. We prove sufficiency of our characterization by presenting a linear-time
algorithm, that given a Schnyder wood with a corresponding additional prop-
erty constructs a rectilinear representation with polygonal complexity at most
4, 6, or 8. For general maximally planar graphs, this representation requires
the same worst-case area as previously known representations. In the end of
the section, we prove that our representation (as well as the best previously
known) is moreover worst-case optimal w.r.t. the number of segments and the
so-called overall complexity, i.e., the total number of corners of all polygons in
the representation.

Section 2.2: We review nesting assignments as introduced by Sun and Sar-
rafzedeh [SS93] and give a new proof for the sufficiency in their main result,
i.e., that a maximally planar graph admits a rectilinear representation of com-
plexity at most 6 if and only if it admits a nesting assignment. Our proof
is a much simpler construction, which moreover runs in linear time. To our
knowledge, only quadratic-time algorithms where known before. Additionally,
a slight modification of our construction provides a representation of every such
graph with convex pentagons. Even with the modification, the algorithm re-
mains simple and linear-time. It was not known, whether every Hamiltonian
maximally planar graph has a side contact representation with pentagons. Our
result gives such a representation, since every Hamiltonian maximally planar
graph has a nesting assignment.

Section 2.3: We present a general counting argument, which allows us to give lower
bounds on the complexity of certain representations. This way, we reproduce
all (tight) lower bounds for general (not necessarily rectilinear or hole-free) rep-
resentations considered here, i.e., the first column of Table 2.1. Our proofs are
much simpler than previous ones e.g. in [GHKK10], and our tight examples
have significantly fewer vertices. To be precise, we provide a Hamiltonian max-
imally planar graph on 9 vertices and a planar 3-tree on 25 vertices of which
every representation has complexity at least 5 and 6, respectively. The graphs
constructed in [GHKK10] consist of 55 and 157 vertices, respectively, and the
former graph is not Hamiltonian. Moreover, our new method allows us to derive
new lower bounds in Chapter 3 (c.f. Lemma 3.3.2).

2.1 Non-Rotated Representations and Schnyder Woods

Throughout this section we consider hole-free rectilinear representations of low com-
plexity, i.e., every vertex is represented by a rectilinear polygon with at most eight
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2. Side Contact Representations

sides, and the union of all polygons is again a simple polygon (indeed a rectangle).
Not every planar graph can be represented with rectilinear polygons, such that the
representation is hole-free. In particular, in a hole-free rectilinear representation ev-
ery inner face has length 3 or 4. If every inner face is a triangle, the corresponding
three polygons may have a point in common and this way the representation may be
hole-free. Thus, in this section we consider maximally planar graphs only. Moreover,
we will often drop the words hole-free and rectilinear, as all representations considered
here have these properties.

Figure 2.4 shows a complete list of all rectilinear polygons with complexity at
most 8. To our knowledge, every rectilinear representation from the literature with
complexity at most 8 involves just a proper subset of the polygons in Figure 2.4. The
most important shapes are rectangles, L-shapes, and T-shapes. Those are depicted
in the first two rows in Figure 2.4. It is known [LLY03], that every maximally
planar graph admits a rectilinear representation based on only one of the four T-
shape polygons. For instance in the currently most compact floor-plan [LLY03] every
vertex is represented by an upside-down T-shape or a degenerate version of it, where
some “arms” have zero-length. In particular, no rotation of this fixed T-shape is
required. We are going to derive a combinatorially different representation, which
has all these good features, too. To underline the difference, we use an upright T-
shape as the basic polygon. In Figure 2.4 this polygon and its four degenerate versions
are highlighted in dark-grey.

Moreover, for special classes of maximally planar graphs, we derive a representation
with complexity at most 6, which again relies on only one polygon with six sides. This
L-shape polygon and its degenerate version, the rectangle, is marked with stripes in
Figure 2.4. Let us formalize these concepts.

Definition 2.1.1. Let and denote the dark-grey T-shape polygon and the
striped L-shape polygon in Figure 2.4, respectively.

• A non-rotated -representation of a maximally planar graph G is a hole-free
representation Γ of G in which every polygon has a shape equivalent to a pos-
sibly degenerate .

• A non-rotated -representation of a maximally planar graph G is a hole-free
representation Γ of G in which every polygon has a shape equivalent to a pos-
sibly degenerate .

First, consider a non-rotated -representation, i.e., every polygon is either a rect-
angle or has L-shape rotated as the striped L-shaped polygon in Figure 2.4. It is
known [SY93], that not every maximally planar graph admits such a representation.
Indeed, even allowing all rotations of an L-shape is not sufficient. However, the class
of graphs, that do have a non-rotated -representation is non-trivial.
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2.1. Non-Rotated Representations and Schnyder Woods

rectangle

L-shapes

T-shapes

staircase-
shapes

Z-shapes

U-shapes

Figure 2.4: All rectilinear polygons with complexity at most 8.

Two non-rotated (possibly degenerate) L-shape polygons can have a side contact
in only a few ways. A crucial observation, which is rigorously proved below, states
that every such side contact involves the top-left, top-right, or bottom-right corner
of one of the two polygons. The combinatorics of side contacts in a non-rotated

-representation turns out to have a rich structure.

Definition 2.1.2. For a maximally plane graph G with outer triangle {v1, v2, vn} let
Γ be a non-rotated -representation of G with P(vn) at the top-right corner. Then
the Schnyder wood (T1, T2, T3) inherited from Γ is defined as follows.

• For an inner vertex v define out1(v) to be the vertex, whose polygon lies im-
mediately left of the top-left corner of P(v).

• For an inner vertex v define out2(v) to be the vertex, whose polygon lies im-
mediately underneath the bottom-right corner of P(v).
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2. Side Contact Representations

• For an inner vertex v define out3(v) to be the vertex, whose polygon lies im-
mediately top-right of the top-right corner of P(v).

• For i = 1,2, n define Ti to be the set {(v, outi(v)) ∣ v inner vertex }.

out1(v)

out1(v) out2(v)

out2(v)

out3(v)

out3(v)
out3(v)

vv

vv

v

v

v

Figure 2.5: The definition of out1(v), out2(v), and out3(v) w.r.t. a non-rotated
L-representation.

Lemma 2.1.3. For any non-rotated -representation Γ of a maximally planar graph

G the Schnyder wood (T1, T2, T3) inherited from Γ forms a Schnyder wood of G.

Moreover, it holds ∣L1 ∩L2 ∩ in3(v)∣ ≤ 1 for every vertex v ∈ V (G).

Proof. First we prove that every inner edge in G is contained in exactly one Ti.
Therefore let v and w be two inner vertices of G. In case there are two distinct side
contacts between P(v) and P(w), the top-right corner of one, say P(v), matches
the concave corner of the other, P(w). By definition we have out3(v) = w. Now if
P(v) and P(w) have only a horizontal side contact, say P(v) lies above and P(w)
below, then consider the rightmost contact point p. If it is a corner of P(v), it is its
bottom-right corner, since we dealt with the concave case before. By definition we
have out2(v) = w. If p is no corner of P(v), it is one of P(w), namely its top-right
corner. By definition we have out3(w) = v. The case that P(v) and P(w) have
only a vertical side contact is similar to the previous one, by considering the topmost
contact point.

Note that only topmost and rightmost contact points result in defining some
outi(v). From this it follows that every edge is contained in at most one Ti, and
only in one direction.

Next we consider the polygon P(v) of an inner vertex v. Figure 2.5 depicts all pos-
sible types of side contacts and hence directly verifies the upcoming argumentation.
An example of v and all its incident edges is given in the left of Figure 2.6.
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2.1. Non-Rotated Representations and Schnyder Woods

v1

v2

vn

Figure 2.6: The Schnyder coloring at an inner vertex and the three outer vertices v1,
v2, and vn.

We trace the boundary of P(v) in clockwise direction, starting at its top-right
corner, and investigate the Ti that a present side contact belongs to. At the top-right
corner of P(v) is one outgoing edge in T3. Along the right border is a set of incoming
edges in T1. Tracing along the bottom-left borders starts with one outgoing edge in
T2, proceeds with a set of incoming edges in T3, and ends with one outgoing edge
in T1 at the top-left corner of P(v). Finally, along the top border there is a set of
incoming edges in T2. Note that the circular order of edges in T1, T2, and T3 around
v is consistent with the the definition of a Schnyder wood, c.f. Definition 1.1.4.

As illustrated in the right of Figure 2.6, for i = 1,2,3 every inner edge incident to
the outer vertex vi is incoming and contained in Ti. Thus (T1, T2, T3) indeed is a
Schnyder wood of G.

It remains to show that ∣L1 ∩ L2 ∩ in3(v)∣ ≤ 1 for every vertex v, i.e., there is at
most one vertex in in3(v) that is a leaf in T1 and T2. To this end, consider an inner
vertex w. By definition, the top-right corner of P(w) is shared by the polygon of
v = out3(w). The right of Figure 2.5 shows that there is no third polygon sharing
this point only if P(v) bends around P(w), i.e., has its concave corner there. On the
other hand, if there is a third polygon P(z), then either w = out1(z) or w = out2(z),
which means that w ∉ L1 ∩L2. Hence we have w ∈ L1∩L2 only if the top-right corner
of P(w) matches the concave corner of P(v). In other words, for every v there is at
most one vertex in in3(v) ∩L1 ∩L2, which proves the lemma.

A -representation (c.f. Definition 1.3.1) can be seen as a non-rotated -
representation in which every L-shape polygon is degenerated to a rectangle. To be
precise, we have defined a non-rotated -representation and a -representation only
for a maximally planar graph and a near-triangulation, i.e., a maximally planar graph
minus one edge, respectively. However, Lemma 2.1.3, and in particular the additional
property of the Schnyder wood inherited from a non-rotated -representation, allows
us to associate a Schnyder wood of G to a -representation of G ∖ (v1, vn). In con-
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2. Side Contact Representations

sequence, we obtain such a Schnyder wood whenever G is a 4-connected maximally
planar graph.

Lemma 2.1.4. Let G be a 4-connected maximally planar graph with outer triangle

{v1, v2, vn} and vn−1 be the fourth outer vertex of G ∖ (v1, vn), then G admits a

Schnyder wood (T1, T2, T3) with L1 ∩L2 = {vn−1}.

Proof. Consider a -representation Γ of G ∖ (v1, vn). According to Definition 1.3.1
the rectangles R(v1), R(v2), R(vn−1), and R(vn) are represented in Γ as in the
middle of Figure 2.7, i.e., R(v1), respectively R(v2), is the leftmost, respectively
bottommost, rectangle in Γ. Moreover, the side contact between R(vn−1) and R(v1)
as well as R(vn) is horizontal. We establish a side contact between R(v1) and R(vn)
by bending R(vn) around R(vn−1) as illustrated in the right of Figure 2.7. The
resulting is a non-rotated -representation Γ′ of the original graph G.

v1

v2

vn

vn−1

v1v1

v2v2

vnvn

vn−1

G ∖ (v1, vn) ↝ ↝

Figure 2.7: The graph G∖(v1, vn), a rectangle-representation of it, and a non-rotated
L-representation of G.

Consider the Schnyder wood (T1, T2, T3) inherited from Γ′. In the proof of
Lemma 2.1.3 we show v ∈ L1 ∩ L2 for an inner vertex v only if the top-right cor-
ner of P(v) matches the concave corner of P(out3(v)). Since P(vn) is the only
polygon with a concave corner and vn = out3(vn−1), we have L1 ∩L2 = {vn−1}.

By Lemma 2.1.4, Definition 2.1.2 associates with every -representation of
G∖ (v1, vn) a Schnyder wood of G. A -representation in turn is in bijection with a
transversal structure. Hence, Definition 2.1.2 can be seen as a mapping φ from the
set of all transversal structures of G ∖ (v1, vn) to the Schnyder woods of G. From
Lemma 2.1.4 we know that φ maps only onto Schnyder woods with L1 ∩L2 = {vn−1}.
Indeed, Lemma 2.1.6 below shows that every such Schnyder wood is obtained from
a transversal structure via the map φ. However, φ is not one-to-one. For instance,
consider the two different -representations Γ1 and Γ2 of the same maximally pla-
nar graph G in Figure 2.8 a). As shown in the figure both Γ1 and Γ2 inherit the

same Schnyder wood. On the other hand, if we mirror the situation as done in Fig-
ure 2.8 b), then the two different -representations inherit two different Schnyder
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2.1. Non-Rotated Representations and Schnyder Woods

woods. Moreover, in this case the flip in the α4-orientation between the transversal
structures corresponding Γ1 and Γ2 corresponds to a flip in the Schnyder wood.

a) b)

Figure 2.8: a) Two different representations inherit the same Schnyder wood. b)

Two different representations inherit two different Schnyder woods.

Remark 2.1.5. Within the scope of this thesis we do not study the connection
between the traversal structures of G ∖ (v1, vn) and the Schnyder woods of G with
L1 ∩ L2 = {vn−1} in more detail. However, we think that this is a field worth inves-
tigating; see Question 2 at the end of the thesis. For instance, how does the rich
structure of the set of all transversal structures and α4-orientations carry over to
those Schnyder woods? What characterizes the Schnyder wood inherited from the
minimal or maximal -representation? What local operations transfer a Schnyder
wood with L1 ∩L2 = {vn−1} into another one with the same property?

In Lemma 2.1.3 and Lemma 2.1.4 we derive from a non-rotated -representation
and a -representation a Schnyder wood with one additional property. Next, we
show that the reverse direction can be done as well. That is, given a Schnyder wood
(T1, T2, T3) of G satisfying ∣L1 ∩ L2 ∩ in3(v)∣ ≤ 1 for every vertex v ∈ V (G) or
L1 ∩L2 = {vn−1}, we construct a non-rotated -representation or a -representation
of G, respectively. Moreover, the given Schnyder wood will be inherited from the
constructed representation. Actually, we show something stronger, namely that ev-
ery Schnyder wood is inherited from some non-rotated -representation. We re-
mark that we defined how a Schnyder wood is inherited only from a non-rotated

-representation. Indeed, we require the non-rotated -representation to satisfy an
additional property, in order to obtain a Schnyder wood from it.

If polygon P has the T-shape as highlighted in Figure 2.4, we call the rectangle
spanned by the top-right corner and right reflex corner of P, the right arm of P,
denoted by PR. Similarly, the left arm of P, denoted by PL, is the rectangle spanned
by the top-left corner and the left reflex corner of P. See Figure 2.9 a) for an
illustration.
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PL
PR

top-left corner

left reflex corner

top-right corner

right reflex corner

bottom-right corner

a) b)

v

out1(v)

out2(v)

out3(v)

Figure 2.9: a) The left arm PL and the right arm PR of an upright T-shape polygon.
b) Illustration of how a Schnyder wood is inherited from a non-rotated representation
with (possibly degenerate) upright T-shape polygons.

A non-rotated -representation Γ that is to be constructed in the next lemma,
has the following property. If a polygon P has a T-shape, then the bottom side of
PR is a (horizontal) side contact with only one other polygon. The same holds if the
left arm of P is degenerate and hence P has complexity 6. This property is sufficient
(and actually also necessary) to obtain a Schnyder wood from Γ in the “same” way
as in Definition 2.1.2.

• A non-rotated -representation inherits a Schnyder wood as indicated in Fig-
ure 2.9 b) if and only if the bottom side of every right arm PR is a side contact
with only one other polygon.

We omit the details here and sketch just the basic idea. First, define the top-right,
top-left, and bottom-right corner of a T-shape polygon P as indicated in Figure 2.9 a),
and define out1(v), out2(v), and out3(v) as in Definition 2.1.2. The location of
P(out1(v)), P(out2(v)), and P(out3(v)) is then indicated by the blue, green, and
red arrows in Figure 2.9 b), respectively.

We are now ready for the following lemma.

Lemma 2.1.6. Let G be a maximally planar graph with outer triangle {v1, v2, vn}
and (T1, T2, T3) be a Schnyder wood of G. Then each of the following holds.

(a) G has a non-rotated -representation, from which (T1, T2, T3) is inherited.

(b) If ∣L1 ∩ L2 ∩ in3(v)∣ ≤ 1 for every vertex v, then G has a non-rotated -

representation, from which (T1, T2, T3) is inherited.

(c) If L1∩L2 consists solely of the fourth outer vertex in G∖(v1, vn), then G∖(v1, vn)
has a -representation, from which (T1, T2, T3) is inherited.
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2.1. Non-Rotated Representations and Schnyder Woods

Proof. We construct each required representation based on a Schnyder wood with
the given properties. Therefore let (T1, T2, T3) be any Schnyder wood of G. We
construct a non-rotated -representation of G along the building sequence w.r.t. any
canonical order associated with (T1, T2, T3), i.e., a topological order (v1, v2, . . . , vn)
of T −11 ∪ T

−1
2 ∪ T3. (See Lemma 1.1.6.) We start with the representation of G3 ∶=

G[v1, v2, v3] depicted in Figure 2.10.

v1

v1

v2
v2

v3
v3

Figure 2.10: The graph G3 and a (degenerate) non-rotated T-representation.

We maintain the following invariants for i ≥ 3:

• Γi is a non-rotated -representation of Gi ∶= G[v1, v2, . . . , vi].
• The outer boundary of Γi partitions into the left and bottom border of R(v1),

the bottom border of R(v2), and a monotonously decreasing staircase-path.
• The horizontal segments of the staircase are given by the top border of R(v1)

and the top border of every P(v), such that (v, out1(v)) is an outer edge in Gi.
• The vertical segments of the staircase are given by the right border of R(v2)

and the right border of every P(v), such that (v, out2(v)) is an outer edge in
Gi.

The invariant is illustrated in Figure 2.11.

v1

v1

v2

v2Gi ∶= G[v1, v2, . . . , vi]

Figure 2.11: The graph Gi and a non-rotated T-representation with a staircase-shape.

Note that the (top-right) convex and concave corners of the staircase correspond to
the hill and valley vertices in Gi, respectively. We now show how to insert the polygon
P(vi+1) into Γi, such that the invariant again holds for the resulting representation
Γi+1. We distinguish the following cases:
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2. Side Contact Representations

Case (1a): in3(vi+1) contains no hill but one valley vertex.
Case (1b): in3(vi+1) contains no hill and no valley vertex.
Case (2): in3(vi+1) contains one hill vertex.
Case (3): in3(vi+1) contains at least two hill vertices.

Case (1a): Let v denote the valley vertex in in3(vi+1). Consider a ray starting right
underneath the top-right corner of P(v) and emerging from there to the left through
the entire representation. Then stretch the representation above the ray by some
positive amount. The result is still a combinatorially equivalent -representation
with the right border of P(v) now being partially on the (still staircase) boundary.
Now put a rectangle R(vi+1) with its bottom-left corner onto the former position
of the top-right corner of P(v) and its top-right corner horizontally aligned with
P(out1(vi+1)) and vertically aligned with P(out2(vi+1)). This case is illustrated in
the left two images of Figure 2.12.

R(vi+1)

R(vi+1)

vi+1
vi+1

v

v

↝↝

Case (1a) Case (1b)
Figure 2.12: Adding vertex vi+1 to the graph and rectangleR(vi+1) to the non-rotated
T-representation according to Case (1).

Case (1b): In this case vi+1 is connected to a path either in T1 or T2. We consider
the latter case, which is depicted in the right of Figure 2.12. (The former case is
similar.) Denote v ∶= out2(vi+1) and consider a ray starting immediately to the left
of the top-right corner of P(v) and emerging from there downwards through the
entire representation. Then stretch the representation to the right of the ray by some
positive amount. The result is still a combinatorially equivalent -representation
with the top border of P(v) now being partially on the (still staircase) boundary.
Now put a rectangle R(vi+1) in exactly the same way as in the previous case.

Case (2): Let v denote the hill vertex in in3(vi+1). We split the vertex vi+1
into two, denoted by v′ and v′′. Connect v′ to neighbors of vi+1 starting with
out1(vi+1) and ending with the hill vertex v and introduce a rectangle R(v′) ac-
cording to Case (1). Afterwards connect v′′ to v′ and the remaining neighbors of
vi+1 and again introduce a rectangle R(v′′) according to Case (1). Define the union

44



2.1. Non-Rotated Representations and Schnyder Woods

of R(v′) and R(v′′) to be the L-shape polygon P(vi+1). This case is illustrated in
Figure 2.13.

P(vi+1)R(v′) R(v′′)

v
v

vi+1
v′

v′′
↝↝↝

Figure 2.13: Adding vertex vi+1 to the graph and an L-shape polygon P(vi+1) to the
non-rotated T-representation according to Case (2).

Case (3): Let v and w denote the rightmost and leftmost hill vertex in in3(vi+1),
respectively. Extending the idea from Case (2), we define a sequence of artificial
vertices, each of which we add to Γi according to Case (1) and afterwards merge with
an already existing polygon. Consider v, the vertex in in3(vi+1) at the rightmost
convex staircase corner, and u ∶= out1(v), which lies on the boundary of Gi. Introduce
a vertex x incident only to u and v and add a rectangle R(x) according to Case (1).
Then merge P(u) with R(x), which increases the complexity of P(u). In particular
if P(u) was an L-shape before, it is a T-shape now. Since u ∈ in3(vi+1) the polygon
P(u) will disappear from the staircase boundary once P(vi+1) is introduced and
hence its complexity will not increase a second time; see the first step in Figure 2.14.
Note that the right border of u appears on the staircase boundary now, while the
top border of v disappeared. If this intermediate representation would satisfy the
invariant (which it does not), we would have (u, v) ∈ T2 instead of (u, v) ∈ T1. That
is why in Figure 2.14 after the modification the edge (u, v) is drawn dashed.

R(x)
R(x)

v

v

v

x

x

u

u

↝↝↝↝

Figure 2.14: Removing one step of the staircase in in3(vi+1) according to Case (3).

Now the former u is the vertex in in3(vi+1) at the rightmost convex staircase
corner and thus becomes the new v. We iterate this procedure with v ∶= u until
(v, out1(v)) is an inner edge, i.e., v is a valley vertex. Then extend every polygon on
the outer T2-path ending at v to the right so that it aligns with P(v). Let again v

denote the vertex in in3(vi+1) at the rightmost convex staircase corner; see the right
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of Figure 2.14 for an illustration. Note that the number of steps of the staircase is
reduced by one. We iterate this procedure until v = w, i.e., only one vertex in in3(vi+1)
is located at a convex staircase corner. We now introduce an L-shape polygon for
vi+1 according to Case (2). In doing so we act as if the invariant would hold for the
current representation, i.e., every edge (x, y) between the initial v and w is in T2.

It is not difficult to see that in each case we get a non-rotated -representation
of Gi+1 satisfying the invariant above. This proves part (a) of the lemma. In order
to prove parts (b) and (c), note that for an inner vertex v we have v ∈ L1 ∩ L2 if
and only if v is a hill vertex at the time out3(v) is inserted. Hence if the Schnyder
wood (T1, T2, T3) satisfies ∣L1 ∩ L2 ∩ in3(v)∣ ≤ 1 for every vertex v, then no vertex
is inserted according to Case (3), which is the only case that alters the complexity
of any existing polygon. Since each vertex is introduced either as a rectangle in
Case (1) or as a non-rotated L-shape in Case (2) we conclude that we end up with a
non-rotated -representation in case we have ∣L1 ∩L2 ∩ in3(v)∣ ≤ 1 for every vertex
v, which proves (b).

Now assume L1 ∩ L2 = {vn−1} and (v1, vn−1) ∈ E(G). We have out3(vn−1) = vn

and thus vn is the only vertex for which Case (1) does not apply. Consequently
the representation resulting from the above construction looks like that in the left
of Figure 2.15. A local modification, as illustrated in the figure, then gives a -
representation of G ∖ (v1, vn), which finally proves (c).

v1
v1

v2v2

vn

vn
vn−1vn−1

↝

Figure 2.15: The resulting non-rotated L-representation of G in case L1∩L2 = {vn−1}
and (v1, vn−1) ∈ E(G), and a rectangle-representation of G ∖ (v1, vn).

Let us provide an example of the construction procedure from Lemma 2.1.6. Fig-
ure 2.16 a) depicts a maximally planar graph G on 12 vertices and a Schnyder wood
(T1, T2, T3) of G. The vertices are numbered w.r.t. a canonical order corresponding
to that Schnyder wood. In Figure 2.16 b)–k) we show the partial representations of
G after every step. The polygons for vertices 11 and 12 are introduced according to
Case (3) and Case (2), respectively. Figures 2.16 j’) and j”) illustrate the two step
procedure for Case (3). The polygons for vertices 8 and 10 are introduced accord-
ing to Case (1a), and for all other polygons (except the starting triangle {1,2,3})
Case (1b) applies. Note that the representation constructed by this method uses only
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2.1. Non-Rotated Representations and Schnyder Woods

integer coordinates. Moreover, only the introduction of P(11) and P(12) requires
three and two new grid lines, respectively. With every polygon other than P(11) and
P(12) only one new grid line is introduced. We are going to address this issue in the
upcoming Theorem 2.1.8.

Taking Lemma 2.1.4 and Lemma 2.1.6 together, we have proven a characterization
of those maximally planar graph that admit a non-rotated -representation and
those near-triangulations that admit a -representation. We summarize this in the
following theorem.

Theorem 2.1.7. Each of the following holds.

(a) A maximally planar graph has a non-rotated -representation if and only if it

admits a Schnyder wood (T1, T2, T3) with ∣L1 ∩L2 ∩ in3(v)∣ ≤ 1 for every vertex

v.

(b) A near-triangulation G∖(v1, vn) has a -representation if and only if G admits

a Schnyder wood (T1, T2, T3) with L1 ∩L2 = {vn−1}.

Moreover, if an adequate Schnyder wood is given, the corresponding representation

can be constructed in linear time.

Considering all maximally planar graphs, we have proven the existence of a non-
rotated -representation, which additionally inherits any given Schnyder wood. We
can even show that this representation is very compact, i.e., requires only few sup-
porting grid lines.

Theorem 2.1.8. Every maximally planar graph on n vertices admits a non-rotated

-representation with at most ⌊5n−2
3
⌋ supporting grid lines. Moreover, this represen-

tation can be constructed in O(n) time.

Proof. The representation is the one constructed in Lemma 2.1.6. Therefore let
(T1, T2, T3) be any Schnyder wood of G, which can be found in linear time. W.l.o.g.
we assume that ∣L2∣ ≤ ⌊2n−53

⌋ by Lemma 1.1.5. In the first step, the starting trian-
gle G3 = {v1, v2, v3} is represented in a 2 × 2 grid; see Figure 2.7. (As in previous
results [LLY03], we consider the 2 × 2 grid to consist of four grid lines only.) The
resulting representation is denoted by Γ3. Now, consider step i + 1 of the algorithm,
for i ≥ 3, i.e., vertex vi+1 is added to Gi and a corresponding polygon P(vi+1) to the
representation Γi. We bound the number of new grid lines required in this step by
distinguishing the same cases as in Lemma 2.1.6.

Case (1): In both Case (1a) and Case (1b), one new grid line is required; see
Figure 2.6.
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Figure 2.16: a) A maximally planar graph G with a Schnyder wood (T1, T2, T3).
b)–k) The construction of a representation with non-rotated (possibly degenerate)
T-shaped polygons for the graph G with respect to the given Schnyder wood. l) The
representation of G obtained with a previously known method [LLY03].
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Case (2): As argued in the proof of Lemma 2.1.6, this case can be seen as two
applications of Case (1). Each application requires one new grid line; see Figure 2.10.
On the other hand, the hill vertex v in in3(vi+1) is a leaf in T1 and T2, in particular
we have ∣in3(vi+1) ∩L2∣ = 1.

Case (3): First, the steps of the staircase in in3(vi+1) are removed one by one.
As evident from Figure 2.14, only new horizontal lines are required for the removal
of one step, and the number of such lines equals the number of leaves in T2 at this
step. As soon as there is only one step remaining in in3(v), Case (2) applies. Hence,
two additional grid lines are introduced here. But the hill vertex corresponding to
the last staircase step is a leaf in T2 and not associated with a new horizontal line so
far. Thus if k new lines are required, then ∣in3(vi+1) ∩L2∣ ≥ k − 1.

From the above case distinction, we get that within step i + 1 at most ∣in3(vi+1) ∩
L2∣+1 grid lines are newly introduced. Thus after n−3 steps, the number of supporting
grid lines in the representation is bounded from above by (2 + (n − 3)) + (2 + ∣L2∣),
which in turn is at most (n − 1) + ⌊2n+1

3
⌋ = ⌊5n−2

3
⌋.

Finally, note that it is easy to implement the construction algorithm in linear
time.

2.1.1 Overall Complexity and Number of Segments

Liao, Lu and Yen [LLY03] describe a different way to construct a non-rotated -
representation of a maximally planar graph G based on a given Schnyder wood. Ap-
plying their method to the graph G and Schnyder wood (T1, T2, T3) in Figure 2.16 a)

gives the representation in Figure 2.16 l). Note that the representations in Fig-
ure 2.16 k) and l) look very different, although the underlying Schnyder wood can
be read of from either of them. Comparing the two, we note that the representation
in Figure 2.16 l) has one less grid line, but more segments, and thus higher average
polygonal complexity.

It is an interesting and non-trivial task to capture the quality of a rectilinear repre-
sentation. Let us briefly discuss three such measures, which are in fact closely related.
The first is the size of the grid required. In Theorem 2.1.8 above we have shown that
the new approach has the same worst-case number of supporting grid lines as the one
in [LLY03]. The second measure is given by the number of segments in the represen-
tation, as a representation may be considered more complex, or even less readable if
it contains a lot of segments. In the proof of Theorem 2.1.8 we actually count the
number of segments and use this as an upper bound on the number of supporting
grid lines. As the third measure we may take the total number of corners in the
representation, which we call the overall complexity . The representations considered
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so far seem to be designed for a small maximum complexity among the polygons
involved, i.e., minimizing maxv∈V (G) ∣P(v)∣, where ∣P(v)∣ denotes the complexity of
P(v). In a sense, it is more natural to go for small overall complexity, i.e., minimizing
∑v∈V (G) ∣P(v)∣. For instance, a representation consisting of only quadrangles and a
single polygon with, say, 12 corners may be considered less complex than a repre-
sentation with solely 8-gons. Again, we could bound the overall complexity of the
representation constructed in Lemma 2.1.6 by adapting the proof of Theorem 2.1.8.
However, we prefer to determine the total number of corners as follows: Every rec-
tilinear polygon has exactly four convex corners more than it has concave corners.
In consequence, if a representation with n polygons has k concave corners in total,
then its overall complexity is given by 2k + 4n. Thus it suffices to count the number
of concave corners, which turns out to be intimately related to the number of inner

segments, that is, segments not on the outer boundary of the representation.

Lemma 2.1.9. In every (not necessarily rectilinear of hole-free) representation of a

maximally planar graph on n vertices, the number of inner segments is at least the

number of concave corners plus (n − 1).

Proof. We count the number of endpoints of inner segments in a representation Γ.
First, the outer boundary of Γ is made of three polygons. Traversing the outer
boundary, we encounter three changeovers from one of the three polygons to the
next, at each of which lies an endpoint of at least one inner segment. The same
holds for every (triangular) face which is represented as a hole in Γ. If a face is not
represented as a hole, then the point in the plane corresponding to the face is the
endpoint of at least one segment. Lastly, a concave corner of a polygon P clearly is
the endpoint of both segments bounding P there.

Because there are 2n−5 inner faces in a maximally plane graph on n vertices, there
are at least 2n − 2 endpoints of segments from the faces and additionally twice as
many endpoints as there are concave corners. Since every segment has two ends, the
statement follows.

Note that for hole-free rectilinear representations the inequality in Lemma 2.1.9
holds with equality. Hence in the representation constructed with Lemma 2.1.6 the
number of supporting grid lines, inner segments, and concave corners is bounded
by ⌊5n−2

3
⌋, ⌊5n−8

3
⌋, and ⌊2n−5

3
⌋, respectively. Interestingly, the bound for the over-

all complexity and the number of segments is worst-case optimal, while the best
known [LLY03] lower bound for the number of grid lines is ⌈4n

3
⌉.

Theorem 2.1.10. The non-rotated -representation in Theorem 2.1.8 has at most

⌊5n−8
3
⌋ inner segments, and at most ⌊2n−5

3
⌋ concave corners. Moreover, both bounds

are worst-case optimal.
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2.2. Representations from Nesting Assignments

Proof. We only prove the tight lower bound. The upper bound follows from the
reasoning above.

Consider any maximally planar graph on k vertices and insert in each of its 2k − 5

inner faces a new vertex, and connect it by an edge to all three vertices of the face.
The resulting graph G has n = 3k − 5 vertices, 2n − 5 = 6k − 15 inner faces, and 2k − 5

non-empty triangles, no two of which have the relation of containment. Consider
any rectilinear (not necessarily hole-free) representation Γ of G. The three polygons
of a non-empty triangle inscribe a polygonal region of positive area, which clearly
has at least four convex corners. Since only three polygons constitute the boundary
of this region, at least one of the region’s convex corners is a concave corner of
a polygon. Since all these 2k − 5 regions are mutually disjoint, there are at least
2k − 5 = 6k−15

3
= 2n−5

3
concave corners in Γ.

The statement about the number of inner segments now follows with Lemma 2.1.9.

2.2 Representations from Nesting Assignments

This section deals with so-called -representations and -representations, which are
defined as follows.

Definition 2.2.1. • A -representation of a maximally planar graph G is a
hole-free representation of G with rectilinear polygons of complexity at most 6,
whose outer boundary is a rectangle.

• A -representation of a maximally planar graph G is a hole-free representation
of G with convex polygons of complexity at most 5, whose outer boundary is a
rectangle.

Recall that a non-empty triangle (also known as a complex triangle) in a plane
graph G is a set of three pairwise adjacent vertices, that do not form an inner face
in G. Note that if G has an outer triangle (and at least one inner vertex), then this
triangle is non-empty although it is not a separating triangle. The following definition
is due to Sun and Sarrafzadeh [SS93].

Definition 2.2.2. A nesting assignment of a plane graph G is an assignment of every
non-empty triangle in G to one of its three vertices, such that any two triangles that
are assigned to the same vertex have the relation of containment in the embedding
of G.
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Sun and Sarrafzadeh [SS93] show that a maximally planar graph has a -
representation if and only if it admits a nesting assignment, i.e., it has a plane em-
bedding that admits a nesting assignment. The necessity of this characterization is
actually not very difficult and we present a proof in Theorem 2.2.4. The sufficiency is
argued constructively by Sun and Sarrafzadeh [SS93], i.e., they describe an algorithm
that given a nesting assignment constructs a -representation in O(n2) time, where
n is the number of vertices in the graph. Here we give an algorithm for the same
problem, having the following three main advantages:

• It is significantly simpler.
• It runs in O(n) time.
• A modified version of it constructs a -representation, rather than a -

representation.

Lemma 2.2.3. Every maximally planar graph admitting a nesting assignment has

a -representation and a -representation. Moreover, given the assignment, either

representation can be computed in O(n) time, where n denotes the number of vertices

in G.

Proof. We consider G to be given with the embedding and the nesting assignment.
Recall that the vertices in the separation-tree TG correspond to the non-empty trian-
gles in G. We begin by imposing an additional condition on the nesting assignment.

Claim 1. A nesting assignment can be modified in linear time into a nesting
assignment, in which every vertex is assigned to a (possibly empty) set of triangles,
which appear consecutively in TG.

Proof of Claim 1. We can greedily reassign the triangles in the following way. Let
v be any vertex that is assigned by a set Sv of at least two triangles that are not
consecutive in TG. Since the assignment is nesting, any two triangles in Sv have the
ancestor-descendant relation, that is, Sv is a subset of a descending path in TG. Let
Pv ⊃ Sv be the unique such path that has both endpoints in Sv. We assign every
triangle on Pv to the vertex v, disregarding its former assignment. It is not difficult
to see that the new assignment is nesting. Moreover, if a vertex was assigned by
a set of consecutive triangles before the reassignment, it is so afterwards. Hence
repeating this procedure at most once for every vertex finally gives a consecutive
nesting assignment.

Choosing always the root as the vertex v in this procedure, and recursively treating
the connected components in T ∖ Pv, gives a linear-time implementation. △

Now, consider the embedded graph G with outer triangle ∆0 and equipped with
a consecutive nesting assignment. We construct both representations along the
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2.2. Representations from Nesting Assignments

separation-tree TG, i.e., we start by representing the level-0 subgraph G[0] of G.
Having represented the level-i subgraph G[i] for i ≥ 0, we integrate one after another
every subgraph G∆ of G with ∆ having depth i + 1 in TG. This way we have repre-
sented G[i + 1] and iterate this procedure. We maintain the following invariant on
the -representation Γ

(1)
i of G[i], for i ≥ 0.

• Γ
(1)
i is a -representation of G[i] with a rectangular hole for every non-empty

triangle on level i + 1 in TG.
• Every side of such hole is due to one participating vertex, except for the vertex

that is assigned to the triangle which contributes two sides.
• Every vertex in G[i] that is not assigned by a triangle in G[i] is represented by

a rectangle.

And similarly for the -representation Γ(2) of G[i].
• Γ

(2)
i is an -representation of G[i] with a triangular hole for every non-empty

triangle on level i + 1 in TG.
• Every side of such hole is due to one participating vertex.
• Every vertex in G[i] that is not assigned to a triangle in G[i] is represented by

a triangle or a convex quadrangle.

For convenience, we consider the outer triangle ∆0 = {v1, v2, vn} to be the graph
G[−1] and define the representations Γ

(1)
−1 and Γ

(2)
−1 for G[−1], as depicted in the left

of Figure 2.17. A rectangular, respectively triangular, hole for a non-empty triangle
∆ satisfying the above requirements is called a frame and will be depicted as in the
right of Figure 2.17.

Having representations Γ
(1)
i and Γ

(2)
i of G[i] we consider any non-empty triangle

∆ on level i + 1 in TG and label its vertices by v1, v2 and vn in such a way that
∆ is assigned to vn. Then consider G∆, that is, the maximally planar subgraph of
G on v1, v2, vn and at least one fourth vertex from inside ∆, which contains no
separating triangle. We build a -representation of G∆, distinguishing two cases.
Such a representation can be found in O(∣V (G∆)∣).

In case no inner triangle in G∆ is assigned to vn we build any -representation
of G∆ ∖ (v1, vn). As usual denote the fourth outer vertex besides v1, v2 and vn

by vn−1. We place this -representation (suitably stretched) into the frame for ∆

as exemplified in Figure 2.18. For the -representation, we first apply an affine
transformation to Γ2 so that there is a right angle between v1 and v2. (Note that
this affects neither the convexity nor the complexity of the polygons represented.)
We then place the -representation of G∆ with the top right corner of R(vn−1) onto
the boundary of P(vn) as depicted in Figure 2.18. Afterwards we remove the two
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v1
v1

v1
v1

v2v2

v2 v2

vnvn

vn
vn

↝

↝

Figure 2.17: The L-representation Γ
(1)
−1 and 5-gon representation Γ

(2)
−1 of G[−1] =∆0 =

{v1, v2, vn} and the corresponding frames for ∆0, which is assigned to vn.

triangular holes by extending R(vn−1) upwards and the rectangles of all neighbors of
vn to the right.

In case some inner triangle {u, v, vn} is assigned to vn, consider the counterclockwise
order σ of neighbors around vn starting with v1, ending at v2, and assume that u

comes (immediately) before v, i.e., σ = (σ1 = v1, . . . , σi = u,σi+1 = v, . . . , σk = v2). We
then split the vertex vn into two, one denoted by vn−1 and the other again by vn.
We connect vn−1 and vn to σ1, . . . , σi and σi+1, . . . , σk, respectively. Next we add the
edge (vn−1, vn) and another vertex v∗, with an edge to vn−1, vn, u, and v. Denote
the resulting graph by G′

∆
. See Figure 2.19 for an example.

The graph G′
∆

is 4-connected because G∆ was so. Indeed, one easily checks that
the number of triangles that contain a fixed edge from G∆∩G

′
∆

did not increase, and
that any edge in G′

∆
∖G∆ is contained in at most two triangles as well. Hence G′

∆
has

a -representation, which we place (again suitably stretched) into the frame for ∆ as
exemplified in Figure 2.20. For the -representation and -representation we move
the top right corner of R(v∗) onto the the reflex corner and the boundary of P(vn),
respectively. Afterwards we remove the rectangles R(vn−1) and R(vn), and for the

-representation remove the holes by extending each rectangle of a neighbor of vn.
Finally, we remove the rectangle R(v∗), which leaves a rectangular, respectively tri-
angular, hole whose sides are constituted by P(u), P(v), and P(vn). In other words,
the resulting representation features a frame for the non-empty triangle {u, v, vn}.

One can easily check that in both cases, whether vn is assigned by some triangle
in G∆ or not, we have extended the -representation Γ

(1)
i and the -representation

Γ
(2)
i of G[i] by the vertices and edges in G∆.
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v1 v1

v1

v1v1

v2 v2

v2

v2v2

vn vn

vn

vnvn

vn−1

Figure 2.18: Placing a rectangle-representation of G∆ into the frame for ∆.

v1 v1v2 v2

vn vn−1 vn

v∗

uu vv
↝

Figure 2.19: The maximally planar graph G∆ with triangle ∆ = {u, v, vn} and the
resulting graph G′

∆
after splitting vn.

It remains to identify a frame for every inner facial triangle in G∆ that is non-empty
in G. We do this by a local modification of the representations Γ

(1)
i and Γ

(2)
i . Note

that for every inner facial triangle {u, v,w} in G∆ there is a unique point puvw in the
plane that is shared by the borders of P(u), P(v), and P(w). Exactly two of these
polygons have a corner at puvw. Assume the triangle {u, v,w} is non-empty in the
graph G, i.e., it is assigned to one of its vertices, say u. Since the nesting assignment is
consecutive, we have that u is not assigned to any triangle in G[i−1]. Thus according
to the invariant, P(u) is a rectangle in Γ

(1)
i and a triangle or a convex quadrangle in

Γ
(2)
i . We transform the representation, increasing the complexity of P(u), so that a

frame for {u, v,w} is formed. Figure 2.21 illustrates this local modification in case
P(u) has a corner at puvw (top row) or not (middle row for Γ

(1)
i , bottom row for

Γ
(2)
i ). If P(u) goes straight at puvw let r be a ray starting at puvw and supporting the

corresponding P(u)-border. We introduce a new convex P(u)-corner on r next to
puvw. In case of the -representation Γ

(1)
i we translate the entire representation on

r slightly away from P(u), introducing a new concave P(u)-corner and a rectangular
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v1

v1v1

v1v1

v2

v2v2

v2v2

vnvn

vnvn

vn−1

vn

v∗

u

u

u

v

v

v

Figure 2.20: Placing a rectangle-representation of G′
∆

into the frame for ∆.

frame for the triangle {u, v,w}. In case of the -representation Γ
(2)
i we change the

slope of r slightly so that all polygons on the same side of r as P(u) are truncated
and all polygons on the other side are extended. This way a triangular frame for
the triangle {u, v,w} is introduced. Note that the runtime needed to represent G∆

and to introduce the frames in G∆ is O(∣V (G∆)∣), for both the rectilinear and the
pentagonal case.

P(u)
P(u)

P(u)

P(u)P(u)

P(u) P(u)

puvw

puvw

puvw
↝

↝

↝

↝

Figure 2.21: A local transformation reveals a frame for the triangle {u, v,w}.

Starting with Γ
(k)
i , k = 1,2, we perform the above procedure for every non-empty

triangle in G[i]. Note that a local modification is done only once for every vertex,
since it is assigned to only one facial triangle in G[i]. It follows that the result is a
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-representation Γ
(1)
i+1 and a -representation Γ

(2)
i+1 of G[i+1], which both satisfy our

invariant. Iterating until the entire graph G is represented then proves the lemma.

For completeness let us restate the following theorem.

Theorem 2.2.4 ([SS93]). A maximally planar graph has a -representation if and

only if it admits a nesting assignment.

Proof. The “if”-part is proven in Lemma 2.2.3. It remains to prove the “only if”-
part. Therefore consider a -representation and note that every non-empty triangle
{u, v,w} encloses a region Ruvw with at least four sides. By the pigeonhole principle at
least one vertex of the triangle, say u, contributes to two sides of Ruvw. Consequently,
P(u) is an L-shape and its concave corner is a corner of this region. It is not difficult
to check that the assignment {u, v,w} → u is nesting.

By Theorem 2.2.4, nesting assignments are necessary for -representations. How-
ever, they are not necessary for -representations. For example, consider the maxi-
mally planar graph G in Figure 2.22. It can be seen as a 6-vertex maximally planar
graph with an additional vertex stacked into each inner face. This way, every inner
face is non-empty and no two of them have the relation of containment. Since there
are seven such faces and only six original vertices, there is no nesting assignment
for G. This graph already has been presented as a graph with no nesting assign-
ment [SS93]. On the other hand, the right of Figure 2.22 shows a -representation
of G.

Figure 2.22: A maximally planar graph, that does not admit a nesting assignment
and a representation of it with convex polygons of complexity at most five.

Of particular interest is the fact that Lemma 2.2.3 can be applied to Hamiltonian
maximally planar graphs, which I was told by M. J. Alam. This especially shows
that these graphs admit a -representation, which for instance was suspected by
S. G. Kobourov.
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Corollary 2.2.5. Every Hamiltonian maximally planar graph has a -representation

and a -representation.

Proof. Consider a Hamiltonian cycle v1, . . . , vn in the embedded graph G. We assign
every non-empty triangle to one boundary vertex vi, for which v(i+1)mod n lies inside.
Then the set of triangles that is assigned to the same vertex vi shares the same inner
vertex v(i+1) mod n. In other words, these triangles are pairwise nested and we can
apply Lemma 2.2.3.

2.3 Lower Bounds on the Complexity

In this section we present a method for proving lower bounds on the polygonal com-
plexity of representations. We start with the crucial lemma (Lemma 2.3.1), in which
we give lower bounds on the number of convex corners in a representation at hand.
Afterwards, we apply Lemma 2.3.1 to obtain tight lower bounds on the polygonal
complexity of certain graph classes, which means that we give a particular graph
from the graph class of interest and argue on the polygonal complexity of any of its
representations.

Lemma 2.3.1. Let Γ be a representation of some connected plane graph G, f be a

face of G, P∗ the outer boundary of Γ, and deg(P∗) its complexity.

(i) If f is an inner face represented as a hole, then f contains at least deg(f)
convex corners of polygons in Γ.

(ii) If f is an inner face not represented as a hole, then f contains at least deg(f)−1
convex corners of polygons in Γ.

(iii) If f is the outer face of G, then f contains at least deg(f) + deg(P∗) convex

corners of polygons in Γ.

Proof. All the statements of the lemma rely on the following easy observation.

Claim 1. If p is a corner of some polygon in Γ then p is the convex corner of all but
possibly one polygon containing p.

If an inner face f is not represented as a hole, then it corresponds to a point p in
the plane. In fact, p is the intersection of the polygons of all vertices incident to f ,
and a corner of at least one of it. Now (ii) follows from Claim 1.

Now suppose the face f is not just a point, i.e., it is an inner face not represented
as a hole or the outer face. We trace the polygonal boundary of f in Γ, starting at a
point on the boundary of only one polygon. Whenever we come across new polygons,
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we encounter as many convex corners as new polygons, which already proves (i);
see Figure 2.23. Moreover, at every point which is straight or concave w.r.t. f we
encounter one additional convex corner. See Figure 2.23 again. Since deg(P∗) points
are concave w.r.t. the outer face, this finally proves (iii).

f fff

Figure 2.23: The possibilities of coming across new polygons when tracing the bound-
ary of a face f , which is not represented as just a point in Γ.

Lemma 2.3.2. Each of the following holds.

(i) Every representation of any maximally planar graph on n > 4 vertices requires

polygonal complexity at least 4.

(ii) There is a Hamiltonian maximally planar graph of which every representation

requires polygonal complexity at least 5.

(iii) There is a planar 3-tree of which every representation requires polygonal com-

plexity at least 6.

Proof. All the statements of the lemma follow from Lemma 2.3.1.

Let G be any maximally planar graph on n > 4 vertices. It has 2n − 5 inner
faces and one outer face, each of degree 3. Let Γ be any representation of G. Then
by Lemma 2.3.1 there are at least two convex corners at every inner face and at
least six convex corners at the outer face. Hence there are at least 2(2n − 5) + 6 =
4n − 4 convex corners in total. The average number of convex corners per polygon is
(4n−4)/n, which is strictly more than 3 if n > 4. This proves (i). We remark that the
unique maximally planar graph on four vertices admits a representation by polygons
of complexity 3; see Figure 2.24.

Figure 2.24: The unique maximally planar graph on four vertices and a representation
by polygons of complexity 3.
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Let G be any Hamiltonian graph on n > 4 vertices and v1, . . . , vn be a Hamiltonian
cycle. It is not difficult to see that every edge on the Hamiltonian cycle can be
assigned to one incident inner face, so that no face is assigned more than once. We
insert a new vertex into every face that is assigned by some edge and connect the
new vertex by an edge to each of the three vertices of the face. Rerouting every
edge on the Hamiltonian cycle through the new vertex of the corresponding face
gives a Hamiltonian cycle in the new maximally planar graph G′. See Figure 2.25
for an example. Let Γ′ be any representation of G′. The polygons of the n vertices

↝

G G′

Figure 2.25: Making the Hamiltonian graph G′ out of the Hamiltonian graph G. The
one-to-one assignment of edges on the Hamiltonian cycle to incident faces is indicated
by small arrows.

originally belonging to G form a representation Γ of G in which every inner face
containing a G′-vertex is represented as a hole. There are exactly n such faces, n− 5
further inner faces, and one outer face, each of degree 3. Applying Lemma 2.3.2
to Γ gives that the polygons corresponding to the original vertices contain at least
3n+2(n−5)+6 = 5n−4 convex corners. The average number of convex corners among
these polygons is (5n − 4)/n, which is strictly more than 4 if n > 4. This proves (ii).

Finally let G be any planar 3-tree on n > 9 vertices. We obtain from G a planar
3-tree G′ by inserting a new vertex into every inner face of G and connecting it by
an edge to each of the incident vertices. Let Γ′ be any representation of G′ and Γ

be the representation of G given by removing the polygon for every vertex in G′ ∖G.
In Γ every inner face is represented as a hole. There are 2n − 5 such faces and one
outer face, each of degree three. Applying Lemma 2.3.2 to Γ gives that the polygons
corresponding to the original vertices contain at least 3(2n − 5) + 6 = 6n − 9 convex
corners. The average number of convex corners among these polygons is (6n − 9)/n,
which is strictly more than 5 if n > 9. This proves (iii).

Let us close this chapter by putting the obtained results into the picture of what
is known about side contact representations of maximally planar graphs.
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We start with non-rectilinear representations: By Lemma 2.3.2 a maximally planar
graph admits a representation of complexity 3 if and only if it consists of at most 4

vertices. From Theorem 1.3.2 we get that every 4-connected maximally planar graph,
i.e., one without separating triangles, admits a representation of complexity at most 4.
In Lemma 2.2.3 and Corollary 2.2.5 we have identified the first non-trivial class of
maximally planar graphs that are not 4-connected but admit a -representation.
Finally, it is known that every maximally planar graph admits a representation of
complexity at most 6 [GHKK10]. However, no complete characterization of those
maximally planar graphs that admit a representation of complexity at most 4 or 5

is known. When considering general planar graphs, a characterization for graphs
admitting representations with any complexity k ≥ 3 is open.

The situation with rectilinear representations is different: By Theorem 1.3.2 a
near-triangulation (a maximally planar graph minus one outer edge) admits a -
representation if and only if it is 4-connected, i.e., it does not contain separating
triangles. By Theorem 2.2.4 a maximally planar graph admits a -representation if
and only if it admits a nesting assignment. Finally, by Theorem 2.1.8 every maxi-
mally planar admits a -representation. However, we know almost nothing about
rectilinear representations of general planar graphs.
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Chapter 3

Prescribing Areas of Polygons –

Cartograms

In this chapter we deal with a variant of the representation problem considered in
the previous chapter. Given a vertex-weighted planar graph, we ask for a represen-
tation of it, in which the area of the polygon corresponding to a vertex is propor-
tional to its weight. Most of the work presented here is joint work with M. J. Alam,
S. G. Kobourov, and S. Felsner. Some results, in particular Theorem 3.1.7, Theo-
rem 3.2.2, and Lemma 3.2.3, already appear in [ABF+11c].

Definition 3.0.3. For a planar graph G = (V,E) and a weight function w ∶ V → R
+,

a side contact representation Γ of G is called a cartogram if the area of P(v) equals
w(v), for every v ∈ V .

Cartograms have practical applications in cartography, geography, and sociology,
but also in VLSI layout, and floor planning. For instance, rectangular cartograms, i.e.,
those with an underlying -representation, are often used as schematized versions
of geographic maps where the size of every region represents a geographic variable
such as population, highway kilometers, or literacy. There is a rich and beautiful
garden of cartograms used for visualizing proportional relations between different
objects under the same measure. For example Figure 3.2 depicts the world map in
which countries are distorted so that their areas represent the GDP (gross domes-
tic product) in the year 2000. In Figure 3.1 the news of the day are visualized as
rectangular boxes. The adjacencies somehow represent related news and their time
stamps. Moreover, the size of every rectangle is chosen to represent the importance
of the corresponding news. Let us mention the beautiful overview of Bettina Speck-
mann (http://www.win.tue.nl/∼speckman/Cartograms/) on rectangular cartograms,
i.e., cartograms with a rectangle per vertex. It provides many interesting examples,
as well as some theoretical background and links. Figure 3.3 is taken from there.
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Figure 3.1: A map of the news from
August 1st, 2011. The area is sup-
posed to represent importance.
Source: http://newsmap.jp/

Figure 3.2: A cartogram of the world
illustrating the Gross Domestic Prod-
uct per capita in 2000.
Source: http://maps.grida.no/

Cartograms, in this case rectangular cartograms, were first considered by Raisz in
1934 [Rai34]. Heilmann et al. [HKPS04] and van Kreveld and Speckmann [vKS07]
compute rectangular cartograms with possibly disturbed adjacencies and small er-
rors on the weights, so-called cartographic errors. Within this thesis, we consider
cartograms as defined in Definition 3.0.3, i.e., vertices being represented by general
polygons and with neither disturbed adjacencies nor cartographic errors. Moreover,
we address the “weighted version” of Question 2.0.5, which is the following.

Question 3.0.4. Given a graph class G, what is the minimum number k, such that
every graph G ∈ G equipped with a weight function w ∶ V (G) → R

+ has a cartogram
w.r.t. w with polygonal complexity at most k? What if we require the underlying
representation to be hole-free and/or rectilinear?

The first natural question is, whether the weight function does affect the com-
plexity at all, or whether the answer to Question 3.0.4 is actually finite. De Berg et

al. [dBMS06] were the first to show that finite polygonal complexity is always enough,
i.e., they prove that every vertex-weighted planar graph admits a cartogram of com-
plexity at most 40. This number was later [KN07] reduced to 34 and then to
12 [BRV11]. Recently, this was further reduced to 10 [ABF+11a]. In this chapter
we lower this once more to 8, which is clearly best-possible. Somehow surprisingly,
this means that for general planar graphs, imposing the area of every polygon does
not raise the worst-case complexity beyond 8. However, as we will see later, for
many graphs, there is a weight function so that every cartogram requires a higher
complexity than its best (unweighted) representation. In Table 3.1 the best known
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Figure 3.3: A cartogram of the world illustrating the population per country in 2006.
Source: http://www.win.tue.nl/∼speckman/Cartograms/

lower and upper bounds for Question 3.0.4 are listed. For comparison, we included
the worst-case complexity in the unweighted case, i.e., Question 2.0.5, in the columns
labeled ’NW’.

This chapter is organized as follows.

Section 3.1: We review the notion of area-universal layouts, as defined by Epp-
stein et al. [EMSV09] for rectangular layouts. We extend this notion to the
non-rectangular, and even non-rectilinear case. We present our main result,
saying that every maximally planar graph admits an area-universal rectilinear
layout with polygonal complexity at most 8, c.f. Lemma 3.1.6. This implies the
existence of a rectilinear cartogram with complexity 8, improving the previously
best known value 10 [ABF+11a]. Moreover, this is worst-case optimal.

Section 3.2: This section deals with rectilinear cartograms of Hamiltonian maxi-
mally planar graphs. We give an alternative area-universal layout with com-
plexity at most 8 for those graphs which, in contrast to the general case, allows
us to compute the actual cartogram in linear time. Moreover, we give a match-
ing lower bound construction for this setting. As opposed to the unweighted
case, this shows that there exist worst-case examples that are Hamiltonian. In
Subsection 3.2.1 we define one-sided Hamiltonian cycles and present their close
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Graph Class
Non-Rectilinear Rectilinear

Holes Hole-Free Holes Hole-Free
NW LB UB NW LB UB NW LB UB NW LB UB

Maximally 3 4 4 3 4 4 4 6 6 6 6 6

Outer-Planar [ABF+11b] [ABF+11a]
4-Connected 4 4 7 4 4 8 4 6 8 4 6 8

Near-Triang. [vKS07]
Hamiltonian 5 6 7 5 6 8 6 8 8 6 8 8

Max. Planar Lem. 3.3.2 Lem. 3.2.3 Thm.3.2.2
6 7 7 6 7 7 8 8 8 8 8 8

Planar 3-Tree
Lem. 3.3.2 Thm.3.3.4 Lem. 3.2.3

6 7 7 6 7 8 8 8 8 8 8 8
Max. Planar

Thm. 3.3.3 Thm. 3.1.7

Table 3.1: Summary of lower bounds and upper bounds for the polygonal complexity required for cartograms of all graphs
within some graph class. (NW = no weights, LB = lower bound, UB = upper bound)
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3.1. Area-Universal Layouts

relation to Schnyder woods. We show how to compute rectilinear cartograms
with complexity 6 for graphs admitting one-sided Hamiltonian cycles.

Section 3.3: We provide lower bounds on the complexity of (not necessarily rectilin-
ear) cartograms for several graph classes. To this end, we combine an enforcing
of concave corners with the counting argument presented in Section 2.3. We
obtain the first lower bounds that are better than those from the unweighted
case. If the cartogram is allowed to have holes, these bounds match existing
upper bounds [ABF+11b] for maximally planar graphs. In Subsection 3.3.1 we
show that the lower bound of 7 obtained this way for hole-free cartograms of
planar 3-tree is best-possible. We give a simple linear-time algorithm for con-
structing such a cartogram. This remains the only non-trivial case of a hole-free
cartogram whose complexity is strictly less than in the rectilinear case.

Section 3.4: We discuss several open problems concerning rectilinear and non-
rectilinear cartograms of 4-connected maximally planar graphs. We present
two conjectures and point out possible directions to their solution.

3.1 Area-Universal Layouts

One approach for computing cartograms (or just prove their existence) is the following
two-step procedure. First, define a representation Γ of the given graph G, which is
independent of the given weight function w ∶ V (G) → R

+. And second, prove that
every possible weight function can be realized with a cartogram, whose underlying
representation is combinatorially equivalent to Γ. Finally, describe a way of actually
computing the cartogram based on the representation Γ and the weights w. Let us
define this concept more formally.

Definition 3.1.1. A segment in a representation Γ, is a maximal line segment con-
tained in the union of all polygon boundaries. The layout Λ of Γ is the set of its
segments together with their touching/crossing relation and incidence order in Γ.

The incidence order of segments captures the clockwise order of those segments
that are touching/crossing a fixed segment, as well as the order of those points on
a segment that are shared by another segment. This way, every representation has
only one layout, but there are many representation which have the same layout. If a
representation Γ has layout Λ, we say that Γ realizes Λ, and that Γ is a realization

of Λ. For example see Figure 3.4. The two representations in Figure 3.4 a) and b)

realize the same layout. The representations in Figure 3.4 c) and d) realize different
layouts, and both are different from the one in Figure 3.4 a).
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3. Cartograms

a) b) c) d)

Figure 3.4: The two representations in a) and b) have the same layout. The layouts
in c) and d) are different and different from the one in a).

Every realization of a fixed layout Λ represents the same planar graph G. Hence,
we call Λ a layout for the graph G. Moreover, the complexity of a polygon P(v) is
the same in every realization of Λ. Lastly, the property of being hole-free is invariant
under all representations of a fixed layout, while the property of being rectilinear
is not. We proceed with the crucial definition, which first appeared for rectangular
layouts only [EMSV09].

Definition 3.1.2. A layout Λ of a planar graph G = (V,E) is area-universal , if for
every weight function w ∶ V → R

+ there is a cartogram Γw w.r.t. w of G, that realizes
Λ.

Figure 3.5 shows two realizations of the same layout for K4, the complete graph
on four vertices, with different areas for each polygon. Indeed, one can argue that
this layout is area-universal, i.e., whatever four positive weights are assigned to the
vertices of K4, there is a cartogram w.r.t. these weights, which essentially looks like
the ones in Figure 3.5.

1

1
2

2

2

2

3

3

Figure 3.5: Two cartograms for the same planar graph but different weight function.

For the next theorem, we define a layout Λ to be rectilinear area-universal if for
every weight function there is a rectilinear cartogram, that realizes Λ. In other
words, we additionally prescribe the angle between any two touching (and crossing)
segments. This way the degrees of freedom are restricted to the choice of a length
for every sub-segment, i.e., the subset of a segment between two corners. Eppstein et

al. [EMSV09] call a layout one-sided if every non-boundary segment is the side of a
rectangle. (Note that in every -representation at least two of the boundary segments
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3.1. Area-Universal Layouts

are not a side of a rectangle.) Equivalently, for every segment s there are segments
ending on s from at most one side. Figure 3.6 shows a graph G and a one-sided layout
of G on the left. The layout of G in the right of Figure 3.6 is not one-sided, since the
segment containing the side contact between R(v) and R(w) has an endpoint of one
segment from either side. We remark that the left layout arises from the right one
by a flip of an essential cycle of length 8 (c.f. Subsection 1.3).

v

wR(v) R(v)R(w) R(w)

Figure 3.6: A graph with a layout of it that is one-sided on the left and one that is
not on the right.

Theorem 3.1.3 ([EMSV09]). A layout of a -representation is rectilinear area-

universal if and only if it is one-sided.

Theorem 3.1.3 does not imply that if some layout is not one-sided, then the graph
G it is representing does not admit a rectilinear cartogram of complexity 4. There
could be another layout for G which is one-sided. Or even if some G does not have
any one-sided layout, there could still be one layout Λw for every possible weight
function w, such that one realization of Λw respects these weights. However, such
an argumentation does not follow the approach mentioned in the beginning and is
possibly difficult to carry out.

Van Kreveld and Speckmann [vKS07] provide a simple example of a vertex-weighted
graph G that does not admit a rectilinear cartogram of complexity 4.

Lemma 3.1.4 ([vKS07]). Consider the graph G = (V,E) in Figure 3.7. Define

w(a) = w(b) =D and w(v) = δ for v ∈ V ∖ {a, b}, where D > δ. Then every rectilinear

cartogram of G with weight function w requires at least one 6-sided polygon.

Sketch of proof. W.l.o.g. we fix the layout for the outer four vertices. (This can
always be done for rectangular layouts.) Now, G has only two layouts, depicted in
the right of Figure 3.7, neither of which is one-sided. Now we argue that in both
layouts the larger area of R(g) and R(h) is at least as large as the smaller area of
R(a) and R(b). If in the left layout the area of R(g) is smaller than the area of R(a),
then R(a) is wider than R(g) since both rectangles have the same height. Similarly,
if the area of R(h) is smaller than the area of R(b), then R(b) is wider than R(h).
Thus if both cases apply, then R(a) and R(b) would have a horizontal side contact,
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a aa

b bb

cc
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ddd

ee

e

fff

g
gg
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Figure 3.7: A graph G with grey and white vertices weighted δ and D, respectively.
If D > δ then there is no cartogram for G with only rectangles.

which is not specified in the layout. The argumentation for the right layout is the
same with the roles of a and b exchanged.

Hence if the area D of R(a) and R(b) is greater than the area δ of R(g) and R(h),
there is no way to realize the given weights.

Theorem 3.1.3 is important, not only because it gives a sufficient condition for
the existence of a rectilinear cartogram with complexity 4, but also because of the
next lemma. A layout Λ∗ is a refinement of another layout Λ if every segment of
Λ is contained in a segment of Λ∗ and the restriction of Λ∗ to the segments of Λ

yields the layout Λ. In other words, every polygon P in Λ is subdivided into a set
of polygons {P1, . . . ,Pk} in Λ∗, while keeping the combinatorics of the boundaries of
every P = P1 ∪⋯∪Pk intact. Figuratively speaking, a refinement Λ∗ of Λ arises from
Λ by adding some segments and/or extending existing segments.

Lemma 3.1.5. A layout Λ is (rectilinear) area-universal if some refinement Λ∗ of it

is (rectilinear) area-universal.

Proof. Let G and G∗ denote the planar graph represented by Λ and Λ∗, respectively.
Since Λ∗ is a refinement of Λ, every polygon P(v) in Λ corresponds to a set of polygons
P(v1), . . . ,P(vkv) in Λ∗. Every realization Γ∗ of Λ∗ gives a realization Γ of Λ, in
which the union of P(v1), . . . ,P(vkv) is the polygon P(v). Given a weight function
w ∶ V (G) → R

+ be any weight function, we define w∗(vi) for i = 1, . . . , k(v) arbitrarily,
so that w∗(v1)+⋯+w∗(vk(v)) = w(v). We do this for every polygon in Λ and obtain
a weight function w∗ ∶ V (G∗) → R

+. Since Λ∗ is one-sided, there is a realization Γ∗

in which the area of every polygon equals the weight of the corresponding vertex, i.e.,
the area of P(vi) equals w∗(vi) for every v ∈ V (G) and i = 1, . . . , k(v). Since P(v) is
the union P(v1), . . . ,P(vkv) its area equals w(v). Thus the induced realization Γ of
Λ respects the weights, which proves the lemma.
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3.1. Area-Universal Layouts

We use Lemma 3.1.5 to prove our main result in this section. Let us underline the
following statement in the upcoming lemma. An area-universal layout can be found
in linear time. It is independent of any weight function. However, we do not know
how to compute the actual cartogram for given vertex-weights in polynomial time.
We discuss this issue, which already appears for one-sided layouts, in Remark 3.1.8
below.

Lemma 3.1.6. Every maximally planar graph has a rectilinear area-universal layout

with complexity at most 8. Moreover, the layout can be computed in linear time.

Proof. De Fraysseix et al. [dFOdMR94] prove that every maximally planar graph
G = (V,E) has a �-representation, i.e., every vertex vi ∈ V is represented by an
upside-down figure T, denoted by �(i), consisting of a horizontal segment hi and a
vertical segment bi with the lower end of bi lying on hi. A � has three ends, called
the upper end, left end, and right end. Every edge (vi, vj) in G is represented by a
contact between an end of �(i) and an interior, i.e., non-end point, of �(j), or vice
versa. Moreover, if the intersection �(i) ∩ �(j) is non-empty, then it consists of only
an end. Figure 3.8 b) shows a �-representation for the maximally planar graph in
Figure 3.8 a). For readability, the �’s do not quite touch in the figure.

Let Γ be a �-representation of G. Such a representation can be computed in linear
time. We “fatten” each �(i) so that each vertex is represented by a T -shaped polygon.
We replace each horizontal segment hi by an axis-aligned rectangle Hi which has the
same width as hi, and whose top (bottom) side is ε/2 above (below) hi, for some
ε > 0. Similarly, we replace each vertical segment vi by an axis-aligned rectangle Bi

which has the same height as bi and whose left (right) side is ε/2 to the left (right)
of bi. Note that this process creates intersections of Hi with Bi and some Bj , Bk at
the left and right end of �(i), respectively. It may as well create an intersection of
Bi with some Hl at the top end of �(i). We remove these intersections by replacing
Hi by Hi − Bj − Bk and replacing Bi by Bi −Hi −Hl. The resulting layout would
then be a contact representation Γ′ of G where each vertex vi of G is represented by
the T -shaped polygon Hi ∪Bi. Figure 3.8 c) illustrates such a representation of the
maximally planar graph in Figure 3.8 a).

In a next step, we remove all of the unused area, to obtain a hole-free representation
Γ′′ of G with 8-sided polygons. We do this by assigning each (rectangular) hole to
one of the polygons adjacent to it. We start by placing an axis-aligned rectangle
of minimum size that encloses Γ′. This creates five new bounded holes out of the
unbounded region outside Γ′: (i) to the left of B1 and above H1, (ii) to the right of
B1 and between H1 and H2, (iii) to the right of B2 and above H2, (iv) to the left
of Bn and above Hn, (v) to the right of Bn and above Hn. Call these L1, R1, R2,
Ln and Rn, respectively. Now we associate each T-shaped polygon, representing vi
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Figure 3.8: a) A maximally planar graph G. b) The �-representation Γ of G. c) The
contact representation Γ′ of G after the fattening. d) The hole-free representation
Γ′′ of G.

in Γ′, with two holes: one above Hi and to the left of Bi, which we call the left hole

of vi; and the other to the top of Hi and to the right of Bi, which we call the right

hole of vi. Note that the left and the right hole of each vi is bounded by Hi, Bi and
some Hj and Bk, where (vi, vj) and (vi, vk) are edges in G. For 1 ≤ i ≤ n, denote by
Li and Ri the left hole and the right hole of vi.

We now can combine each T-shape region with its two associated holes to obtain
an 8-sided rectilinear polygon. Specifically, for each vertex vi, define P(vi) = Hi ∪

Bi ∪ Li ∪Ri. It is easy to see that P(vi) is an 8-sided rectilinear polygon since the
left side of Li is has the same x-coordinate as the left side of Hi and the right side
of Ri has the same x-coordinate as the right side of Hi. Thus we have a hole-free
representation Γ′′, of G where each vertex vi is represented by P(vi). Figure 3.8 d)

illustrates such a representation for the graph in Figure 3.8 a). Note that Γ′′ can be
obtained from the �-representation in linear time.

Claim 1. Consider the set {Hi,Bi,Li,Ri ∣ i = 1, . . . , n} of 4n rectangles as a -
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3.1. Area-Universal Layouts

representation Γ∗; See Figure 3.9 for an example. Then the layout of Γ∗ is one-sided.

v1

v2

v3

v4

v5
v6

v7

v8

v9

Figure 3.9: The representation Γ′′ and the corresponding rectangle-representation Γ∗.

Proof of Claim 1. First note that the -representation Γ∗, which contains the
rectangles Li and Ri, i = 1, . . . , n, has the same set of segments as the representation
Γ′ of G. Indeed, every horizontal and vertical segment arises from some rectangle Hi

and Bi, respectively. (To be precise: This is not true for three of the four segments
constituting the bounding rectangle. However those segments are always one-sided.)
By the way rectangles Hi and Bi were defined, the segment for the top and bottom
side of every Hi ends at the left and right side of this rectangle. Similarly, the left and
right side of every Bi ends at the top and bottom side of this rectangle. Therefore,
every segment (not on the outer boundary) is a side of one of the rectangles in Γ∗,
i.e., the layout is one-sided. △

Since the layout of Γ∗ is a refinement of the layout Λ of Γ′′, we conclude with
Claim 1. and Lemma 3.1.5 that Λ is area-universal, which proves the lemma.

Theorem 3.1.7. Let G be any maximally planar graph equipped with a weight func-

tion w ∶ V (G) → R
+. Then G admits a cartogram Γ with rectilinear 8-sided polygons

inscribed in any H ×W -rectangle, with area ∑v∈V (G)w(v). Moreover, the minimum

feature size of Γ is at least wmin

2max(W,H) , which is worst-case optimal, and the number

of supporting lines is at most 2∣V (G)∣.

Proof. The existence of some cartogram Γ with 8-sided polygons follows directly from
Lemma 3.1.6. But note that, we have the freedom to choose how to divide the area
assigned to any vertex vi among the four rectangles associated with it. This flexibility
makes it possible to achieve a large minimum feature size and a small set of supporting
lines.

Specifically, let G be a maximally planar graph, w ∶ V (G) → R+ some weight
function, and Λ be the area-universal layout for G from Lemma 3.1.6. Assume we are
given the height H and width W of the bounding rectangle. It clearly has to satisfy
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3. Cartograms

H ×W = ∑v∈V (G)w(v). We define wmin = minv∈V (G)w(v). For each vertex vi of G,
we can assign zero areas to the rectangles Li and Ri and split its weight w(vi) into
two equal parts to Hi and Bi.

Now let Γ be a cartogram of G for the split weight function w∗. Since the height
of each of the rectangles Hi and Bi is at most max(W,H) and their weights are at
least wmin/2, the width is at least wmin

2max(W,H) , and the same holds for its height. Thus
the minimum feature size of Γ′ is at least wmin

2max(W,H) and it is worst-case optimal, as
the polygon with the smallest weight might need to reach from the leftmost to the
rightmost (or topmost to bottommost) polygon in the representation. We remark that
if the bounding rectangle is not given, we may choose a square, i.e., W = H =

√
A,

where A = ∑v∈V (G)w(v). Then the minimum feature size is wmin

2
√
A

.

Furthermore it is not difficult to show that our assignment of zero areas to the
rectangles Li and Ri yields a cartogram Γ with at most 2∣V (G)∣ supporting lines,
instead of the bound of 3∣V (G)∣ from the number of segments in the layout Λ.

In Figure 3.10 we provide an example for a cartogram computed with Theo-
rem 3.1.7. However, we did not set the weight of rectangles Li and Ri to zero and
hence obtain T-shape polygon with eight supporting lines. Figure 3.10 a) shows the
adjacency graph of some European countries and Figure 3.10 b) an area-universal
layout is shown. Since the graph is only internally triangulated three artificial outer
vertices were first added and the corresponding polygons afterwards removed. As
weights we choose the millions of tonnes CO2 the corresponding country emitted in
2009. The final cartogram is shown in Figure 3.10 c).

Remark 3.1.8. The proof of Lemma 3.1.6 provides a linear-time algorithm for con-
structing an area-universal layout of complexity at most 8. One step is a linear-time
construction of a �-representation, which is a fairly simple algorithm [dFOdMR94].
However, Theorem 3.1.7 relies on Theorem 3.1.3, whose proof does not give a polyno-
mial (not even exact) algorithm for computing the actual cartogram from the layout.
The computation of a cartogram for a given one-sided layout and given weights can
be accomplished using a result of Wimer et al. [WKC88], which in turn requires nu-
merical iteration. It remains open to find a polynomial-time algorithm to compute
cartograms with complexity at most 8. On the other hand, there is a linear-time
algorithm [ABF+11a], which produces cartograms with complexity bounded by 10.
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Figure 3.10: a) The adjacency graph G of some countries in central Europe. (For
convenience, Italy and Denmark are bordering some more countries here.) b) An
area-universal layout Λ for G with complexity at most 8. c) A cartogram of G w.r.t.
the inscribed weights which realizes Λ. The numbers are the millions of tonnes of
CO2 that were emitted in the corresponding country in 2009.

3.2 Cartograms for Hamiltonian Maximally Planar

Graphs

This section deals with cartograms for Hamiltonian maximally planar graphs. Since
the Hamiltonicity problem for maximally planar graphs is NP-complete [Chv85], we
assume here, that we are given such a graph together with a Hamiltonian cycle.
If for instance, G is 4-connected, then a Hamiltonian cycle can be found in linear
time [AKS84]. Having a Hamiltonian cycle in G at hand, we provide an alternative
representation for G with complexity at most 8, which involves only polygons with
the U-shape in the bottom-right corner in Figure 2.4 and degenerated versions of
it. For simplicity, we call such a representation a -representation. I was told the
following lemma by M. J. Alam, S. Felsner, and S. G. Kobourov.

Lemma 3.2.1. Every Hamiltonian maximally planar graph admits a -repre-

sentation.

Proof. Let v1, . . . , vn be a Hamiltonian cycle of a maximally planar graph G. We
choose any embedding of G with (v1, vn) on the outer face. The Hamiltonian cycle
splits the plane graph G into two outer-planar graphs which we call the left graph

Gl and right graph Gr. Edges on the Hamiltonian cycle belong to both graphs. The
naming is with respect to a planar drawing of G in which the vertices v1, . . . , vn

are placed in increasing order along a vertical line, and the edges are drawn with
y-monotone curves with leftmost edge (v1, vn). See the left of Figure 3.11.
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For each vertex vi in the graph we define several indices as follows. First bl(i) is
the index of the bottommost neighbor of vi in Gl, i.e., bl(i) is the smallest index j

such that (vj , vi) is an edge in Gl. Next b−1l (i) is the (possibly empty) set of indices j
such that i = bl(j). The other two indices, br(i) and b−1r (i), are defined analogously,
using Gr in place of Gl. Let vk be the third outer vertex besides v1 and vn. We
define (exceptionally) the following indices of v1, vk and vn: bl(v1) = br(v1) = 0 and
tl(v1) = tr(v1) = tr(vk) = tl(vn) = tr(vn) = n + 1.

The corresponding polygon of each vertex vi in the graph is subdivided into three
rectangles, which we call the left leg, body, and right leg of vi. We present here a -
representation with particular coordinates using the above indices. The proof that
this representation is in fact is representing the graph G follows from the upcoming
theorem and is omitted here. An example is depicted in Figure 3.11. We close this
proof by listing the coordinates of the left leg, body, and right leg of each vertex vi.

• The left leg of vi is the (possibly zero-area) rectangle [−tl(i),−i] × [bl(i), i − 1].
• The base of vi is the rectangle [−tl(i), tr(i)] × [i − 1, i].
• The right leg of vi is the (possibly zero-area) rectangle [i, tr(i)] × [br(i), i − 1].
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Figure 3.11: A Hamiltonian graph embedded with (v1, vn) on the outer face, v1, . . . , vn
placed along a vertical line and a contact representation with rectilinear 8-sided poly-
gons. The three rectangles for the vertex v6 are highlighted.

Note that in the proof of Lemma 3.2.1 we require a Hamiltonian cycle that contains
an outer edge. We ensure this by choosing the embedding of the graph. Hence, the
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3.2. Cartograms for Hamiltonian Maximally Planar Graphs

above result is the first within this thesis in which we can not prescribe the embedding
that is inherited by the representation we construct.

From the next theorem follows that the -layout Λ corresponding to the -
representation from Lemma 3.2.1 is area-universal. Indeed, we provide an algorithm
to compute a cartogram Γ for G w.r.t. a given weight-function w ∶ V (G) → R

+, so
that Γ realizes Λ. The strength of this algorithm is its linear runtime. One can prove
that the layout Λ as described in Lemma 3.2.1 is area-universal by finding a one-sided

-layout Λ∗ which refines Λ and applying Lemma 3.1.5. However, as discussed in
Remark 3.1.8 we do not know how to get an efficient or exact algorithm computing
the actual cartogram out of this. Note that the -layout consisting of left leg, body,
and right leg for every vertex as shown in Figure 3.11 refines Λ, but is not one-sided.
Indeed, every one-sided -layout refining a -layout from Lemma 3.2.1 in general
requires four rectangles for some polygons.

Theorem 3.2.2. Let G be a Hamiltonian maximally planar graph equipped with a

weight function w ∶ V (G) → R
+. Then a cartogram of G with rectilinear 8-sided

polygons can be computed in linear time.

Proof. Let v1, . . . , vn be a Hamiltonian cycle and G be embedded as in Lemma 3.2.1,
i.e., with the vertices placed in increasing order along a vertical line, and the edges are
drawn with y-monotone curves with leftmost edge (v1, vn). Suppose R is a rectangle
of width W and height H where W ×H = ∑v∈V w(v). We compute a cartogram of G
using the -layout of the representation in Lemma 3.2.1. It is easy to see that the
four indices bl(i), b−1l (i), br(i),b−1r (i) can be computed for all the vertices vi of G in
linear time. We also define two special types of edges associated with every vertex
vi, 1 < i < n: a left i-chord in G is an edge (vk, vbl(k)) where k > i > bl(k), and a right

i-chord in G is analogously defined. Additionally, we define λi = w(vi)/(2H +W ),
which will be the width of the legs of vi.

Our algorithm is a line-sweep, where a horizontal line L sweeps the embedding of
G from bottom to top, while the algorithm iteratively computes the cartogram of G
inside R. This algorithm does not rely on numerical iteration, as it computes the
cartogram directly. We start the construction with the polygon for v1, which is simply
a rectangle with area w(v1) at the bottom of R; call this rectangle R1. After the i-th
step of our algorithm, the horizontal line L in the embedding of G is at vertex vi, and
the algorithm has constructed the polygons for all the vertices v1, . . . , vi, and a part
of the left leg and right leg of vertices vk with bl(vk) < i and br(vk) < i, respectively.
These polygons and partial legs completely fill up a rectangle Ri at the bottom of R.
The top side of Ri would contain the followings from left to right:

1) The top side of a partial left leg of width λj , for all the left i-chords (vj , vbl(j))
ending on the top side of P(vbl(j)), in the order of the intersection of these
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edges with L;
2) The top side of P(vi);
3) The top side of a partial right leg of width λj, for all the right i-chords (vj , vbr(j))

ending on the top side of P(vbr(j)), in the order of the intersection of these edges
with L.

Suppose we are at the i-th step of our algorithm. We compute Ri fromRi−1 as follows.
If bl(i) = k < i − 1, then due to planarity, b−1l (i − 1) is empty and the rightmost left
(i−1)-chord is (vi, bl(vi)). Hence the rightmost partial left leg corresponds to vi. We
also have that every left i-chord is a left (i − 1)-chord. Hence, we do not introduce
any new partial left leg. Such a step is illustrated for the left side of vi in Figure 3.12.
Otherwise, if bl(i) = i−1, then the polygon P(vi) does not have a left leg. However, we
introduce a partial left leg of width λj for every index j ∈ b−1l (i−1). Note that the new
partial legs do not cover the entire top side of P(vi−1), since∑λj =

∑w(vj)
2H+W < W ⋅H

H
=W .

This case is illustrated for the right side of vi in Figure 3.12. We compute the right
leg of P(vi) and possibly new partial right legs in a similar fashion. We introduce
the body of vi horizontally spanning from the partial left leg of the rightmost left
i-chord to the partial right leg of the leftmost right i-chord. We then set the height
of the body appropriately, so that the polygon P(vi) (the union of the left, the right
leg, and the body) has area w(vi). Note that the sum of the weights of the left and
right leg of vi is at most λi ⋅ 2H and the width of the body of vi is at most W . Thus,
by the choice of λi, the height of the body of vi is at least λi. We complete the i-th
step by extending every partial left and right leg vertically, so that it lines up with
the top side of P(vi).

P(vi−1)P(vi−1)
P(vi)

vi−1 vi−1

vi

↝

L

L

Figure 3.12: The i-th step of the algorithm with bl(i) = k < i − 1 and br(i) = i − 1.

From this construction is it easy to see that, after the n-step of the algorithm,
the polygon for each vertex vi inside R has the correct area. We now show that the
correct adjacencies are also preserved. Consider an edge e = (vi, vj) of G, where i > j.
If e is a Hamiltonian edge, i.e., i = j + 1, then clearly the polygons for vi and vj are
adjacent. Next consider the case that e is in Gl (the case that e is in Gr is analogous).
If j = bl(i), then this adjacency is maintained by the left leg of vi. Otherwise suppose
bl(i) = k; then (vi, vk) is the rightmost left j-chord and hence the left leg of vj is
adjacent to the left leg of vi. Therefore, the algorithm has computed the desired
cartogram of G. It is also not difficult to argue that this algorithm runs in linear
time.
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3.2. Cartograms for Hamiltonian Maximally Planar Graphs

If we only care about the complexity of a rectilinear cartogram, then Theorem 3.2.2
is strictly weaker than Theorem 3.1.7. It considers only a subclass of maximally planar
graphs and still does provide the same bound on the sufficient complexity. On the
other hand, we can show that complexity 8 is actually necessary even for cartogram
for Hamiltonian maximally planar graphs. Note that without weights, every such
graph has a rectilinear representation of complexity at most 6, c.f. Corollary 2.2.5.

Lemma 3.2.3. Consider the Hamiltonian maximally planar graph G = (V,E) in

Figure 3.13. Define w(a) = w(b) = D and w(v) = δ for v ∈ V ∖ {a, b}, where D > δ.

Then any rectilinear cartogram of G with weight function w requires at least one

8-sided polygon.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

c

de

f

h

g
i

j

k

l

m
na

b

Figure 3.13: A Hamiltonian graph G with grey and white vertices weighted δ and D,
respectively. If D > δ then there is no cartogram for G with only 4-sided and 6-sided
rectilinear polygons.

Proof. Let Γ be a cartogram for G with respect to w with rectilinear polygons. As-
sume for a contradiction that all the polygons used in Γ have complexity at most
6. It is easy to see that if {u, v,w} is some separating triangle in G, then P(u),
P(v), and P(w) enclose a rectilinear region Ruvw in Γ, which has at least four sides.
Consequently at least one corner of Ruvw is a concave corner of P(u), P(v) or P(w).
We associate Ruvw with this polygon. Note that two regions can be associated to
the same polygon only if they have the relation of containment. (Indeed, associat-
ing Ruvw with a polygon that has a concave corner there is a nesting assignment as
defined in Definition 2.2.2, which by Theorem 2.2.4 is necessarily induced by Γ.)

First, consider the subgraph G′ of G that is highlighted in Figure 3.13. The 4-vertex
set {c, d, l,m} is the disjoint union of three separating triangles {c, d,m}, {c, l,m},
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3. Cartograms

{d, l,m} in G′. Since no two of these triangle are contained in each other, P(c) or
P(d) (or both) is associated with one of regions Rcdm, Rclm and Rdlm.

Now consider the entire graph G and note that the 5-vertex set {c, d, e, f, g} in G

is the union of the five separating triangles {c, d, f}, {d, e, f}, {c, e, g}, {c, f, g}, and
{e, f, g} with disjoint interiors. It follows that each of the five separating triangles
above is associated with the concave corner of the polygon for c, d, e, f , or g. Since
P(c) or P(d) is associated within G′, the same polygon is associated with Rcdf and
the other of the two, as well as P(f), is associated with a region outside of G′. Hence
Rcdf is a rectangle and by symmetry of the graph G′, we may assume that P(c) is
associated with it, i.e., constitutes two sides of Rcdf . There remain three possible
assignments of concave corners of P(c), P(l) and P(m) to the regions Rcdm, Rclm

and Rdlm:

1) c↦ Rclm, l ↦ Rdlm, m↦ Rcdm (first row of Figure 3.14)
2) c↦ Rcdm, l ↦ Rdlm, m↦ Rclm (second row of Figure 3.14)
3) c↦ Rcdm, l ↦ Rclm, m↦ Rdlm (symmetric to second row of Figure 3.14)

cc
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d d

ff

ff
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l
l

mm
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nn
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a
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a
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b b

Figure 3.14: A detail of three hypothetical cartograms with rectilinear polygons of
complexity at most 6.

Figure 3.14 shows the corresponding layout to each of the above assignments. (To
be precise, each of P(a), P(b), P(n) may have L-shape if Γ is not hole-free, but this
does not affect the upcoming argument.) Note that the shaded part in each layout in
Figure 3.14 is equivalent to the shaded part in Figure 3.7 and hence by Lemma 3.1.4
none of the layouts occurs in the cartogram Γ. This is a contradiction. Thus at least
one of the polygons in Γ contains 8 sides.
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3.2. Cartograms for Hamiltonian Maximally Planar Graphs

Putting Theorem 3.2.2 and Lemma 3.2.3 together, we have that 8-sided polygons
are always sufficient and sometimes necessary for a hole-free rectilinear cartogram of
a Hamiltonian maximally planar graph.

3.2.1 One-Sided Hamiltonian Cycles

Again consider a Hamiltonian cycle (v1, . . . , vn) of a maximally planar graph G, which
is embedded with (v1, vn) on the outer face. Recall from the proof of Lemma 3.2.1
that the Hamiltonian cycle splits G into the left graph Gl and the right graph Gr.
Moreover, for vertex vi, i = 1, . . . , n, the indices bl(i) and br(i) denote the smallest
j such that (vi, vj) is an edge in Gl and Gr, respectively. Also recall that in the

-representation from Lemma 3.2.1 a vertex vi is assigned an 8-sided polygon only
if neither its bottommost neighbor in Gl, nor its bottommost neighbor in Gr, is
vi−1. Indeed, the left leg of vi, defined as [−tl(i),−i] × [bl(i), i − 1], has zero area if
bl(i) = i − 1. Similarly, the right leg of vi, defined as [i, tr(i)] × [br(i), i − 1], has zero
area if br(i) = i − 1.

Here we define a special property of the embedded Hamiltonian cycle, called one-

sidedness. We call a Hamiltonian cycle (v1, . . . , vn) in an embedded maximally planar
graph with (v1, vn) on the outer face one-sided if for every i = 2, . . . , n we have
bl(i) = i − 1 or br(i) = i − 1. Figuratively speaking, a Hamiltonian cycle is one-sided,
if for every vertex in the y-monotone drawing it has no edges going downwards on
the left side or on the right side. The Hamiltonian cycle in the maximally planar
graph in the left of Figure 3.15 is one-sided w.r.t. the outer edge (v,w), i.e., when
choosing v1 = v, vn = w, and hence traversing the cycle in clockwise direction. In
particular the figure shows a y-monotone drawing of the one-sided Hamiltonian cycle
(v,u,x, . . . ,w). On the other hand, the right of Figure 3.15, which is a rotation of
the left-hand picture, shows a y-monotone drawing of the cycle w.r.t. the outer edge
(v,u), i.e., under the choice v1 = v, vn = u, and a thus a counterclockwise traversal of
the cycle. Since the vertex x has edges going downwards on the left and on the right
side of the cycle, we have that (v,w, . . . , x, u) is not a one-sided Hamiltonian cycle.

Since a Hamiltonian cycle (v1, . . . , vn) is one-sided if and only if bl(i) = i − 1 or
br(i) = i − 1 for every i = 1, . . . , n the following lemma is a direct consequence of
Lemma 3.2.1 and Theorem 3.2.2.

Lemma 3.2.4. Let G = (V,E) be a maximally planar graph with a one-sided Hamil-

tonian cycle and let w ∶ V → R
+ be a weight function. Then a rectilinear cartogram

with 6-sided polygons can be computed in linear time.

Note that not every Hamiltonian maximally planar graph admits a one-sided Hamil-
tonian cycle; e.g., the graph in Figure 3.13 does not even admit a rectilinear cartogram
with complexity 6.
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u

u vv w

w

x

x

Figure 3.15: A maximally planar graph with a Hamiltonian cycle that is one-sided
w.r.t. (v1 = v, vn = w) (left) but not w.r.t. (v1 = v, vn = u) (right).

It turns out that one-sided Hamiltonian cycles can be defined in many equivalent
ways, some of which are intimately related to Schnyder woods. Given a Hamiltonian
cycle (v1, . . . , vn), we fix a plane embedding of G with outer triangle {v1, vk, vn}. Then
for every i = 2, . . . , n we consider the plane subgraph Gi ⊆ G induced by {v1, v2, . . . , vi}
with the embedding inherited from G. Moreover, define wi ∶= vn−i+1 and denote by G̃i

the subgraph of G induced by {w1,w2, . . . ,wi}, i.e., G̃i = G∖Gn−i and G̃n−i = G∖Gi.

Lemma 3.2.5. Let (v1, . . . , vn) be a Hamiltonian cycle in an embedded maximally

planar graph G with (v1, vn) on the outer triangle. Then the following are equivalent:

(a) bl(i) = i − 1 or br(i) = i − 1 for i = 2, . . . , n, i.e., the cycle is one-sided.

(b) The edge (vi−1, vi) is an outer edge of Gi for i = 2, . . . , n.

(c) vn−1 is an outer vertex and the vertex vi has at least two neighbors with a larger

index for i = 1, . . . , n − 2.

(d) (w1, . . . ,wn) is a canonical order for G.

Proof. (a) ⇐⇒ (b): For i = 2, . . . , n we argue that (a) holds for i if and only if (b)
holds for i. Indeed, (vi−1, vi) is an inner edge in Gi if and only if there are boundary
edges (vi, vj) and (vi, vk) with j, k < i − 1 in Gl and Gr, respectively. But this is
equivalent to bl(i) = j < i − 1 and br(i) = k < i − 1.

(b) ⇐⇒ (c): Since vn is an outer vertex and Gn = G, (b) holds for i = n if and only
if vn−1 is an outer vertex. For i = 2, . . . , n− 1 we argue that (b) holds for i if and only
if (c) holds for i − 1. Assume (vi−1, vi) is an inner edge in Gi. Let vli, respectively
vri , denote the third vertex in the inner facial triangle containing the edge (vi−1, vi)
in Gl, respectively Gr. (Both triangles exist, since (vi−1, vi) is an inner edge in G.)
Now vli and vri have a smaller index than vi−1, which holds if and only if the index of
every neighbor of vi−1, different from vi, is smaller than i − 1.
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3.2. Cartograms for Hamiltonian Maximally Planar Graphs

(c) Ô⇒ (d): By (c) {w1,w2,wn} = {vn, vn−1, v1} is the outer triangle of G, and
moreover, G̃3, which is induced by vn, vn−1, vn−2, is a triangle. Hence the outer
boundary of G̃3 is a simple cycle C3 containing the edge (w1,w2). In other words, the
first condition of a canonical order is met for i = 4 (c.f. Definition 1.1.3). Assuming (c)
and the first condition for fixed i ∈ {4, . . . , n − 1}, we show that the second and first
condition holds for i and i + 1, respectively. In the end, the second condition holds
for i = n since wn is an outer vertex.

First note that wi is in the outer face of G̃i−1 since wn lies in the outer face, the
path wi, . . . ,wn is disjoint from vertices in G̃i−1 and the embedding is planar. By (c)
wi has at least two neighbors in G̃i−1. If the neighbors would not form a subpath
of the path Ci−1 ∖ (w1,w2), there would be a non-triangular inner face in G̃i, which
contains a vertex wj with j > i in its interior. But then the path wj , . . . ,wn, which is
disjoint from G̃i, would start at an inner vertex of G̃i and end in the outer face of G̃i.
This again contradicts planarity. Thus the second condition of a canonical order is
satisfied for i. Moreover, G̃i has a simple outer cycle Ci containing the edge (w1,w2).
In other words, the first condition holds for i + 1.

(d) Ô⇒ (c): Since it is a canonical order, (w1,w2) is an outer edge. In particular,
w2 = vn−1 is an outer vertex. Clearly, v1 has at least two neighbors and every neighbor
has a larger index, i.e., (c) holds for i = 1. Moreover, by the second condition of a
canonical order every vertex vi = wn−i+1, for i = 2, . . . , n−2, has at least two neighbors
in G̃n−i = G ∖Gi, which is the subgraph induced by vi+1, . . . , vn.

Lemma 3.2.6. If G is a maximally planar graph with outer triangle {w1,w2,wn},
and (w1,w2, . . . ,wn) is a vertex ordering, then the following are equivalent:

(a) (w1,w2, . . . ,wn) is a one-sided Hamiltonian cycle.

(b) (w1,w2, . . . ,wn) is a canonical order, which is a Hamiltonian path.

(c) The graph Gi = G[w1, . . . ,wi] contains no valley vertex for i = 3, . . . , n.

(d) In every Schnyder wood (T1, T2, T3) defined by (w1, . . . ,wn) every inner vertex

is a leaf in T1 or T2.

Proof. (a) ⇐⇒ (b) follows directly from Lemma 3.2.5 (a) and (d).

(b) ⇐⇒ (c): In every canonical order wi is a hill vertex of Gi for i = 3, . . . , n − 1,
and hence G3 contains no valley vertex. Moreover, by Lemma 1.1.7 there is always
one more hill vertex than there are valley vertices in Gi, for i = 3, . . . , n − 1. Now
again by Lemma 1.1.7 wi is connected to wi−1 if and only if wi−1 is no hill vertex in
Gi, for i = 4, . . . , n.

(c) ⇐⇒ (d): By Lemma 1.1.7 every valley vertex in Gi is neither a leaf in T1 nor a
leaf in T2. On the other hand, every vertex that is neither in L1 nor in L2 is a valley
vertex in some Gi.
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We remark that a canonical order defined by a Schnyder wood is a Hamiltonian
path if and only if it is the unique canonical order defined by this Schnyder wood.

Figure 3.16 shows an example of a maximally planar graph with a one-sided Hamil-
tonian cycle, the corresponding canonical order, and Schnyder wood. Note that since
the canonical order (w1, . . . ,wn) is the reverse of the vertex ordering (v1, . . . , vn) that
we used for the Hamiltonian cycle, every vertex has no incident edges of the left or
the right going up, rather than down.

w1 w2w3

w4w5

w6

w7

w8

Figure 3.16: A maximally planar graph with a one-sided Hamiltonian cycle (left) and
the corresponding Schnyder wood (right).

Once we have a one-sided Hamiltonian cycle, we can build a 6-sided cartogram
via Lemma 3.2.4 in linear time. Alternatively, we could obtain from it a Schnyder
wood, rooted such that every vertex is a leaf in T1 or T2. Taking this as the under-
lying Schnyder wood in Theorem 3.1.7 results in the very same cartogram. However,
we prefer to use Lemma 3.2.4 since it additionally states that a cartogram can be
computed in linear time.

Remark 3.2.7. Let G be a maximally planar graph and (w1, . . . ,wn) be a canonical
order of G which is a Hamiltonian path, or equivalently (wn, . . . ,w1) be a one-sided
Hamiltonian cycle. We get yet another hole-free rectilinear for G layout with com-
plexity 6 by observing that

• if (T1, T2, T3) is a Schnyder wood such that every vertex is in L1 or L2, then we
have ∣L1 ∩L2 ∩ in3(v)∣ ≤ 1 for every vertex v.

The above is true, since by Lemma 3.2.6 the graph Gi contains no valley vertex
and thus only one hill vertex, for i = 3, . . . , n − 1. Because ∣L1 ∩ L2 ∩ in3(vi+1)∣ is
the number of hill vertices of Gi in in3(vi+1), this quantity is at most one. Thus,
by Theorem 2.1.7 there exists a non-rotated -representation of G, whose layout we
call Γ2. Actually, the layout Λ2 differs significantly from the one in Lemma 3.2.4,
which we call Λ1. For instance, Λ2 is non-rotated, while generally Λ2 is not. But even
the overall complexities (see Subsection 2.1.1) in Λ1 and Λ2 differ. Let (w1, . . . ,wn)
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3.2. Cartograms for Hamiltonian Maximally Planar Graphs

be a canonical order which is a Hamiltonian path, or equivalently (wn, . . . ,w1) be a
one-sided Hamiltonian cycle. It is not difficult to see that P(wi) has an L-shape in
Λ2 if and only if wi−1 is a leaf in both, T1 and T2, which in turn holds if and only if
P(wi−1) is a rectangle in Λ1. Thus it follows that the number of L-shaped polygons
in Λ2 equals the number of rectangles in Λ1 minus 1. (We subtract one, since P(wn)
and P(w1) is always a rectangle in Λ1 and Λ2, respectively.) Figure 3.17 b) and
Figure 3.17 c) show the layout Λ1 and Λ2 for the one-sided Hamiltonian cycle from
Figure 3.17 a), respectively.
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Figure 3.17: a) A maximally planar graph with a one-sided Hamiltonian cycle. b)

The layout Λ1 as given by Lemma 3.2.4. c) The layout Λ2 as given by Theorem 2.1.7.

Unfortunately, in general the layout Λ2 is not (rectilinear) area-universal; it may
even be degenerated to a -layout that is not one-sided. Hence we do not know how
to derive a cartogram from it.

Let us close this section with the following corollary of Lemma 3.2.4.

Corollary 3.2.8. A cartogram of a maximally outer-planar graph using 6-gons can

be computed in linear time.

Proof. Choose an outer-planar embedding of G. Let (v1, . . . , vn) be the Hamiltonian
cycle in G consisting of all outer edges. Add a vertex vn+1 into the outer face connect it
by an edge to every vi, so that (v1, vn) remains an outer edge. Then (v1, . . . , vn, vn+1)
is a Hamiltonian cycle of the resulting embedded maximally planar graph G′. Indeed,
this cycle is one-sided since for i = 2, . . . , n the vertex vi has only three neighbors in
Gl, namely vi−1, vi+1 and vn+1, which implies bl(i) = i − 1 here. The new vertex vn+1
has only one neighbor in Gr, namely vn, i.e., br(n + 1) = n. With Theorem 3.2.2 we
get a cartogram of G′ with 6-sided rectilinear polygons. (We give vn+1 any positive
weight.)
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Finally note that removing the polygon for vn+1 from the cartogram leaves a car-
togram of the original graph G, still of complexity 6. Moreover, this representation
fits inside a rectangular area since the removed polygon is 6-sided and occupies two
consecutive sides of the outer boundary.

A linear-time algorithm for constructing a cartogram of a maximally outer-planar
graph with 6-sided rectilinear polygons was known before [ABF+11a]. However, the
construction based on Theorem 3.2.2 is simpler. Moreover, a lower bound of 6 on
the complexity of such a cartogram with the additional constraint that the outer
boundary is a rectangle is known [Rin87]. (If we do not insist on the additional
property, then maximally outer-planar graphs admit cartograms that use only rect-
angles [ABF+11a].) Putting things together, we have that 6-sided polygons are always
sufficient and sometimes necessary for a hole-free rectilinear cartogram of a maximally
outer-planar graph.

3.3 Lower Bounds on the Complexity

In this section we consider general (not necessarily rectilinear or hole-free) cartograms
of maximally planar graphs. We provide new lower bounds on the polygonal complex-
ity of such cartograms for the class of Hamiltonian maximally planar graphs and pla-
nar 3-tree. The proofs consist of Lemma 2.3.1 for the previous chapter, which counts
the number of convex corners in a representation, and the upcoming Lemma 3.3.1,
which gives a way of forcing additional concave corners. The following is a very recent
result [ABF+11b].

Lemma 3.3.1 ([ABF+11b]). Consider the maximally planar graph G∗ = (V,E) in

Figure 3.18 a). Define w(a) = w(b) = w(c) = D and w(v) = δ for v ∈ V ∖ {a, b, c},
where D ≫ δ. Then every cartogram of G∗ with weight function w requires at least

one polygon with a concave corner.

We are going to use the graph G∗ from Lemma 3.3.1 as a building block for our
examples below. In particular, we first define a maximally planar graph G, identify a
subset of its inner faces and put the graph G∗ into each such face, i.e., the three outer
vertices of G∗ are identified with the three vertices in G of the inner face. The path
in Figure 3.18 a) will be used to show, that the graph G may remain Hamiltonian
after the insertion of G∗.

Lemma 3.3.2. Each of the following holds.

(i) There is a Hamiltonian maximally planar graph equipped with a weight function,

such that every cartogram requires polygonal complexity at least 6.
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aa bb

cc

a) b)

Figure 3.18: a) A graph G∗ with grey and white vertices weighted δ and D, respec-
tively. If D ≫ δ then there is no cartogram for G∗ with only convex polygons. b)

A cartogram for G∗ with complexity 6 in which every inner face is represented as a
hole.

(ii) There is a planar 3-tree equipped with a weight function, such that every car-

togram requires polygonal complexity at least 7.

Proof. Both statements of the lemma follow from Lemma 2.3.1 and Lemma 3.3.1.

Consider the maximally planar Hamiltonian graph G in Figure 3.19. Insert the
graph G∗ from Figure 3.18 a) into each shaded triangle, i.e., identify the outer triangle
of a copy of G∗ with each triangle shaded in Figure 3.19. The resulting graph G′ is
still maximally planar and Hamiltonian. Denote the number of vertices in G′ by n.
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Figure 3.19: A maximally planar Hamiltonian graph G with 17 vertices and five
shaded triangles. If every shaded triangle is replaced with the graph G∗ in Fig-
ure 3.18 a), the resulting graph remains Hamiltonian.

Next, assign every edge of any Hamiltonian cycle in G′ to one incident inner face, so
that no face is assigned more than once. Insert a new vertex into every assigned face
and connect it by an edge to the three incident vertices of G′. Call the resulting graph
G′′ and set w(v) = D for the vertices a, b, and c in every copy of G∗, and w(v) = δ
for all other vertices, where D ≫ δ. Consider any cartogram of G′′ with respect to w.
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The polygons of the n vertices originally belonging to G′ form a cartogram of G′ with
respect to w∣V (G′). Moreover, every inner face containing a G′′-vertex is represented
as a hole. There are exactly n such faces, n−5 further inner faces, and one outer face,
each of degree three. Applying Lemma 2.3.2 to this cartogram gives that the polygons
corresponding to the original vertices contain at least 3n+2(n−5)+6 = 5n−4 convex

corners. Additionally, by Lemma 3.3.1 in each copy of G∗ there is at least one reflex
corner. Hence, the total number of corners among the n polygons corresponding to
vertices of G′ is at least 5n + 1. Thus, at least one such polygon has complexity 6.
This proves (i).

In order to prove (ii), we proceed similarly. Let G be any planar 3-tree with 10

inner faces with pairwise disjoint vertex sets. For example take G to be the graph
in Figure 3.20. Put a copy of G∗ into each of the 10 faces. Denote the resulting
graph by G′ and its number of vertices by n. Now, insert a new vertex into every
inner face connecting it to the three incident vertices in G′. Set w(v) = D for the
vertices a, b, and c in every copy of G∗, and w(v) = δ for all other vertices, where
D ≫ δ. Every cartogram of G′′ induces a cartogram of G′, in which every inner face
is represented as a hole. There are 2n − 5 such faces, and one outer face, each of
degree three. Applying Lemma 2.3.2 to this cartogram gives that the polygons of
vertices in G′ contain at least 3(2n − 5) + 6 = 6n − 9 convex corners. Additionally by
Lemma 3.3.1 in each copy of G∗ there is at least one reflex corner. Hence, the total
number of corners among the n polygons corresponding to vertices of G′ is at least
6n + 1. Thus, at least one such polygon has complexity 7. This proves (ii).

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

����
����
����

����
����
����

����
����
����

����
����
����

��
��
��

��
��
��

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Figure 3.20: A planar 3-tree G with 10 inner faces with pairwise disjoint vertex sets.
If every shaded triangle is replaced with the graph G∗ in Figure 3.18 a), the resulting
graph remains a planar 3-tree.

3.3.1 Hole-Free Cartograms for Planar 3-Trees

Theorem 3.1.7 and Lemma 3.3.2 together show that for a hole-free cartogram of a
maximally planar graph 8-sided polygons are always sufficient, while 7-sided polygons
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3.3. Lower Bounds on the Complexity

are sometimes necessary. See for instance the summary in Table 3.1. On the other
hand, 7-sided polygons are always sufficient (and sometimes necessary) if we do not
insist on hole-freeness.

Theorem 3.3.3. Seven-sided polygons are always sufficient and sometimes necessary

for a cartogram of a maximally planar graph with a given weight function on the

vertices.

Proof. It is known [ABF+11b] that every planar graph admits a point contact repre-
sentation Γp with 4-sided polygons that realizes any set of given weights, i.e., a point
contact cartogram with complexity 4. For example, Figure 3.21 b) shows such a car-
togram for the planar graph in Figure 3.21 a). Each polygon in Γp has three convex
and one concave corner, and every (point) contact between two polygons consists of
a (convex) corner of one polygon and a side of the other polygon. By a local modifi-
cation we transform every point contact into a side contact while making two convex
corners out of one. Figure 3.21 c) shows the side contact representation resulting
from the point contact representation in Figure 3.21 b).

a) b) c)

Figure 3.21: a) A maximally planar graph G in which white and grey vertices have
weights D and δ, respectively, where D ≫ δ. b) A point contact cartogram of G

w.r.t. these weights with complexity 4. c) A side contact cartogram of G w.r.t. these
weights with complexity 7.

The increase in area for every polygon can be easily chosen to be proportional to
the weight of the corresponding vertex. Hence, we have proven that 7-sided polygons
are always sufficient to obtain a cartogram for any vertex-weighted planar graph.
By Lemma 3.3.2 (ii) 7-sided polygons are sometimes necessary, even for planar 3-
trees.

The cartogram from Theorem 3.3.3 contains many and especially big holes. It is
a natural question whether or not 7-sided polygons are always sufficient, even if we
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3. Cartograms

insist on hole-freeness. We next answer this question in the affirmative in case the
maximally planar graph is a 3-tree.

Theorem 3.3.4. Let G be any planar 3-tree equipped with a weight function w ∶

V (G) → R
+. Then a cartogram of G with polygons of complexity at most 7 can be

computed in linear time.

Proof. Throughout this proof, a chord of a polygon P is a straight segment inside P
with endpoints p and q on the boundary of P. A chord pq divides P into two parts.
Consider the part of P that lies on the left-hand side when traversing the chord from
p to q. We refer to the area of that part by the area left of pq. Similarly, the area
of the other part is called the area right of pq. In the construction presented below
we always define a chord in a polygon P such that one of its endpoints is a corner of
P and such that the areas left and right of the chord equal some prescribed values.
We then use the following operation on chords, which we call sliding, to assure that
none of its endpoints is a corner of P, while keeping the area left and right of the
chord invariant. More precisely, let pq be a chord of a polygon P, and let a direction,
either clockwise or counterclockwise, be given. Then sliding pq in the given direction,
say w.l.o.g. counterclockwise, is done by identifying a point p′ on the same side of P
as p that is very close to p when traversing the boundary of P in counterclockwise
direction. The area left of p′q is greater than the area left of pq. Similarly, we
identify a point q′ on the same side of P as q that is very close to q when traversing
the boundary of P in counterclockwise direction. We choose q′ such that the area left
of p′q′ equals the area left of pq. This is possible, provided we have chosen p′ close
enough to p. The sliding operation is illustrated with an example in Figure 3.22.

ppp

q qq

p′p′

q′

↝↝

Figure 3.22: Illustration of the sliding operation for chord pq in counterclockwise
direction.

Now we build a cartogram of the 3-tree G along its building sequence (c.f. Sub-
section 1.1.2) starting with any triangle ABC whose area equals ∑v∈V (G)w(v). We
maintain the following invariant: The polygons corresponding to the three vertices
of a non-empty triangle ∆ in G enclose a triangular or convex quadrangular region
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3.3. Lower Bounds on the Complexity

R∆ whose area equals ∑v∈V (G∆)∖∆w(v). Moreover, every side of R∆ is constituted
by the polygon of only one vertex v ∈∆.

We start by computing the polygons for the three outer vertices v1, v2, v3 of G.
Therefore consider the chord of the triangle ABC starting at A and ending at the
point p1 on BC, such that the area left of Ap1, that is, the area of the triangle
ABp1, equals w(v1); See the left of Figure 3.23. Next consider the chord of the
triangle ACp1 starting at p1 and ending at the point p2 on AC, such that the area of
the triangle p1p2C equals w(v2). We apply a sliding operation to the chord p1p2 in
counterclockwise direction. In the figures we draw a chord before and after a sliding
in dashed grey and solid black, respectively.

A

B C

R∆

p1

p2
p′
2

p3

v1 v2

v3

↝

Figure 3.23: Putting the polygons P(v1), P(v2), and P(v3) into the triangle ABC,
such that they enclose a triangular region R∆ of area ∑v≠v1,v2,v3 w(v).

Let p′
2

denote the endpoint of the chord on AC after the sliding. Now consider the
chord starting at p′

2
and ending at the point p3 on Ap1, such that the area of the

triangle Ap′2p3 equals w(v3). We slide that chord in clockwise direction and assign vi

to the polygonal region whose area equals w(vi), i = 1,2,3. This leaves a triangular
region R∆ of area ∑v≠v1,v2,v3 w(v). In the remainder of the proof we show how to
insert a polygon for a vertex x into a triangular or convex quadrangular region R∆.

Case 1: R∆ is a triangle. We compute the polygon for the vertex x in G∆ that
is adjacent to all three vertices a, b, and c in ∆. Denote the triangle {a, b, x} in the
graph G by ∆(abx). Define wabx = ∑v∈G∆(abx)∖∆(abx)w(v) if ∆(abx) is non-empty,
and wabx = 0 otherwise. Define ∆(axc), ∆(xbc), waxc and wxbc similarly. Moreover,
label the corners of R∆ by A, B, and C, so that A and B lies opposite to the side
constituted by P(a) and P(b), respectively. See the left of Figure 3.24.

For convenience let us assume that each of wabx, waxc, and wxbc is non-zero. (The
case that some of these weights is zero is actually easier.) First, we split off a trian-
gular region of area waxc with a side contact to P(a) and P(c). To this end, consider
the chord starting at A and ending at the point p1 on BC, such that the area of the

91



3. Cartograms

replacemen

A

A

B C
p0

p0

p′0
p′
1
p′′
1

p′2

p′′2

p′′2

p′
3

p′
3

p′′
3

P(a)

P(a)P(a)
P(b)

P(b)P(b)

P(c)

P(c)P(c)

P

∆(xbc)

∆(axc) ∆(abx)

Figure 3.24: Putting polygon P(x) into triangle R∆, such that it leaves a triangular
region for ∆(axc) and ∆(abx) and a convex quadrangular region for ∆(xbc), each of
the correct area.

triangle ABp1 equals wabx. Then slide this chord in counterclockwise direction and
denote its new endpoint on AB and BC by p0 and p′1. Similarly, we obtain a triangle
p′′1p

′
2C of area wabx by starting with a chord between p′1 and the side AC and sliding

it in counterclockwise direction; See the left of Figure 3.24.

Starting with a chord between p′2 and the side p0p′1 and applying a counterclockwise
sliding, we split off a convex quadrangular region with corners A, p0, p′3, and p′′2 of
area wxbc. Next we choose two points p′′

3
and p′

0
very close to p′

3
and p0, so that the

(still convex quadrangular) region with corners by A, p′
0
, p′

3
, and p′′

2
has area wxbc,

too. See the middle of Figure 3.24 for an example. We define P(x) to be the polygon
of complexity 7 left over after removing the triangular and quadrangular regions from
R∆, as illustrated in the right of Figure 3.24.

Case 2: R∆ is a convex quadrangle. Let the vertices of ∆ and the corners
of R∆ be denoted by a, b, c, and A,B,C,D, respectively. Moreover let P(a) be the
polygon that constitutes two sides of R∆. We proceed in a similar way as in Case 1,
i.e., we split off triangular or convex quadrangular regions from R∆ by choosing
chords with one fixed endpoint and applying a counterclockwise sliding operation to
it. In Figure 3.25 we illustrate the following three sub-cases with one example each.
In Case 2a and Case 2b (these are depicted in the left and the right in Figure 3.25,
respectively) waxc is less than the area of the triangle ABC. Here, we split off a
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3.4. Tackling 4-Connected Maximally Planar Graphs

triangular region p0p
′
1
B of area waxc as in Case 1. If, Case 2c, the area of ABC

is at most waxc, we split off a convex quadrangular region by starting with a chord
between A and CD, rather than between A and BC. In either case we denote the
corners of the split off region distinct from B and C by p0 and p′1, just as we did in
Case 1. The situation is illustrated in Figure 3.25.

AA

A

B

BB

C

CC

D

DD

p0

p0 p0

p′0

p′0 p′0

p′
1

p′
1

p′
1

p′′
2

p′′
2

p′′
2p′′3 p′′3

p′′3

P(a) P(a)

P(a)

P(b)

P(b)
P(b)

P(c)

P(c)P(c)

P(x)

P(x)

P(x)

Case 2a Case 2b

Case 2c

Figure 3.25: Putting polygon P(x) into convex quadrangle R∆, such that it leaves
one triangular and two convex quadrangular regions.

If, Case 2a, the area of the triangle p′1CD is less than wabx, we start with a chord
between D and p′1C, obtaining a convex quadrangular region of area wabx after a
sliding. In Case 2b (The area of the triangle p′1CD is at least wabx.) and Case 2c, we
obtain this region by starting with a chord between p′

1
and AD. The region we split

off is convex quadrangular in Case 2b and triangular in Case 2c. Finally, in all cases
we compute the points p′′2 , p′′3 , and p′0 in the very same way as in Case 1. This gives
another convex quadrangular region of weight wxbc and the 7-sided polygon P(x).
Again, the special cases, where some (or all) of wabx, waxc, and wxbc are zero are
similar and even less complicated.

3.4 Tackling 4-Connected Maximally Planar Graphs

In this section we discuss cartograms of 4-connected maximally planar graphs. As
evident from Table 3.1 for this graph class we have the biggest gaps between the
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best lower and upper bounds. For instance, by Theorem 3.3.3 and Theorem 3.1.7 we
have that 7-sided and 8-sided polygons are sufficient for a non-rectilinear cartogram
with and without holes, respectively. On the other hand, we do not even know a
4-connected maximally planar graph with a weight function that requires 5-sided
polygons in any cartogram, even if holes are not allowed.

In the preceding section (Section 3.3) we provide lower bounds on the polygonal
complexity of (not necessarily rectilinear) cartograms. In order to enforce many
corners, we make use of two little “tricks”, or building blocks. At first, we put vertices
into inner faces of a maximally planar graph we started with. Disregarding the
polygon corresponding to one of these vertices in a representation of the resulting
graph, gives a representation of the original graph, where the inner face is represented
as a hole. We used this technique in Lemma 2.3.2 and Lemma 3.3.2.

The second trick is to put the graph G∗ from Lemma 3.3.1 into inner faces of a
starting graph. This enforces concave corners in every cartogram of the resulting
graph. Noting that both operations necessarily produce separating triangles, we may
ask for an alternative technique with the same result. Interestingly, we do not know
an alternative construction for either of the tricks that does not produce separating
triangles. We do not even know a planar 4-connected graph with a set of vertex
weights, so that every cartogram requires a concave corner. We suspect, that such a
graph does not exist.

Conjecture 3.4.1. Every vertex-weighted 4-connected maximally planar graph ad-
mits a cartogram with solely convex polygons.

For 4-connected near-triangulations, Conjecture 3.4.1 is implied by the much
stronger Conjecture 3.4.4 below. Again, we usually drop the word 4-connected and
simply talk about near-triangulations, although we consider only 4-connected near-
triangulations in this section. But first, let us recall area-universal rectangular lay-
outs. Due to Eppstein et al. [EMSV09] a -layout Λ is rectilinear area-universal if
and only if it is one-sided, c.f. Theorem 3.1.3. Moreover, there are (4-connected)
near-triangulations, which do not have a one-sided -layout, e.g., the graph G Fig-
ure 3.26 a), c.f. Lemma 3.1.4. In Figure 3.26 b) shows a -layout Λ of G and
Figure 3.26 c) shows a cartogram Γ of G realizing Λ. One can show that the lay-
out Λ of G is indeed area-universal, i.e., for every weight function w ∶ V (G) → R

+

there is a cartogram Γ of G that realizes Λ. Note the difference between rectilinear

area-universality and area-universality in general.

We want to find necessary conditions for a -layout being area-universal. We
impose any cartogram to fit into a rectangular box, even though this may turn an
area-universal layout into one that is not. The shape of the box does not matter
because going from one shape to another can be done by a linear transformation,
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a
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d

dd
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h
h

a) b) c)

Figure 3.26: a) A graph G with grey and white vertices weighted δ and D, respec-
tively. If D > δ then there is no cartogram for G with only 4-sided rectilinear polygons.
b) A rectangular layout Λ of G. c) A cartogram Γ of G realizing Λ.

which preserves the layout and all areas. Moreover, we ignore the four outer vertices
of G, since we can easily define a rectangle of the correct area for each of them in a
way that is compatible with the given layout. The removal of these four rectangular
polygons leaves a rectangular hole again. In other words, for now we consider G to
be an inner triangulation of a simple outer cycle of length at least 4.

It is not the case that every -layout is area-universal. For example consider the
-layout Λ in the left of Figure 3.27 and the weight function w of the represented

graph G as marked in the figure, where D ≫ δ. For the sake of contradiction, assume
that Γ is a cartogram of G w.r.t. w that realizes Λ. W.l.o.g. assume that 3D+3δ = 1,
i.e., the total weight of vertices is one, and that the bounding rectangle of Γ is a unit
square. Let s denote the segment in Λ that is not one-sided. The weights of the three
vertices above s sum up to more than 1

3
. Hence the distances between the square’s

top-side and the two endpoints of s sum up to more than 2

3
. If the distance on the left

is more than 1

3
, then the bottom-right corner of P(v1) is very close to left endpoint

p of s, since w(v1) = δ, which is very small. In consequence the top-right corner of
P(v4) is even closer to p, which means that P(v4) is basically a triangle with height
less than 2

3
and base length less than 1. The area of P(v4) is 1

3
− δ ≈ 1

3
and hence its

height is approximately 2

3
and its base length is approximately 1. In other words, the

left endpoint p1 (and in consequence the right endpoint p2 of s as well) is in distance
≈ 1

3
to the square’s top side. Hence the bottom-left corner of P(v3) is very close to

p2 and the major part of the upside and downside of s is constituted by P(v2) and
P (v5), respectively. But then P (v5) has too big area – a contradiction.

If we do not insist on a rectangular outer boundary, then there is a cartogram Γ

for G w.r.t. w that realizes Λ. Such a cartogram is shown in the right of Figure 3.27.
However, with a reasoning similar to the one above one can show the following: First,
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v1
v1

v2 v2v3 v3

v4

v4
v5

v5

v6
v6

δ D δ

D δ D

s

Figure 3.27: Left: A rectangular layout Λ with vertex weights (D ≫ δ) that is not
realized by any cartogram with rectangular outer boundary. Right: A cartogram that
realizes Λ.

in every cartogram Γ that realizes Λ the length of each of the four outer segments
of Λ is bounded from below by some function of D. And second, the shortest side
of each of the three polygons P(v2), P(v4), and P(v6) is bounded above by some
function of δ. For example, in the cartogram in the right of Figure 3.27 the bottom
side of P(v2) and P(v4), as well as the top side of P(v6), is “very short”. Hence,
replacing of these rectangles in Λ, say R(v2), by another copy of the same layout,
then results in a layout which is not area-universal even in the looser sense. So, not
every -layout is area-universal. Let us define a weakening of one-sided rectangular
layouts as follows.

Definition 3.4.2. A -layout is two-sided if every segment s has an interior point
that divides s into two one-sided segments.

In other words, a segment s is two-sided if it is the union of two sides of two
rectangles, one from either side. For example, the layout in Figure 3.26 b) is two-
sided, but not one-sided. Indeed, the middle horizontal segment is the union of the
bottom side of R(g) and the top side of R(h), or equivalently, this segment can be
split into two one-sided segments by any point in R(g)∩R(h). Recall that the graph
in Figure 3.26 a) has no one-sided -layout.

Next we argue that every near-triangulation has a two-sided -layout. To this
end, consider the details I − IV of a -layout Λ that are depicted in Figure 3.28.
Evidently, the bold segment in each details is not one-sided. On the other hand, if a
segment is not one-sided, then this is witnessed by a detail like one of I − IV . Now
consider a horizontal segment, that is two-sided. It may belong to a detail I or III,
but not both. Similarly, a vertical two-sided segment does not belong to both a detail
II and IV . We summarize the following.

Observation 3.4.3. Each of the following holds.
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I II III IV

Figure 3.28: Four details of a segment that is not one-sided.

(i) A layout is one-sided if and only if it contains neither of I, II, III, and IV .
(ii) A layout is two-sided if and only if no segment belongs to I and III, or II and

IV .
(iii) The layout corresponding to the minimal -representation contains neither I

nor II.
(iv) In the Schnyder wood inherited from the layout every vertex is a leaf in T1 or

T2 if and only if the layout contains neither I nor IV .

Part (iii) follows directly from the definition of the minimal -representation,
while (iv) maybe needs some explanation. Indeed, applying the definition of the
Schnyder wood inherited from a -representation (see Definition 2.1.2) gives that
the rectangle in the lower left of details I and IV has a child in T1 (the rectangle in
the the lower right) and a child in T2 (the rectangle in the upper left). The if-part
of (iv) is equally easy to see. Note that (iv) together with Lemma 3.2.6 gives that
the inherited Schnyder wood defines a canonical order which is a Hamiltonian path.
Indeed, we can easily read of this ordering. Felsner et al. [FFNO11] define the equato-

rial line of a separating decomposition and associate a -representation with it, such
that the equatorial line corresponds to a Hamiltonian path in the represented graph.
It is straightforward to show, that if we start with the separating decomposition of a
layout Λ which contains neither I nor IV , then the resulting -representation real-
izes Λ, and that the Hamiltonian path is a canonical order defined by the inherited
Schnyder wood. See Figure 3.29 for an illustrating example.

Not every near-triangulation admits a -layout that contains neither I nor IV , but
by Observation 3.4.3 (iii) every such graph admits a -layout that contains neither
I nor II, and hence a two-sided layout. We suspect that two-sided layouts are area-
universal, i.e., for every weight function w and two-sided layout Λ there is a cartogram
w.r.t. w within a rectangular outer boundary that realizes Λ.

Conjecture 3.4.4. Every two-sided -layout is area-universal.

Conjecture 3.4.4 implies Conjecture 3.4.1 for 4-connected near-triangulations be-
cause a cartogram Γ that realizes a rectangular layout consists solely of convex quad-
rangles. With regard to rectilinear cartograms of 4-connected maximally planar
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Figure 3.29: A two-sided layout which contains neither I nor IV , its equatorial line,
and a canonical order which is a Hamiltonian path.

graphs, we know equally little. It is known that every maximally planar graph ad-
mits a rectilinear cartogram of complexity 8 (Theorem 3.1.7) and that there is a
vertex weighted 4-connected near-triangulation, of which every rectilinear cartogram
requires at least one 6-gon (Lemma 3.1.4). However, we think that the theory of
one-sided Hamiltonian cycles, which we discussed in Subsection 3.2.1 may give the
right answer here.

Conjecture 3.4.5. Every 4-connected maximally planar graph has a one-sided
Hamiltonian cycle. In particular, every such graph has an rectilinear area-universal
layout with 6-sided rectilinear polygons.

We remark that Whitney proved [Whi31] that every 4-connected maximally planar
graph has a Hamiltonian cycle. However, the cycle he constructs is not one-sided.
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Chapter 4

Edge-Intersection Graphs of Grid

Paths

In this chapter we investigate edge-intersection graphs of paths in the plane grid, EPG
graphs for short. The results presented here are mostly joint work with D. Heldt and
K. Knauer, some of which are submitted for publication [HKU10]. EPG graphs
were recently introduce by Golumbic, Lipshteyn and Stern [GLS07]. This concept
arises from VLSI grid layout problems [BS90], and is a natural generalization of
edge-intersection graphs of paths on degree 4 trees as considered by the same au-
thors [GLS08]. Again, we start with the formal definition.

Definition 4.0.6. An EPG representation of a simple graph G = (V,E) is a set
Γ = {P (v) ∣ v ∈ V } of finite paths in the plane square grid, one for each vertex, with
the following property:

• Two vertices v and w are connected by an edge in G if and only if the corre-
sponding paths P (v) and P (w) have at least one grid edge in common.

A graph is called an EPG graph if it admits an EPG representation.

Figure 4.1 shows K3,3 ∖ e, i.e., the complete bipartite graph on 3 + 3 vertices after
the removal of one edge, and an EPG representation Γ of it. For better readability
of our figures, we draw two or more grid path that share the same grid edge very
close to each other, instead of letting them overlap. Moreover, we omit drawing
the underlying square grid. Indeed, we consider a grid path to be a finite chain of
horizontal and vertical segments, alternating in their orientation and joint at their
endpoints. The two vertices corresponding to two paths P (v) and P (w) are then
adjacent, if and only if P (v) ∩ P (w) contains a piece of non-zero length. Note that
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4. Edge-Intersection Graphs of Grid Paths

P (v) ∩ P (w) may contain many isolated points although (v,w) is not an edge. For
instance, P (b) ∩ P (d), as well as P (a) ∩ P (e), consists of just a single point and
indeed (b, d), as well as (a, e), is not an edge in the graph. Furthermore, a grid path
may self-intersect several times; It may even contain the same grid edge more than
once. For convenience, we sometimes refer to a vertex and the path that represents
this vertex with the same name.

a

b

c
d

e

f

P (a)

P (b)

P (c)

P (d)

P (e) P (f)

Figure 4.1: The graph K3,3 ∖ e and an EPG representation Γ of it.

It is known [GLS07] that every graph is an EPG graph and finding some EPG
representation of it is very simple. However such representations can have too many
bends (or are too complicated). Therefore it is of interest to consider representations
with few bends. A bend of a grid path is a point where two consecutive segments
are joint, i.e., where the grid path changes its orientation from vertical to horizontal
or vice versa, and the number of bends of a path is one less than the number of its
segments.

a

b

c

d

e

f

(a, b) (a, f) (b, c) (b, e) (c, d) (c, f) (d, e) (e, f)

Figure 4.2: Illustration of how to compute any EPG-representation for any graph
using the example of K3,3 ∖ e. Rows and columns correspond to vertices and edges in
the graph, respectively. The path for a vertex v runs along the associated with row,
except within the columns that correspond to edges of v with vertices whose rows lie
above, where the path makes a detour and runs along the row of the other vertex.

Definition 4.0.7. An EPG representation Γ is a k-bend representation, for some
k ≥ 0, if every path in Γ has at most k bends. A graph is called a k-bend graph if
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there is a k-bend representation of it. The bend-number of G (written b(G)) is the
minimum k, such that G is a k-bend graph.

A closer look reveals that every path in the right of Figure 4.1 has at most one
bend, and hence it is a 1-bend representation. In consequence, b(K3,3 ∖ e) ≤ 1.
Graphs with bend-number at most 1 are called single-bend graphs and have been
studied independently [GLS07, Rie09]. If b(G) = 0 for a graph G, then it has a 0-
bend representation, i.e., a representation with horizontal and vertical segments in
the plane in which edges correspond to non-trivial intersections of equally oriented
segments. If now all grid lines are put in any order on a single real line, then every
vertex is represented by an interval and edges correspond to overlapping intervals, i.e.,
G is an interval graph. The converse is true as well, since every interval representation
of an interval graph can be seen as a 0-bend representation using only one grid line.
Together we have, b(G) = 0 if and only if G is an interval graph.

It has been shown [AS09, BS09] that the bend-number of Km,n is at least 2m − 2

for sufficiently large n (c.f. Theorem 4.1.7), in particular the bend-number of a graph
can be arbitrarily large. We will provide many more examples for this fact in this
chapter. Hence it is interesting to determine graphs or graph classes with bounded
bend-number. Within the scope of this thesis, we consider the following question:

Question 4.0.8. Given a graph class G, what is the minimum number k, such that
every graph G ∈ G has a k-bend representation? In other words, what is the maximum
bend-number among graphs in G?

Question 4.0.8 has already been considered for some graph classes, including com-
plete bipartite graphs, forests, planar and outer-planar graphs, graphs of fixed tree-
width, path-width, degeneracy, or maximum degree. In particular, Asinowski and
Suk [AS09] give upper and lower bounds on the bend-number of complete bipartite
graphs. Biedl and Stern [BS09] show b(G) ≤ 5 for planar G and b(G) ≤ 3 for outer-
planar G. They also give upper bounds on b(G) in terms of tree-width, path-width,
coloring number and maximum degree of G.

Just as for Question 2.0.5 and Question 3.0.4 in the preceding chapters, a complete
answer to Question 4.0.8 for a particular graph class G, would consist of two parts.
First, for every graph G ∈ G we have to find a k-bend representation of G. We call
such a proof an “upper bound” for the graph class. And second, for some particular
graph G∗ ∈ G we have to show that every EPG representation of G∗ contains at least
one path with k or more bends. Consequently, we call this a “lower bound”.

The table below summarizes all upper and lower bounds to Question 4.0.8 that we
know of for a set of some graph classes. The columns in Table 4.1 labeled LB and
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UB contain the lower and upper bounds, respectively. Note that we have matching
upper and lower bounds in several cases.

Remark 4.0.9. Most of the literature, including [AS09, BS09, GLS07], is considering
Bk, the class of k-bend graphs. Clearly b(G) ≤ k just paraphrases G ∈ Bk. However,
we prefer to use b(G) rather than Bk.

Maximum Bend-Number in G
Graph Class G

LB UB

Tree 1 [GLS07] 1 [GLS07]

Outer-Planar 2 [BS09] 2 Thm. 4.2.1

Planar + Bipartite 2 [BS09] 2 [BS09]

Planar + 4-Connected 2 3 Thm. 4.2.4

Planar 3-Tree 3 Lem. 4.2.3 3 Thm. 4.2.2

Planar 3 4 Thm. 4.2.6

⌈n
2
⌉ [AS09]

Km,n, (m ≤ n) ⌈mn+√mn

m+n ⌉ Lem. 4.1.1
2m − 2 [AS09]

Line Graph∗ 2 2 [BS09]

Maximum Degree ∆ ⌈∆
2
⌉ Lem. 4.3.9 ∆ Thm. 4.3.8

Tree-Width k 2k − 2 Lem. 4.3.4 2k − 1 Cor. 4.3.6

Degeneracy k 2k − 1 Lem. 4.3.2 2k − 1 Thm. 4.3.1

Table 4.1: Summary of lower bounds and upper bounds for the maximum bend-
number among all graphs within some graph classes. (LB = lower bound, UB =
upper bound, ∗ = without subgraphs)

This chapter is organized as follows:

Section 4.1: We provide a first important lemma that will be used later in this
chapter, the Lower-Bound-Lemma. Considering complete bipartite graphs, we
prove a lower bound on b(Km,m), which equals the known upper bound [AS09].
In particular, this proves that for every k ≥ 0 there is a G with b(G) = k, which
has been asked [GLS07] and partially answered [AS09] before. Moreover, we
derive upper and lower bounds on the bend-number of Km,n for m ≠ n. We
determine b(Km,n) in a couple of cases: if n is a specific quadratic function of
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m and if n is bigger than some degree 4 polynomial in m, which improves the
bounds in previous results [AS09, BS09].

Section 4.2: We deal with planar and outer-planar graphs. We prove a conjecture
of Biedl and Stern [BS09], that the bend-number of an outer-planar graph is at
most 2, matching the known lower bound. We also provide an upper bound of 3
for the bend-number of subgraphs of planar 3-trees, together with a matching
lower bound. This lower bound improves the previously best known value of 2
for general planar graphs. For general planar graphs, we improve the upper
bound of 5 [BS09] down to 4. Hence the maximum bend-number among all
planar graphs is either 3 or 4. Beforehand, the best known lower and upper
bounds were 2 and 5, respectively.

Section 4.3: We provide upper and lower bounds on the bend-number in term of the
graph’s degeneracy, tree-width, and maximum degree. In case of degeneracy
(Subsection 4.3.1) we improve the known upper bound [BS09] and show that
it is tight even for bipartite graphs. With regard to the tree-width (Subsec-
tion 4.3.2) the presented upper and lower bound differ by an additive 1. More-
over, we provide a matching upper bound for tree-width 2. In Subsection 4.3.3
we improve the upper bound of Biedl and Stern [BS09] for the bend-number in
terms of the graph’s maximum degree. However, this still leaves a factor of 2
to the best-known lower bound.

Section 4.4: We show that recognizing single-bend graphs is NP-complete, which
answers a question that has been raised several times [GLS07, BS09, Rie09].
This is the first NP-completeness result in the field.

Section 4.5: We review the following three graph parameters: the interval-number,
the local track-number and the track-number. Figuratively speaking, each of
them is measuring “how far” the graph is from being an interval graph. We
argue that these concepts are related to the bend-number and compare the
maximum bend-number within a graph class with the corresponding maximum
interval-number, local track-number, and track-number.

4.1 The Bend-Number of Complete Bipartite Graphs

This section deals with the bend-number of complete bipartite graphs. Throughout
this section we denote the bipartition classes of Km,n by A = {a1, . . . , am} and B =

{b1, . . . , bn} and always assume 2 ≤ m ≤ n. For convenience, we depict vertices of A
by blue paths and vertices of B by red paths. See Figure 4.3 for an example.
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Figure 4.3: A 2-bend representation of K3,10.

We start this section with the Lower-Bound-Lemma (Lemma 4.1.1), which is our
“standard tool” to derive lower bounds, even though it applies only to special EPG
representations. We define the depth of an EPG representation Γ to be the maxi-
mum number of grid paths in Γ that share a grid edge. For abbreviation we call
EPG representations of depth 2, simple EPG representations. Clearly, every EPG
representation of a triangle-free graph is simple. However, even when constructing
representations for general graphs, it is convenient to restrict to depth 2. Indeed,
almost all EPG representations in the literature so far (except the 2-bend representa-
tion of line graphs [BS09]) are simple. Also, many upper bounds in this thesis rely on
simple representations. In general, a simple EPG representation may require many
more bends than a non-simple one: A good example is Kn. But when restricted to
simple representations we quickly obtain a lower bound on the required number of
bends.

Lemma 4.1.1 (Lower-Bound-Lemma). Let L denote the set of supporting grid

lines of a simple k-bend representation Γ of G = (V,E). Then we have

∣E∣ + ∣L∣ ≤ (k + 1)∣V ∣.

Moreover, we can assume w.l.o.g.

∣L∣ ≥
√
k∣V ∣.

Proof. W.l.o.g. consider a simple k-bend representation in which every vertex path
has exactly k bends. Look at the rightmost or up-most grid edge of each of the k + 1

segments of each vertex v. If this grid edge is shared by another vertex w (there can
be only one in a simple representation), we assign v to the edge {v,w} in the graph.
This way

• every vertex is assigned to at most k + 1 edges,
• every edge is assigned at least once, and
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• at the rightmost (up-most) grid edge of every line in L either no assignment is
done or an edge is assigned twice.

Hence, we have ∣E∣ ≤ (k + 1)∣V ∣ − ∣L∣. Moreover, since the representation is simple,
at most four bends can share a grid point. Thus, at least 1

4
k∣V ∣ grid points support

a bend. The minimum number of grid lines crossing in that many grid points is at

least 2
√

1

4
k∣V ∣ =

√
k∣V ∣, which proves the lemma.

Remark 4.1.2. The Lower-Bound-Lemma can be generalized from simple k-bend
representations (depth 2) to arbitrary fixed depth d ≥ 2. For instance, if the maximum
size of a clique in the graph is bounded by d, then every EPG representation of it
has depth ≤ d. Clearly, the lower bounds on the bend-number we obtain this way get
worse, but may still be best-possible in some cases.

Although the Lower-Bound-Lemma only depends on the number of vertices and
edges, it turns out to be very powerful in several cases. For example, it is tight for
Km,n in some particular cases. At first, let us consider the case m = n. Asinowski
and Suk [AS09] have shown that b(Km,n) ≤ ⌈max{m,n}

2
⌉ = ⌈n

2
⌉. Figure 4.4 illustrates

their construction using K5,6 as an example. The authors also ask, whether this
representation is best-possible in the case m = n. We can confirm this by applying
the Lower-Bound-Lemma (Lemma 4.1.1). At the same time this solves a conjecture
of Golumbic et al. [GLS07], asking whether for every k ≥ 0 there is a graph G with
b(G) = k.

Figure 4.4: A 3-bend representation of K5,6. The smaller bipartition class A is blue.

Theorem 4.1.3. For all 2 ≤m ≤ n, such that m = n or m + 1 = n is even, we have

b(Km,n) = ⌈m
2
⌉.

Proof. We prove that Km,2⌈m
2
⌉ has no k-bend representation with k < ⌈m

2
⌉. Assum-

ing the existence of such a representation, the Lower-Bound-Lemma (Lemma 4.1.1)
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gives 2m⌈m
2
⌉ + ∣L∣ ≤ ⌈m

2
⌉(m + 2⌈m

2
⌉). If m is even we obtain m2 + ∣L∣ ≤ m2 which

is a contradiction since ∣L∣ ≥ 1. For odd m we calculate ∣L∣ ≤ 1

2
(m + 1). But by

the Lower-Bound-Lemma we can assume ∣L∣ ≥
√

1

2
(m − 1)(2m + 1) which leads to a

contradiction for m ≥ 2.

The upper bound follows from b(Km,n) ≤ ⌈max{m,n}
2

⌉ [AS09].

When considering Km,n with increasing n compared to m, the upper bound
⌈max{m,n}

2
⌉ of Asinowski and Suk gets worse. Being interested in the behavior of

b(Km,n), we now determine the exact value for a certain n ∈ θ(m2).

Theorem 4.1.4. Let m ≥ 3. For even m we have b(Km,(m+1)(m−2)) =m − 1 and for

odd m we have b(Km,m(m−2)) =m − 1.

Proof. Let m be even. We use a braid-like path P with m − 1 bends and m/2 − 1
crossings as a template for every path in A. We represent each of the m vertices in A

by a copy of P translated by a very small amount along the diagonal. See the left of
Figure 4.5 for an illustration. The vertices of B are represented by small staircases
with m − 1 bends, each interlaced around a bend or a crossing of P . At every bend
of P , except the braid’s turning point, we interlace m red staircases and at every
crossing another two staircases. This is illustrated in the right of Figure 4.5. In total
we have (m − 2) ⋅m + (m/2 − 1) ⋅ 2 = (m − 2)(m + 1) vertices in B.

Figure 4.5: Representing Km,(m+1)(m−2) (m even) with m − 1 bends: Vertices in A

(blue) are represented by braid-like paths. Vertices in B (red) are represented by
staircases interlaced at the bends and crossings.

For odd m, first represent Km−1,m(m−3) as described in the even case with m − 2

bends for each path. Then add the missing vertex am ∈ A by a snake-like (m − 1)-
bend path like the dashed one on the left of Figure 4.6. The vertical end of the so far
existing paths in B ∖ {b∗} can be extended to reach am and endowed with another
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bend to connect to it. The special vertex b∗ is extended horizontally to reach am as
depicted in Figure 4.6.

Finally, every path ai ∈ A∖{am} receives a last bend at its vertical or horizontal end,
depending on the parity of i. We obtain several new crossings where an additional
set of m paths may be threaded in; see the right of Figure 4.6. This way B contains
m(m − 2) vertices.

b∗

Figure 4.6: Representing Km,m(m−2) (m odd) with m−1 bends: Vertices in A∖{am}
(blue) are represented by braid-like paths and am (dashed) by a snake-like path. The
first m(m − 3) vertices in B (red) are interlaced as in the even case and extended
vertically to reach am. Only b∗ is extended as depicted. Another m vertices in B are
threaded in as shown on the right.

The above constructions show that both bend-numbers are at most m − 1. Equality
follows from a straightforward application of the Lower-Bound-Lemma.

Theorem 4.1.4 only holds if m ≥ 3. The bend-number of K2,n has been determined
for all n [AS09]: b(K2,n) = 2 if and only if n ≥ 5 and b(K2,n) = 0 if and only if n = 0,1.

Now we investigate the extremal case where n gets very large compared to m.
Asinowski and Suk [AS09] showed that b(Km,n) = 2m − 2 for every n ≥ N with
N ∈ Ω(mm); see Figure 4.9 for a representation. Later on, Biedl and Stern [BS09]
improved this to N = 4m4 − 8m3 + 2m2 + 2m+ 1. In Theorem 4.1.7 we lower this once
more to N = m4 − 2m3 + 5m2 − 4m + 1 and show in Theorem 4.1.8 that this leaves
at most a quadratic gap to the true value, disproving the conjecture of Biedl and
Stern [BS09], that the true value is O(m2). We begin with bounding the number of
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crossings of two paths which have a given odd number of bends. This bound may be
of interest on its own.

Lemma 4.1.5. Two (2m − 1)-bend paths cross in at most m(m + 1) points. This is

tight.

Proof. Consider two given (2m − 1)-bend paths v and w. Both have exactly m

horizontal and m vertical segments. We color the vertical segments of v and the
horizontal segments of w black and the remaining segments grey. Along each path
we index the segments, starting with its black end, i.e., v1 and w1 are black and
v = (v1, . . . , v2m) and w = (w1, . . . ,w2m). Now every crossing is monochromatic,
either black with odd indices or grey with even indices. We partition the pairs of
segments that have the same color but come from different paths into four sets. Set
B contains all black pairs that do cross and B all black pairs that do not cross.
Similarly G and G are defined for grey segments.

Consider a black crossing {vi,wj} ∈ B and the grid line ℓ containing vi. Each of
vi−1, vi+1,wj−1,wj+1, if existent, is grey and lies completely on one side of ℓ. Moreover
wj−1 and wj+1 lie on different sides since wj crosses ℓ. Now consider vi−1 (or vi+1)
and the w-segment on the other side of ℓ. This pair is in G since they lie on different
sides of ℓ and thus do not cross. This way, we associate up to two grey non-crossings
with every black crossing, even if there are more. See Figure 4.7 for an example.

w1

w2

wj−1
wj+1

vi−1

vi−1

vi+1vi+1
ℓℓ

Figure 4.7: A black crossing is associated with every pair of grey segments from
different sides of ℓ: The black crossing on the left is associated with {vi−1,wj+1} and
{vi+1,wj−1}. The black crossing on the right is associated with no grey non-crossing.

Next we partition the black crossing pairs B in two ways. Above we have associated
every such pair with two, one or no grey non-crossing. For i = 0,1,2 we put a
black crossing into Bi if it is associated with i grey non-crossings. Secondly, we
write B(v1) for the set of black crossings v1 participates in and do the same with
w1. We denote Bi(w1) ∶= Bi ∩ B(w1) for i = 0,1,2. Then B0 = B0(w1) and B1 =
(B(v1) ∖ B(w1)) ∪ B1(w1). Note that every grey non-crossing is associated with at
most two black crossings and hence we have ∣B1∣ + 2∣B2∣ ≤ 2∣G ∣. This leads to:
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2∣B∣ ≤ 2∣G∣ + ∣B(v1) ∖ B(w1)∣ + ∣B1(w1)∣ + 2∣B0(w1)∣

Now observe the following: When tracing the path v between any two black seg-
ments contributing to a B0(w1)-crossing there is a black segment of v that either par-
ticipates in a B2(w1)-crossing or does not cross w1 at all. Hence, because v has only m

black segments, we have 2∣B0(w1)∣−1+∣B1(w1)∣ ≤m, as well as, ∣B(v1)∖B(w1)∣ ≤m−1.
Plugging both into the above inequality, we calculate 2∣B∣ ≤ 2∣G∣ + 2m. Thus,
∣B∣ − ∣G∣ ≤ m. Now adding m2 on both sides we obtain: ∣B∣ + ∣G∣ ≤ m2 +m, where G
denotes the set of grey crossings.

Figure 4.8 shows that two (2m−1)-bend paths can indeed have m(m+1) crossings.

m = 5 m = 6m = 4

Figure 4.8: Two (2m − 1)-bend paths can cross in m(m + 1) points.

Part (i) of the following lemma is due to Biedl and Stern [BS09].

Lemma 4.1.6. Consider a k-bend representation of Km,n and a subset B′ of B, such

that every vertex in B′ establishes two of its incidences with either a single segment

or two consecutive segments. Then

(i) ∣B′∣ ≤ 2(m(k+1)
2
) and

(ii) ∣B′∣ ≤ (k + 1)(k+3
2
(m
2
) + 2m) if k is odd.

Proof. Let s and s′ be segments of distinct vertices in A and b ∈ B′ a path inter-
secting s and s′ with either the same or consecutive segments. In the first case, the
corresponding segment of b must contain an endpoint of each s and s′. Since B is an
independent set, b is the only vertex that intersects s and s′ with the same segment.
In the second case b must have a bend where the grid lines through s and s′ intersect.
Here, beside b at most one other vertex in B can intersect s and s′ with consecutive
segments.
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Since there are at most (m(k+1)
2
) pairs of segments of vertices in A, there are at

most twice as many vertices in B′. This concludes part (i).

For a more careful analysis, in the case of odd k, observe that two paths in B can
intersect s and s′ with consecutive segments only if s and s′ cross. By Lemma 4.1.5,
two k-bend paths can cross in at most (k+1)(k+3)/4 points if k is odd. Hence there
are at most (m

2
)(k + 1)(k + 3)/4 crossings between vertices in A.

If s and s′ are perpendicular but do not cross, at most one vertex b ∈ B can
intersect both with consecutive segments and at least one such segment of b must
contain an endpoint of s or s′. Since there are at most 2m(k + 1) endpoints of
segments of vertices in A, we conclude that ∣B′∣ ≤ 2(m

2
)(k + 1)(k + 3)/4 + 2m(k + 1) =

(k + 1)((m
2
)(k + 3)/2 + 2m).

Theorem 4.1.7. We have b(Km,n) = 2m − 2 for all n >m4 − 2m3 + 5m2 − 4m.

Proof. If m = 1, then Km,n is a star and thus an interval graph, i.e., b(K1,n) = 0 for
all n > 0.

For m > 1 suppose b(Km,n) ≤ 2m − 3. Then applying Lemma 4.1.6–(ii) with
k = 2m − 3 yields, that at most N ∶= (2m − 2)((m

2
)m + 2m) = m4 − 2m3 + 5m2 − 4m

vertices in B can establish two of its incidences with the same or consecutive segments.
Hence if ∣B∣ > N , there must be a vertex b ∈ B with at least one “empty” segment
between any two “non-empty” segments. Moreover every segment of b establishes at
most one incidence. Since b has degree m, we conclude that b must have at least
2m − 1 segments.

Figure 4.9 shows that b(Km,n) ≤ 2m − 2, regardless of n.

Figure 4.9: A representation verifying b(Km,n) ≤ 2m − 2.

Biedl and Stern [BS09] conjectured that Theorem 4.1.7 is already true for all n ≥ N
with N ∈O(m2). We disprove this and show that Theorem 4.1.7 is not far from being
tight.

Theorem 4.1.8. If n ≤m4 − 2m3 + 5

2
m2 − 2m − 4 then b(Km,n) ≤ 2m − 3. Note that

this leaves only a quadratic discrepancy to the bound of the preceding theorem.
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Proof. We divide A equally into A1 and A2. We use the two (2m− 3)-bend paths P1

and P2 from the tight example in Figure 4.8 as templates for vertices in A1 and A2,
respectively. Note that each Pi has (m−1

2
) crossings and P1 and P2 cross m(m − 1)

times.

For i = 1,2 every a ∈ Ai runs within a small distance along Pi. We ensure that
at every bend of Pi every pair of paths in Ai crosses. This way, every such pair
crosses 2(m−1

2
)+ 2m− 3 =m(m− 1)− 1 times. A pair of vertices, one from A1 and the

other from A2, crosses m(m− 1) times. Hence the total number of crossings between
vertices in A is given by ⌊m

2
⌋⌈m

2
⌉m(m−1)+((⌈m/2⌉

2
)+(⌊m/2⌋

2
))(m(m−1)−1). At every

crossing we can interlace two vertices of B.

Figure 4.10: A (2m − 3)-bend representation of Km,n, where n ≤ m4 − 2m3 + 5

2
m2 −

2m− 4: Every vertex in A (blue) runs within a small distance along one of two paths
with the maximum number of crossings. Every vertex in B (red) is interlaced around
one crossing or two endpoints of blue segments.

Moreover every endpoint of a segment from A (except the ends of the paths and
the eight endpoints of the topmost, rightmost, bottommost, and leftmost segment)
can be used to interlace vertices of B. There are 2m(2m − 3) − 8 suitable endpoints.
Interlacing one vertex uses two of them.

Figure 4.10 suggests how to insert one vertex b ∈ B with two suitable endpoints
and two vertices b, b′ ∈ B at one crossing. By doing this we can insert n = ⌊m4−2m3+
5

2
m2 − 2m − 4⌋ vertices into B.

By Theorem 4.1.8 we have b(Km,n) ≤ 2m−3 if n ≤m4−2m3+ 5

2
m2−2m−4. On the

other hand, by Theorem 4.1.7 we have b(Km,n) = 2m−2 if n >m4−2m3+5m2−4m. The
bend-number of Km,n for every n ∈ {m4−2m3+ 5

2
m2−2m−3, . . . ,m4−2m3+5m2−4m}

is either 2m − 3 or 2m − 2. But determining the exact value remains open.
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Question 4.1.9. What is the maximum n for which b(Km,n) ≤ 2m − 3?

The representations we have given for complete bipartite graphs can naturally
be extended to different values of n, though they might not be optimal anymore.
For instance, the first and the second representation in Theorem 4.1.4 yields that
b(K5,24) ≤ 5 and b(K5,25) ≤ 6, respectively. Moreover Figure 4.3 certifies b(K3,10) ≤ 2,
i.e., b(K3,5) ≤ 2. In Figure 4.11 we sketch a region which contains the graph of
b(K5,n).

b(K5,n)

n0
0
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1

2

2

3

3
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4
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6
7
8

13 15 24 152 423 480

Fig. 4.3

Fig. 4.4

[AS09]
Thm. 4.1.3

Thm. 4.1.4

Lower-Bound-Lemma

Thm. 4.1.8

Thm. 4.1.7

Figure 4.11: Upper and lower bounds for b(K5,n). The filled circles and the straight
line are values of b(K5,n).

With Theorems 4.1.3, 4.1.4, and 4.1.7 we have determined the bend-number of Km,n

for n being a fixed polynomial in m of degree 1, 2, and 4, respectively. From these
results and the Lower-Bound-Lemma we get a first approximation of the function
b(Km,.). In the light of these results it seems interesting to determine a further exact
value of this function for n being a polynomial in m of degree 3.

Question 4.1.10. What is the behavior of b(Km,n) for n ∈ θ(m3)?

4.2 The Bend-Number of Planar and Outer-Planar

Graphs

This section deals with planar and outer-planar graphs. In particular, we show that
every outer-planar graph has a 2-bend representation. This confirms a conjecture of
Biedl and Stern [BS09], who presented a 3-bend representation for every such graph
and moreover an outer-planar graph that does not admit a 1-bend representation.
This graph is shown in Figure 4.12. We conclude that the maximum bend-number
among all outer-planar graphs is 2. We also improve the previously best known
result for planar graphs, i.e., we construct a 4-bend representation for every planar
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4.2. The Bend-Number of Planar and Outer-Planar Graphs

graph. On the other hand we provide a planar graph, which does not have a 2-bend
representation. Hence, the maximum bend-number among all planar graphs is either
3 or 4.

Figure 4.12: An outer-planar graph (a so-called snowflake graph) with bend-number
2. This example is due to Biedl and Stern [BS09].

Many proofs in this and the next section make use of a certain building sequence
(c.f. Section 1.1) of the graph. When arguing about an EPG representation, we need
the concept of displayed parts. Recall that a k-bend path consists of k + 1 segments,
each of which is either horizontal and vertical. A sub-segment is a connected subset
of one segment and a set of sub-segments in an EPG representation is called a part .
A part Γ′ of a representation Γ is said to be displayed if no sub-segment in Γ ∖ Γ′

overlaps a sub-segment in Γ′. In particular, if we restrict a representation Γ to any set
of grid edges, then this restriction Γ′ is a displayed part of Γ. Indeed, every displayed
part of Γ arises this way. For example, Figure 4.13 shows an EPG representation with
a blue part and a red part. We highlight a part by underlining the corresponding
grid edges in grey. The blue part is displayed, while the red part is not, because the
corresponding grid edges contain some red sub-segment that is not red. Note that
segments not belonging to some displayed part may well cross sub-segments of the
part.

Figure 4.13: An EPG representation with two parts highlighted in blue and in red,
respectively. The blue part is displayed, while the red part is not.

We say that two horizontal sub-segments in an EPG representation see each other

if there is a vertical grid line crossing both sub-segments. Similarly, two vertical
sub-segments see each other if there is a horizontal grid line crossing both.
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4. Edge-Intersection Graphs of Grid Paths

We now present a 2-bend representation Γ for every outer-planar graph G. Note
that the representation is indeed simple.

Theorem 4.2.1. For every outer-planar graph G we have b(G) ≤ 2.

Proof. Outer-planar graphs have tree-width at most 2. We construct a 2-bend rep-
resentation of the outer-planar graph G along a building sequence of G associated
with its tree-width (c.f. Subsection 1.1.2). In particular, we consider a maximally
outer-planar G̃ which is a super-graph of G, i.e., G̃ is a 2-tree. Let (v1, . . . , vn) be
a vertex ordering of G̃, such that degGi

(vi) ≤ 2 for every i = 1, . . . , n. We maintain
that for every outer edge (u, v) of Gi there is a displayed part as in one of the cases
that are illustrated in the top row of Figure 4.14. That is, u and v have displayed
sub-segments with the same orientation that see each other (right in Figure 4.14) or
with distinct orientation that share a grid point (left in Figure 4.14). Moreover, we
require at all time that all the displayed parts are pairwise disjoint.

u

u
u

u
v

vv

v

x

x

(u,x)
(u,x)

(v,x)(v,x)

Figure 4.14: Building a 2-bend representation of an outer-planar graph, a vertex x is
attached to the edge (u, v) ∈ E(G̃): The displayed parts for (u, v) and (u,x), (v,x)
are highlighted in the upper and lower row respectively.

The second row shows how to introduce a vertex x and maintain the invariant for
the new edges (u,x) and (v,x) in G̃. If (u,x) or (v,x) is not an edge in G, the
corresponding segment of x is simply omitted. To omit only the edge (v,x) in the
left of Figure 4.14 just interchange the roles of u and v.

Let us illustrate the construction in the proof of Theorem 4.2.1 with an example.
Figure 4.15 a) shows an outer-planar graph G, as well as a maximally outer-planar
super-graph G̃ of G and a vertex ordering (v1, . . . , v6) with degGi

(vi) ≤ 2 for i =

i, . . . ,6. In Figure 4.15 b) a 2-bend representation Γ of the subgraph G3 on v1,
v2 and v3 is given. The three displayed parts for the three edges (v1, v2), (v1, v3),
and (v2, v3) in G̃ are highlighted. Note that (v1, v2) is not an edge in G, but this
edge could be established in Γ by adding a bend to the path of v3 in the lower left
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corner. The construction of a 2-bend representation of G along its building sequence
G3 ⊂ ⋯ ⊂ G6 = G is illustrated in Figure 4.15 c) and d).

a) b) c) d)

v1

v1 v1 v1
v2

v2v2v2

v3

v3v3v3

v4 v4v4

v5

v5

v6

v6

Figure 4.15: a) An outer-planar graph G with a vertex ordering corresponding to
a maximally outer-planar super-graph G̃ of G. b) 2-bend representation of G3 =

G[v1, v2, v3]. c) 2-bend representation of G4. d) 2-bend representation of G = G6. In
each partial representation the displayed parts are highlighted.

Let us consider two further special classes of planar graphs, namely (subgraphs of)
planar 3-trees and (subgraphs of) 4-connected maximally planar graphs. For graphs
of either class we present 3-bend representations.

Theorem 4.2.2. For every planar graph G with tw(G) ≤ 3 we have b(G) ≤ 3.

Proof. Recall from Subsection 1.1.2 that there is a planar 3-tree G̃, which is a super-
graph of G. There is a vertex ordering (v1, . . . , vn), such that G̃3 is a triangle, and
every vertex vi is connected to the three vertices u, v,w of a facial triangle in G̃i−1,
for i ≥ 4. The triangle {u, v,w} is then no longer facial in G̃i and hence no second
vertex may be attached to it. As in the proof for Theorem 4.2.1, we build a 3-bend
representation of G concurrently with the building sequence G3 ⊂ ⋯ ⊂ Gn of G w.r.t.
the vertex ordering (v1, . . . , vn). We maintain the following invariant on the 3-bend
representation Γi of Gi, for i ≥ 3:

(I) Every path in Γi has a horizontal and a vertical displayed sub-segment, and
(II) every facial triangle {u, v,w} of G̃i has two vertices, say u and v, such that

a) there is a displayed part consisting of a sub-segment of P (u) edge-
intersecting a sub-segment of P (v); see Figure 4.16 a),

b) or a displayed entire segment of P (v) and a displayed sub-segment of P (u)
cross; see Figure 4.16 a).
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Moreover, we require that all the displayed parts above are pairwise disjoint and
that the entire segment in every cross in b) can not see displayed parts from (I).
However, we need this assumption only in the case in Figure 4.16 c).

u

u
uu

u

v

v
v

v

vvv

v

w

w
w

w w

vivi

vi

vivi

a) invariant for {u, v} b) degGi
(vi) = 3,

{u, v} of first type

c) degGi
(vi) = 3,

{u, v} of second type

d) degGi
(vi) = 2 e) degGi

(vi) = 1 f) degGi
(vi) = 0

or

or

Figure 4.16: Building a 3-bend representation of a planar graph with tree-width 3,
a vertex vi is attached to the facial triangle {u, v,w} in G̃i−1 : In a) the two types
of invariant for {u, v} are shown. In b)–f) it is shown how to insert the new vertex
vi (drawn bold) depending on its degree in Gi and the invariant of {u, v}. The
invariants for the three new facial triangles {u, v, vi}, {u, vi,w}, and {vi, v,w} in G̃i

are highlighted.

First, we represent the subgraph G3 of G as follows. Figure 4.17 shows a 3-bend
representation of a triangle {v1, v2, v3}, which satisfies invariants (I) and (II) as in-
dicated by the grey sets of grid lines. If G3 is not a triangle, i.e., one or more of
the three edges is not present in G3, the representation can easily be modified to
represent G3. To be precise, if some edge at v3 is not present, one segment of the
path of v3 is omitted. If the edge (v1, v2) is not in G3, then one segment of the path
for v2 is shortened a bit. The result is the representation Γ3 of G3, which still satisfies
the invariants.

For i ≥ 4, the path for vertex vi is introduced to Γi−1 according to the degree of
vi in Gi and the type of invariant for the facial triangle {u, v,w} in G̃i−1 that vi is
connected to. Figure 4.16 b)–f) shows all five cases and how to introduce vi, which is
illustrated by the bold path. Consider in particular the case that vi has an edge with
each of u, v, and w, and moreover the triangle {u, v,w} has a cross; see Figure 4.16 c).
Here we use that the v-segment in the cross can not see the displayed sub-segment of
w. Otherwise the new path corresponding to vi would not have a horizontal displayed
sub-segment.
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v1

v2

v3

Figure 4.17: A 3-bend representation of a triangle {v1, v2, v3}, which satisfies the
invariant.

In the figure the displayed parts from invariant (II) for the new facial triangles
{u, v, vi}, {u, vi,w} and {vi, v,w} in G̃i are highlighted in dark grey. Additionally,
every path, including the new path for vi, has a horizontal and a vertical displayed
sub-segment and these can be chosen so that they do not see any entire segment of a
cross.

For example, consider the case that vi is not adjacent to u, v, or w in Gi; see
Figure 4.16 f). Here the new facial triangles {u, vi,w} and {vi, v,w} have a cross of an
entire segment of P (vi) and a displayed sub-segment of P (w) and P (v), respectively.
The new facial triangle {u, v, vi} has the displayed part of {u, v}, which existed for
the triangle {u, v,w} before.

The next proposition shows that Theorem 4.2.2 is tight. Moreover this confirms
what Biedl and Stern strongly suspected [BS09].

Lemma 4.2.3. There is a planar graph G with tw(G) = 3 and b(G) = 3.

Proof. The graph G is depicted in the left of Figure 4.18 and is constructed the
following way. Two vertices u and v together with 50 white vertices form an induced
K2,50 subgraph, i.e., a complete bipartite graph on 2+50 vertices. Any two consecutive
white vertices together with 50 black vertices form another induced K2,50. Finally,
between any two consecutive black vertices we place a copy of the graph H that is
the 29-vertex graph depicted in the right of Figure 4.18.

It is known [AS09] that b(K2,n) = 2 if n ≥ 5. Hence b(G) ≥ 2. For the sake of
contradiction let us assume that b(G) = 2 and consider a 2-bend representation of
G together with the induced 2-bend representations of all induced K2,50 subgraphs.
Furthermore, it is known [BS09] that in any EPG representation of K2,n at most
12 vertices of the n-bipartition class establish their two edges with the same or con-
secutive segments. Moreover the 2-bend paths of u and v together have at most 12

endpoints of segments. Thus at most another 12 white vertices contain an endpoint
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G = H =

H H

HH

x

y

u

v

50

50

⋮ ⋮

⋯
a1 a2 a3 a4

g

w2 w3

Figure 4.18: A planar graph G with tw(G) = 3 and b(G) = 3, as well as the graph H

used inside G.

of u or v in the interior of a segment. Hence there are two consecutive white vertices,
say u′ and v′ that establish their edges with u and v with two distinct segments of
the same direction, each completely contained in the corresponding segment of u and
v.

Now the same argument can be applied to the K2,50 subgraph induced by u′, v′, and
50 black vertices. Thus there are two consecutive black vertices, which we denote by
x and y, such that the following holds: There is a segment su′ of u′ and a segment sv′
of v′, both of the same direction. Either of x and y has two segments, one completely
contained in su′ and the other completely contained in sv′ . In particular, the paths
of u′, v′, x, and y are positioned as the black bold paths in Figure 4.19.

u′ v′
x

y

g

a1 a2 a3 a4

ℓ

Figure 4.19: A detail of a hypothetical 2-bend representation of G.

Now consider the copy of H that is placed between x and y. W.l.o.g. we assume
that the displayed segment of x and y is horizontal. The graph H contains, aside
from x and y, a set A of four black vertices denoted by a1, a2, a3, and a4, and a set
B of six grey vertices; see the right of Figure 4.18. Every vertex in A∪B is adjacent
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to x or y, but not to u′ and not to v′. Hence each path of such vertex overlaps with
a horizontal segment of x or y. From the adjacencies between vertices in A ∪ B it
follows that the vertical segments of a1, a2, a3, and a4 appear in order – w.l.o.g. from
left to right. Moreover the paths of a2 and a3 do not overlap vertically since a2 has
a private neighbor. W.l.o.g. assume that the paths of a2 and a3 overlap within the
horizontal x-segment; see Figure 4.19. Let us denote the grey vertex adjacent to a2,
a3, and x by g.

It follows that the horizontal segment of g within the x-segment is completely
covered by a2 and a3 and hence lies strictly between a1 and a4. In consequence, the
six white vertices that are adjacent to x and g, but not to a2 or a3, intersect g on its
second horizontal segment. Let us denote the set of eight white vertices, which are
common neighbors of g and x by W and the grid line supporting at least six edges
between g and W by ℓ. Evidently, the segment of g on ℓ crosses only one of {a1, a4},
but not both, say it does not cross a4; see Figure 4.19.

The vertex in W that is adjacent to a2, respectively a3, is denoted by w2, respec-
tively w3. One can check that for i = 1,2 the edge between wi and its white neighbor
is established on ℓ and moreover that w2 lies to the left of w3 on ℓ. This implies that
the white vertices in the triangle {x, g,w3} intersect the horizontal x-segment to the
right of a4. In order to establish their adjacency with g all these three paths contain
the part of ℓ between a3 and a4, making them pairwise adjacent, which in G they are
not – a contradiction.

The next theorem show that another large class of planar graphs are 3-bend graphs,
namely subgraphs of 4-connected maximally planar graphs, i.e., the graphs admit-
ting a planar embedding without separating triangles. Note that this includes all
4-connected planar graphs, which is a class disjoint to the class of planar graphs from
Theorem 4.2.2 (as long as there are at least five vertices).

Theorem 4.2.4. For every subgraph G of a 4-connected maximally planar graph we

have b(G) ≤ 3.

Proof. If G is a proper subgraph of a 4-connected maximally planar graph, it has a
representation which is a part of a -representation (Theorem 1.3.2). The bound-
ary of each rectangle can be seen as a closed path with three bends starting and
ending at the same corner of the rectangle. This immediately gives a simple 3-bend
representation of G.

If G is a 4-connected maximally planar graph itself, take a -representation of
G ∖ (v,w). It looks as depicted in Figure 4.20 (c.f. Definition 1.3.1). We replace the
outer rectangles by the black paths (as shown in the figure) and each inner rectangle
again by its boundary path.
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inner partv w

Figure 4.20: A simple 3-bend representation of a 4-connected maximally planar graph:
This shows how to represent the missing edge (v,w).

Remark 4.2.5. Recall that an EPG-representation is called simple, if no three seg-
ments do pairwise overlap. It is easy to see that Theorem 4.2.4 is best possible in
the sense that not every planar graph has a simple 2-bend representation. For in-
stance, in every maximally planar graph G = (V,E) we have ∣E∣ = 3∣V ∣ − 6. Hence by
the Lower-Bound-Lemma every simple 2-bend representation of G gets by with at
most six grid lines, which is obviously not possible when the graph is large. Indeed,
one can argue that no maximally planar graph with nine or more vertices admits a
simple 2-bend representation. On the other hand, Figure 4.21 shows a planar 3-tree
on eight vertices with a simple 2-bend representation. Moreover, Euler’s Formula
together with the Lower-Bound-Lemma immediately shows that no maximally graph
embedded on a higher-genus surface has a simple 2-bend representation.

Figure 4.21: A maximally planar graph on eight vertices with a simple 2-bend repre-
sentation.

Next we show that the bend-number of every planar graph is at most 4, improving
a recent result of Biedl and Stern [BS09].

Theorem 4.2.6. For every planar graph G we have b(G) ≤ 4.

Proof. First, we add vertices to the given graph until we obtain a super-graph G that
is maximally planar. If we find a 4-bend representation for G, removing the paths
from it that correspond to artificial vertices, yields a 4-bend representation of the
original graph.
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We build up G w.r.t. its separation-tree TG, as defined in Subsection 1.1.5, i.e., for
each i we construct a 4-bend representation Γi for the level-i subgraph G[i] of G. As
in the proof of Theorem 2.2.4 in Chapter 2, we define the subgraph G[−1] of G to
be just the outer triangle ∆0 = {u0, v0,w0}. We then start with the representation
Γ−1 of G[−1] in Figure 4.22 c). Having a 4-bend representation Γi of G[i] for i ≥ −1,
we incorporate one after another the graph G∆ into Γi for every triangle ∆ with
depth i + 1 in TG. As soon as each graph G∆ is incorporated, the result is a 4-bend
representation Γi+1 of G[i + 1]. We maintain the following invariant for Γi.

(I) Every inner facial triangle {u, v,w} in G[i] has two vertices, say u and v, such
that

a) there is one displayed sub-segment of P (u) and one of P (v) lying orthog-
onal to each other,

b) there is a displayed part consisting of a sub-segment of P (u) overlapping
a sub-segment of P (v) that lies on same the grid line as the displayed
sub-segment of P (u), and

c) there is a displayed sub-segment of P (w) that sees the sub-segment of P (u)
(type A) or the sub-segment of P (v) (type B), such that the displayed sub-
segment that is orthogonal to P (w) lies between the two.

The invariant is illustrated in Figure 4.22 a) and b). Figure 4.22 c) shows that the
representation Γ−1 of G[−1] satisfies the invariant of type B. If the invariant holds
for a triangle ∆ = {u, v,w} in G[i], we say that ∆ is good. Hence ∆0 is good in Γ−1.

a) type A b) type B c)

uu

uu

v

v

v

v

ww
ww

or or

{u, v}
{u, v}

{u, v}
{u, v}

u0

v0

w0

{u0, v0}

Figure 4.22: a) The invariant of type A for a triangle {u, v,w} in G[i]. b) The
invariant of type B for a triangle {u, v,w} in G[i]. c) The 4-bend representation of
G[−1] = {u0, v0,w0} and its invariant of type B.

Let i ≥ −1, Γi be a 4-bend representation of G[i] that satisfies the above invariant,
and ∆ be a triangle of G of depth i + 1 in TG. We now show how to incorporate a
4-bend representation of G∆ into Γi in such a way that the resulting representation
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again satisfies the invariant. In doing so, we do not change paths that are already
represented in Γi. Moreover, every new path will lie completely within the region of
the good triangle ∆ that is indicated by dotted lines in Figure 4.22 a) and b).

We summarize the crucial claim.

Claim 1. Let Γi be a 4-bend representation of G[i] and ∆ be a triangle of G of
depth i+ 1 in TG. Assume ∆ is good, i.e., there is a region of type A or B associated
with ∆ as illustrated in Figure 4.22 a) or b). Then Γi can be extended to a 4-bend
representation of G[i] ∪G∆, such that:

(a) every inner facial triangle in G∆ is good,
(b) the corresponding regions are pairwise disjoint, and
(c) every such region is contained in the region corresponding to ∆.

Proof of Claim 1. Denote the vertices of ∆ by u, v, and w, such that P (u) and
P (v) have the common displayed part in the invariant. Define G′

∆
= G∆ ∖ {u,w}

if the invariant for ∆ is of type A, and G′
∆
= G∆ ∖ {v,w} if the invariant for ∆ is

of type B. The graph G′
∆

has a -representation ΓR due to Theorem 1.3.2. We
apply two transformations to ΓR as illustrated in the top row and the bottom row in
Figure 4.23, respectively. The first transformation is done for every inner rectangle
R. Afterwards, every such R is marked with a vertical marking segment suspended
between the rightmost rectangle on top of R and the leftmost rectangle at the bottom
of R. The second transformation is done for every pair of a rectangle R and its
rightmost neighboring rectangle R′ on top of R. Afterwards the marking segment of
R lies to the right of the marking segment of R′.

We denote the resulting -representation of G′
∆

again by ΓR. We position ΓR on
top of the region for ∆ such that each of the following holds. Let z denote the fourth
outer vertex in G′

∆
, x denote the vertex in G′

∆
that is adjacent to u and v, and y

denote the vertex adjacent to v and w in type A, and to u and w in type B. Note
that two or all of the vertices {x, y, z} may coincide.

(i) The displayed sub-segment of P (u), P (v), and P (w) runs along the inner side
of the rectangle R(u), R(v), and R(w), respectively.

(ii) The rectangle R(z) lies completely inside the region for ∆.
(iii) The marking segment of R(x) and R(y) lies completely inside the region for

∆.
(iv) The displayed sub-segments of P (u), P (v) see every rectangle in ΓR.

It is not difficult to see that the -representation ΓR can be stretched along some
cuts, such that each of the above holds, and the order of marking segments is still
maintained. See Figure 4.24 for an illustration.
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↝

↝

RR

RR

R′R′

Figure 4.23: Top row: How to transform the rectangle representation at an inner
rectangle R and mark R with a vertical segment. Bottom row: How to transform
the rectangle representation at a pair R, R′, with R′ being the rightmost rectangle
on top of R.

Now we introduce a snake-like 4-bend path for every vertex i ≠ u, v,w in G′
∆

within
its corresponding rectangle in ΓR. The path P (i) starts at the bottom-left corner of
R(i), goes up to the top-left corner, where it bends and goes right up to the segment
that marked R(i). Then P(i) follows along the marking segment down to the bottom
side of the rectangle, where it bends and goes to the right up to the bottom-right
corner and then up to the top-right corner. Afterwards, every path P (i) is shortened
by just a little bit, such that no edge-intersection is lost. See Figure 4.25 for an
illustration.

It is not difficult to check that these snake-like paths together with the already
constructed paths P (u), P (v), and P (w), give a 4-bend representation ΓEPG of G′

∆
.

Note that there is an edge-intersection between P (i) and P (j) in case R(j) is the
rightmost rectangle on top of R(i) in ΓR, because the marking segment ofR(i) lies to
the right of the marking segment of R(j). Note further, that for every edge incident
to v there is a corresponding edge-intersection because the marking segments of R(x)
and R(y) lie within the region of ∆.

We claim that every inner facial triangle {u′, v′,w′} in G′
∆

is good, i.e., we find
a certifying region for {u′, v′,w′} similar to the one from Figure 4.22 a) or b). We
distinguish two cases. First, assume that at most one of {u′, v′,w′} is a vertex of ∆.
Then the point pu′v′w′ in the -representation ΓR, that is the common intersection
of R(u′), R(v′) and R(w′) lies within the region for ∆. It is easy to see that exactly
one of the three rectangles has its bottom-left or top-right corner at pu′v′w′. Hence,
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Figure 4.24: The placement of the rectangle-representation ΓR of G′
∆

on top of the
region for ∆ = {u, v,w} depending on the region’s type. Top row: Invariant for ∆

is of type A. Bottom row: Invariant for ∆ is of type B.

the 4-bend representation ΓEPG locally looks like in one of the cases in Figure 4.26.
In the figure, for each case a region for {u′, v′,w′} is highlighted, which shows that
this facial triangle is good.

It remains to identify a region for the three facial triangles {u, v, x}, {v,w, y}, and
{u,w, z} if ∆ is of type A, as well as for the three facial triangles {u, v, x}, {u,w, y},
and {v,w, z} if ∆ is of type B. We slightly modify the paths P (x) and P (y) as
follows. We move the top-end of the middle segment of P (x) (the one that runs
along the marking segment of R(x)) vertically onto a horizontal grid line that crosses
the displayed part for {u, v}. Then P (x) bends there, goes up to this displayed
segment, bends another time and ends shortly after this. See Figure 4.27 for an
illustration. Note that in the left and the right of the figure the top-end was raised
and lowered, respectively.

The path P (y) is altered as follows. If the invariant for ∆ is of type A, the right
end of P (y) is shortened, such that it lies completely inside the region for ∆. See the
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↝

Figure 4.25: How to represent every vertex in G′
∆
∖∆ by a 4-bend snake-like path.

u′

u′

u′u′

v′

v′

v′

v′
w′

w′

w′

w′

Figure 4.26: The four possibilities for an inner face {u′, v′,w′} of G∆ with at most
one vertex from ∆. The highlighted region shows that such a face is good.

left of Figure 4.27 for an example. Similarly, if the invariant for ∆ is of type B, the
left end of P (y) is shortened, such that it lies completely inside the region for ∆. An
example is on the right of Figure 4.27.

Note that the modification of P (x) and P (y) results again in a 4-bend representa-
tion of the graph G′

∆
, which we again denote by ΓEPG. Moreover, we can now find

regions for the last three facial triangles in G∆, proving that each of these is good.
Those regions are highlighted in Figure 4.27. Let us remark, that Figure 4.27 shows
the situation only for one version of a type-A region and one version of a type-B
region. However, it is not difficult to see, that the missing versions are a mixture of
these two. Moreover, in case some two or more of the vertices x, y, and z coincide,
the corresponding regions do still exist and are disjoint. One example is illustrated
in Figure 4.28.

We have found a 4-bend path for every inner vertex of G∆, and a suitable region
for every facial triangle of G∆, and hence have proven the claim. △

We can now extend the 4-bend representation Γi of G[i] by the 4-bend represen-
tations ΓEPG of the graphs G∆ with ∆ at depth i + 1 in TG one after another as
provided by the above claim. This results in a 4-bend representation Γi+1 of G[i+1],
such that every inner face of G[i + 1] is good. Thus, repeating this procedure until
G[i] = G we obtain a 4-bend representation of G.

Putting Theorem 4.2.6 and Lemma 4.2.3 together we have shown the following.
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u
u

v

v

w

w

x
x

y

y

z

z

{u, v}

{u, v}

∆ of type A ∆ of type B

Figure 4.27: The rectangle-representation Γ and the 4-bend representation Γ′ is po-
sitioned into the region of the good triangle ∆ = {u, v,w}. The regions of the three
facial triangles that share an edge with ∆ are highlighted in dark grey.

Theorem 4.2.7. In an EPG representation of a planar graph 4-bend paths are always

sufficient and 3-bend paths are sometimes necessary.

Although we improved the previously known lower and upper bounds, it remains
open to determine the maximum bend-number of planar graphs. We suspect that 4

is the right answer.

Conjecture 4.2.8. There is a planar graph G, such that every EPG representation
of G contains at least one path with four bends.

4.3 The Bend-Number of Graphs with Fixed Degeneracy,

Tree-Width, or Maximum Degree

In this section, we consider the class of graphs with fixed degeneracy (Subsec-
tion 4.3.1), fixed tree-width (Subsection 4.3.2) and fixed maximum degree (Subsec-
tion 4.3.3). We present lower and upper bounds on the maximum bend-number within
these graph classes. The bounds are matching in case of the degeneracy, differ by
an additive 1 in case of tree-width, and differ by a factor of 2 in case of maximum
degree.
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u u

v

v

w

w

{u, v}

{u, v}

x = y = z

x = y = z

∆ of type A ∆ of type B

Figure 4.28: The case x = y = z for one version of a type-A region and one version of
a type-B region.

4.3.1 The Bend-Number in Terms of the Degeneracy

Recall from Definition 1.1.1, that the degeneracy d(G) is the smallest number k,
such that there is a vertex ordering (v1, . . . , vn) of G with degGi

(vi) ≤ k for every
i = 1, . . . , n. First we provide an upper bound on the bend-number of graphs with a
fixed degeneracy. The following result was already suspected to be true [BS09]. The
representation we construct requires d(G) ≥ 2. However, for in case d(G) = 1, i.e., G
is a forest, it is already known [GLS07] that b(G) ≤ 1.
Theorem 4.3.1. For every graph G with d(G) ≤ k we have b(G) ≤ 2k − 1.

Proof. If k = 1, the result follows from Golumbic et al. [GLS07].

For d(G) = k ≥ 2, take a vertex ordering of G such that every vertex has at most k
neighbors with a smaller label. We consider the building sequence G0 ⊂ ⋯ ⊂ Gn of G
w.r.t. this ordering, i.e., where every new vertex vi is connected to at most k vertices
that are already represented by paths. We construct a (2k − 1)-bend representation
simultaneously to the building process of G. We maintain that for i ≥ 1 Γi is a
(2k − 1)-bend representation of Gi, such that:

(I) For every vertex v in Gi there is a displayed vertical sub-segment of P (v).
(II) All these vertical sub-segments pairwise see each other.

(III) For every vertex v in Gi there is a displayed horizontal sub-segment of P (v).

Clearly, such a representation Γ1 for the 1-vertex graph G1 exists. For i ≥ 2, the
path for vi is introduced into Γi−1 as follows. All but one edge-intersection of P (vi)
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are placed vertically onto a small portion of the corresponding vertical displayed sub-
segment. These short vertical segments of P (vi) are connected by horizontal segments
without introducing further edge-intersections. The last edge-intersection is placed
horizontally onto the corresponding horizontal displayed sub-segment. This short
horizontal segment of P (vi) is connected to the rest by a horizontal and a vertical
segment. The vertical edge-intersections can easily be chosen such that the vertical
segment of P (vi) can see all the other vertical displayed sub-segments in Γi−1. See
Figure 4.29 for an illustration.

vi

Figure 4.29: Building a (2k − 1)-bend representation of G, the path for vertex vi is
inserted. Displayed sub-segments before and after the insertion are highlighted with
light-grey and dark-grey, respectively.

It is easy to verify that P (vi) has exactly 2 ⋅ degGi
(vi)− 1 bends, which proves the

theorem. (If degGi
(vi) = 0, we take a suitable 1-bend path as P (vi).)

Theorem 4.3.1 is worst-case optimal, even for bipartite graphs.

Lemma 4.3.2. For every k there is a bipartite graph G with d(G) = k and b(G) =
2k − 1.

Proof. For k = 1 note that caterpillars are the only trees that are interval graphs and
hence have bend-number 0. Thus there are trees with d(G) = 1 and b(G) = 1.

For k ≥ 2, we construct a graph G, which is huge and arises from a Kk,n with very
large n. Let B be the independent set of vertices in Kk,n of size n. We connect
k(2k − 2)+ 1 new vertices with every k-subset of B. The set of the (k(2k − 2)+ 1)(n

k
)

added vertices is denoted by C. Moreover, we connect k(2k−2)+1 new vertices with
every k-subset of C. This set of vertices is denoted by D.

The above building sequence gives a vertex ordering with degGi
(vi) ≤ k, for every

vertex vi. Hence we have d(G) ≤ k. For the sake of contradiction assume that b(G) ≤
2k − 2 and consider the induced Kk,n the construction started with. By Lemma 4.1.6
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all, but roughly 4k4 vertices in B, are represented by paths in which exactly every
second segment is establishing one edge-intersection. By this –with increasing n–
an arbitrarily large subset B′ ⊂ B looks like Figure 4.9 depicts, i.e., vertices in B′

establish all further incidences only with vertical segments. Additionally, there are
many pairs of k-subsets of B′ such that every path in one subset lies to the left of
every path in the other subset.

We fix k distinct k-subsets B1, . . . ,Bk of B′, such that every path in B1 lies to the
left of every path in B2 ∪ . . . ∪Bk. Hence every vertex in C that is connected to B1

lies completely to the left of every vertex in C that is connected to one of B2, . . . ,Bk.

c1 c2

c3

Figure 4.30: A part of a hypothetical (2k − 2)-bend representation of G. The sets B′

and C ′ = {c1, c2, c3} are depicted grey and thick, respectively.

We connected k(2k −2)+1 vertices with every Bi, that is, one more than there are
bends in Bi. Hence for every i ∈ {1, . . . , k} there is at least one vertex ci ∈ C that is
connected to Bi and whose vertical segments are contained in segments of Bi. See
Figure 4.30 for an example. In G a set D′ ⊂D of k(2k−2)+1 vertices is connected to
C ′ ∶= {c1, . . . , ck}; again one more than there are bends in C ′. Hence there is at least
one vertex in D′ for which all its horizontal segments are contained in segments of
C ′. But this is impossible since the path c1 ∈ C

′ lies left of all other paths in C ′.

Putting Theorem 4.3.1 and Lemma 4.3.2 together we have shown the following.

Theorem 4.3.3. For every k ≥ 1, (2k − 1)-bend paths are always sufficient and

sometimes necessary for an EPG representation of a graph with degeneracy k.

4.3.2 The Bend-Number in Terms of the Tree-Width

Golumbic, Lipshteyn, and Stern [GLS07] showed that every tree, i.e., every graph with
tree-width 1, has a single-bend representation. Since graphs with bend-number 0 are
interval graphs, and not every tree is an interval graph, this implies that the maximum
bend-number among all trees is 1. In this section, we consider the maximum bend-
number of all graphs of tree-width k ≥ 2. First we provide general lower bound, which
immediately follows from Theorem 4.1.7 in Section 4.1.
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Lemma 4.3.4. For every k ≥ 2 there is a graph G with tw(G) = k and b(G) = 2k−2.

Proof. Theorem 4.1.7 states, that the complete bipartite graph Km,n with n > m4 −

2m3 + 5m2 − 4m has bend-number 2m − 2. Clearly, this graph has tree-width m.

The next lemma gives an upper bound for graphs with tree-width 2, that matches
the lower bound from Lemma 4.3.4. Note that the upcoming statement seems stronger
than Theorem 4.2.1 since every outer-planar graph has tree-width at most 2. However,
Theorem 4.2.1 gives a simple 2-bend representation, which we do not obtain from the
lemma below.

Lemma 4.3.5. For every graph G with tw(G) = 2 we have b(G) ≤ 2.

Proof. Let G̃ be the 2-tree which contains G, and (v1, . . . , vn) be a vertex ordering of
G, such that degGi

(vi) ≤ 2 for every i = 1, . . . , n. We construct a 2-bend representation
of G along the building sequence G1 ⊂ ⋯ ⊂ Gn = G, where we add vertex vi to Gi,
such that the two neighbors of vi in G̃i form a 2-clique in G̃i (and not necessarily in
Gi). We maintain that Γi is a 2-bend representation of Gi, such that every 2-clique
in G̃i satisfies one of the two invariants in Figure 4.31 a), i.e., for i = 2, . . . , n and
(u, v) ∈ E(G̃i) we have

(I) displayed sub-segments of P (u) and P (v) in Γi, which see each other as depicted
in the top row of Figure 4.31 a), or

(II) a displayed part in P (u)∪P (v) as depicted in the bottom row of Figure 4.31 a).
(III) Moreover, all displayed parts are pairwise disjoint.

Now for i ≥ 2, let Γi be a 2-bend representation of Gi that satisfies our invariant.
It is easy to set up Γ2 and we leave it to reader. Let (u, v) be the 2-clique that is
the neighborhood of vi in G̃i. If vi has an edge with both, u and v, we introduce the
path for vi as illustrated in Figure 4.31 b) depending on the type of the displayed
part for (u, v). The displayed parts for the new 2-cliques (u, vi) and (v, vi) in G̃i+1
are highlighted in dark grey, and the displayed part for (u, v) is highlighted in light
grey.

If vi has an edge with u and no edge with v, we introduce the path for vi as
illustrated in Figure 4.31 c) depending on the type of the displayed part for (u, v).
Again the displayed parts for the new 2-cliques (u, vi) and (v, vi), and the old 2-clique
(u, v) in G̃i+1 are highlighted in dark grey, and light grey, respectively. If vi has an
edge with v and no edge with u, the roles of u and v are simply exchanged. In case,
vi has an edge neither with u nor with v, we introduce the path for vi as illustrated
in Figure 4.31 d) depending on the type of the displayed for (u, v).
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vi
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Figure 4.31: Invariants for a 2-clique and insertion rules for the path for the new
vertex vi (drawn bold). a) The two types of the invariant. b) Vertex vi has an edge
with both, u and v. c): Vertex vi has an edge with u and no edge with v. d): Vertex
vi has no edge with u or v.

We could not generalize Lemma 4.3.5 to tree-width k ≥ 3. However, since the
tree-width of a graph is at most its degeneracy, we obtain an upper bound by Theo-
rem 4.3.1 that is away from the lower bound only by an additive 1.

Corollary 4.3.6. For every graph G with tw(G) = k ≥ 3 we have b(G) ≤ 2k − 1.

It remains open whether the maximum bend-number among all graphs with tree-
width k ≥ 3 is 2k − 2 or 2k − 1. We suspect that the right answer is 2k − 1 here; at
least for some large k.

Conjecture 4.3.7. There exist a k ≥ 3 and a graph G with tw(G) = k and b(G) =
2k − 1.

4.3.3 The Bend-Number in Terms of the Maximum Degree

It was known [BS09] that every graph G with maximum degree ∆ admits a (2⌈∆+1
2
⌉+

1)-bend representation, and that in case G is bipartite, 2⌈∆
2
⌉ bends suffice. We

improve this with a construction that is much simpler.

Theorem 4.3.8. For every graph G with maximum degree ∆ we have b(G) ≤ ∆. If

G is bipartite, then b(G) ≤∆ − 1.

Proof. We actually prove that b(G) is at most the edge-chromatic number χ′(G) of
G minus one. Then Vizing’s Theorem [Viz64], which states χ′(G) ≤ ∆ + 1, yields
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b(G) ≤ ∆ for G with maximum degree ∆. Moreover, for bipartite graphs χ′(G) =
∆(G).

Consider a proper edge-coloring of G with k = χ′(G) colors. We use an arbitrary,
not self-intersecting (k − 1)-bend path P as a template. (In Figure 4.32 we have
chosen a snake-like path P .) Every vertex in G runs within a small distance of P .
Along the i-th segment, two vertices run through the same grid line if and only if
they are joint by an edge of color i. For example, in Figure 4.32 the edge (u, v) has
color 1.

1

2

3

4

5

u v

Figure 4.32: A (k − 1)-bend representation based on a proper edge-coloring with k

colors: The grey blocks correspond to the colors. Every edge of color i is assigned
a grid line within the i-th block. Paths are inserted as demonstrated by u and v

according to their incident edges.

The best known lower bound in terms of the maximum degree comes from the
complete bipartite graph Km,m. By Theorem 4.1.3, b(Km,m) = ⌈m2 ⌉ and clearly
∆(Km,m) = m. Hence we conclude the following, which alternatively can be proven
by applying the Lower-Bound-Lemma to any ∆-regular triangle-free graph.

Lemma 4.3.9. For every ∆ ≥ 2 there is a graph G with maximum degree ∆ and

b(G) ≥ ⌈∆
2
⌉.

Putting Theorem 4.3.8 and Lemma 4.3.9 together we have shown the following.

Theorem 4.3.10. For every ∆ ≥ 2, ∆-bend paths are always sufficient and ⌈∆
2
⌉-bend

paths are sometimes necessary for an EPG representation of a graph with maximum

degree ∆.

4.4 Recognizing Single-Bend Graphs is NP-Complete

It has been asked several times [GLS07, BS09, Rie09] for the complexity of recognizing
k-bend graphs. In general, the bend-number of a graph can be computed by solving a
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mixed integer program (MIP). Unfortunately, the problem instance becomes so huge,
that this approach is inapplicable even for graphs with only ten vertices. It is well-
known that interval graphs, which are exactly 0-bend graphs, can be recognized in
polynomial time [BL76]. In this section we prove that recognizing single-bend graphs
(1-bend graphs) is NP-complete.

Definition 4.4.1 (SINGLE-BEND-RECOGNITION).

INSTANCE: Undirected graph G.
QUESTION: Is there a single-bend representation of G, i.e., is b(G) ≤ 1?

SINGLE-BEND-RECOGNITION is in NP, since a single-bend representation can
be easily verified. For NP-hardness we set up a reduction from ONE-IN-THREE
3-SAT, i.e., we are given a formula F = (C1 ∧⋯∧ Cn) that is a conjunction of clauses
C1, . . . ,Cn. Each clause is the exclusive disjunction of exactly three literals Ci =
(xi1 / xi2 / xi3), which are in turn either negated or non-negated boolean variables.
Given such a formula F , it is NP-complete [GJ79, Sch78] to decide, whether there is
an assignment of the variables fulfilling F , so that is in each clause there is exactly one

true literal. Moreover ONE-IN-THREE 3-SAT remains NP-complete if each literal
is a non-negated variable and each clause consists of three distinct literals. We use
both additional assumptions on F , even though the first is just for convenience. The
distinctness assumption is crucial in the following reduction.

Given a ONE-IN-THREE 3-SAT formula F we define a graph GF , such that
b(GF) = 1 if and only if F can be satisfied. The graph consists of an induced
subgraph GC for every clause C with 13 vertices, called the clause gadget, a vertex vj

for every variable xj and 31 additional vertices.

4.4.1 Clause Gadgets

Constructing a clause gadget GC starts with an induced octahedral graph O. Label the
vertices by {a,A, b,B, c,C} as in Figure 4.33. This way, {a,A}, {b,B} and {c,C} are
the three non-edges and their complements {b,C,B, c}, {a,C,A, c} and {a,B,A, b}
are the three induced 4-cycles in O.

Lemma 4.4.2. We have b(O) = 1 and in every single-bend representation

(i) there is a unique grid point, called the center, that is contained in every path,

(ii) every edge-intersection lies on a half ray starting at the center, called a center
ray,

(iii) for every pair of center rays, there is a unique vertex in O supported by exactly

these two center rays, and
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a
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AA
B
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1)

2)

Figure 4.33: The labeled octahedral graph O, a single-bend representation of O, and
the two possible ways a triangle of O is represented.

(iv) every triangle in O is represented in one of the two ways on the right of Fig-

ure 4.33.

Proof. Figure 4.33 shows b(O) ≤ 1 and since O contains induced 4-cycles it is not an
interval graph. Hence b(O) = 1.

It is known [GLS07] that every induced 4-cycle in a single-bend representation is
either a frame, a true pie, or a false pie. These terms are illustrated in Figure 4.34. If
an induced 4-cycle is represented by a frame, then the bends of its vertices are distinct.
Thus in a single-bend representation no further path may overlap all of them. Since
for each induced 4-cycle ({a,B,A, b}, {a,C,A, c} and {b,C,B, c}) in O there is a
vertex that is adjacent to all of its vertices, these 4-cycles are pies. Thus all pies
share the middle point, the claimed center, and every vertex is supported by exactly
two center rays. Since every edge in O is contained in an induced 4-cycle, no two
vertices in O are supported by the same pair of center rays. This concludes (i)–(iii).
Part (iv) is easily obtained from this.

Figure 4.34: Single-bend representations of an induced 4-cycle: A frame, a true pie
and a false pie.

To complete a clause gadget GC seven vertices are added: WABC is connected
to {A,B,C}, wabC , waBc and wAbc are connected to {a, b,C}, {a,B, c} and {A,b, c},
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respectively, and sab, sac and sbc are connected to {a, b}, {a, c} and {b, c}, respectively.
The resulting graph is depicted in Figure 4.35.

a

b

c

A

B

C

sab

sabsbc

sbc

sac

sac

WABC WABC

wAbc

wAbc

waBc

waBcwabC

wabC

Figure 4.35: The clause gadget GC with a single-bend representation.

Lemma 4.4.3. We have b(GC) = 1 and in every single-bend representation

(i) every center ray contains a segment of exactly one of WABC , wabC , waBc, and

wAbc and

(ii) every such segment, except the one of WABC , is contained in a segment from

{a, b, c}.

Proof. Let w ∈ {WABC ,wabC ,waBc,wAbc}. Then w is connected to the vertices of
some triangle ∆ in O. By Lemma 4.4.2–(iv), ∆ is represented in one of the two ways
that are illustrated on the right of Figure 4.33. In case 1), there are edge-intersections
corresponding to w in two distinct center rays. But then, by Lemma 4.4.2–(iii), w

edge-intersects vertices in O that are not adjacent to w. Hence ∆ is represented as
in case 2) and one segment of w is contained in the center ray that carries all three
vertices in ∆. This concludes part (i).

Now consider a pair (w,s) in {(wabC , sab), (waBc, sac), (wAbc, sbc)}. Both, w and s,
are contained in at most one center ray. Moreover, it is the same center ray and it
contains one of the capitalized vertices, that are adjacent to w but not to s. Hence
the segment of s lies further away from the center than the segment of w. Thus the
segment of w is contained in a segment of each neighbor of s.

4.4.2 The Reduction

Given a formula F = (C1 ∧ ⋯ ∧ Cn) with clauses Ci = (xi1 / xi2 / xi3) for i = 1, . . . , n

we are now ready to define the graph GF as follows. See Figure 4.36 for an example.

1. For each clause C there is a clause gadget GC .
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2. For each variable xj there is a vertex vj that is adjacent to wAbc, waBc, or wabC ,
whenever xj is the first, second, or third variable in C, respectively.

3. There is a vertex V adjacent to every W in the clause gadgets.
4. There is a K2,4 with a specified vertex T of the larger part, called the truth-

vertex. T is adjacent to every vj and V .
5. There are two octahedral graphs O1 and O2. The vertex T is connected to the

vertices of a triangle of each.
6. There are two more octahedral graphs O3 and O4. The vertex V is connected

to the vertices of any triangle in O3 and any triangle in O4.

V

T

v1 v2 v3 v4

Figure 4.36: The graph GF for F = (x1 / x2 / x3) ∧ (x1 / x3 / x4) ∧ (x2 / x3 / x4).

We prove that a ONE-IN-THREE 3-SAT-formula F can be satisfied if and only if
b(GF) = 1.
Theorem 4.4.4. SINGLE-BEND-RECOGNITION is NP-hard.

Proof. First suppose b(GF) = 1 and consider a single-bend representation of GF .
W.l.o.g. assume, that V and T edge-intersect with their horizontal segments. We set
a variable xj true if vj edge-intersects the truth-vertex T with its horizontal segment
and false if vj edge-intersects T with its vertical segment.

It is known [AS09] that in every single-bend representation of a K2,4, every vertex
of the larger part, in particular T here, has its bend in a false pie. The truth-vertex
T is attached to a triangle of O1 and O2. The proof of Lemma 4.4.3–(i) shows that
a segment of T is contained in exactly one center ray of each, O1 and O2. As the
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bend of T is in a false pie of K2,4, the endpoints of T are contained in O1 and O2,
respectively. Hence, every further segment that edge-intersects T is contained in a
segment of T . Consequently, a vertex vj edge-intersects the lower-case w-vertex in
each clause gadget with its vertical segment if and only if xj is true.

For the same reason V edge-intersects every neighbor other than T with its vertical
segment. Since V is attached to a triangle of O3 and O4, the two endpoints of the
vertical segment of V are contained in O3 and O4, respectively. Thus, the vertical
segment of the upper-case W -vertex in each clause gadget is contained in the vertical
segment of V . Thus by Lemma 4.4.3–(i) the horizontal segment of every such W is
contained in a horizontal center ray. Hence, of the other three center rays, two are
vertical and one is horizontal. Together with Lemma 4.4.3–(ii) this yields that in every
clause gadget exactly two of {wabC ,waBc,wAbc} edge-intersect the corresponding vj

with their horizontal segment and exactly one with its vertical segment. In other
words every clause contains exactly one true variable.

O3

O4

O1

O2

K2,4true

false

true

false

false

WTV

Figure 4.37: On the left: A single-bend representation of GF . The vertex V and
the truth-vertex T are drawn bold. The clause gadgets are omitted. On the right:

A single-bend representation of a clause gadget GC . The vertices vj that correspond
to the variables in the clause C and the vertex W of the clause gadget are drawn bold.

Now given a truth assignment fulfilling F , we construct a single-bend representation of
GF . First, represent all of GF but the clause gadgets as on the left side in Figure 4.37.
A vertex vj is connected to the truth-vertex T horizontally if xj is true and vertically
if xj is false.

To interlace a clause gadget GC , introduce a horizontal grid line lh between the
horizontal grid lines supporting the two false variables in C. Then connect the W -
vertex in GC to V vertically with its bend on lh. Furthermore introduce a vertical
grid line lv between the vertical grid lines supporting V and the true variable in C.
Where lh and lv cross, introduce the center of the clause gadget as illustrated on
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4. Edge-Intersection Graphs of Grid Paths

the right side in Figure 4.37. Note that the clause gadget is symmetric in A, B and
C and hence it can be represented with every center ray pointing into the desired
direction.

Given this NP-hardness result, a natural question follows:

Question 4.4.5. What is the complexity of recognizing k-bend graphs for k ≥ 2?

4.5 Comparison with Interval-Number, Local Track-

Number, and Track-Number

In this section, we briefly compare the bend-number with other graph parameters.
Some ideas presented here are joint work with D. Heldt and K. Knauer [HKU10].
However, this is mostly ongoing research [HKU11], of which we want to discuss only
selected parts here. We start with three concepts of intersection graphs, that are
somehow similar to EPG graphs.

Interval graphs are intersection graphs of intervals on the real line. Every vertex
is associated with an interval, in such a way that two intervals overlap with non-zero
length if and only if the corresponding vertices are adjacent. This subject has been
extended to intersection graphs of systems of intervals by Harary and Trotter [HT79]
in 1979. In a k-interval representation of a graph G every vertex is associated with a
set of at most k intervals on the real line, such that vertices are adjacent if and only
if any of their intervals intersect with non-zero length. The interval-number i(G) is
then defined as the minimum k, such that G has a k-interval representation. Since its
introduction, the maximum interval-number among all graphs of specific graph classes
has been analyzed. Harary and Trotter [HT79] determine the maximum interval-
number of trees and complete bipartite graphs, Scheinerman and West [SW83] for
planar and outer-planar graphs, and Griggs and West [GW80] for graphs with fixed
maximum degree ∆. (West gave a short proof later [Wes89].) For all these (and
several more) graph classes matching upper and lower bounds are known. We provide
an overview in Table 4.2 below.

In 1994 Kumar and Deo [DK94] proposed the study of the so-called dimensionality

of a graph, a different but closely related relaxation of interval graphs. (Let us men-
tion that Tibor Gallai suggested this subject already in 1968 and that combinatorial
properties of k-interval graphs and k-track graphs have been studied already back in
1969 [GL69], however with different intention and questions in mind.) We stick here
to the following notion of Gyárfás and West [GW95] from 1995. In a k-track repre-

sentation of a simple graph G there are k parallel lines, called tracks. Every vertex is
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Graph Class G i(G) tℓ(G) t(G) b(G) + 1
2 2 2 2

Tree
[HT79] [DK94] [GLS07]

2 2 2 3
Outer-Planar

[SW83] [KW99] Thm. 4.2.1

Planar 3 3 4 3

+ Bipartite [GO05, Gon07] [BS09]

Planar 3 3 . . . 4 4 3 . . . 4

+ 4-Connected Thm. 4.2.4

3 3 4 4
Planar 3-Tree

Thm. 4.2.2

3 3 . . . 4 4 4 . . . 5
Planar

[SW83] [Gon07] Thm. 4.2.7

⌈mn+1
m+n ⌉ ⌈ mn

m+n−1 ⌉ ⌈ mn
m+n−1 ⌉ ⌈mn+√mn

m+n ⌉ . . . 2m − 1
Km,n

[HT79] [HKU11] [GW95] Lem. 4.1.1, [AS09]

2 2 ∞ 3
Line Graph∗

[Mil11] [BS09]

k + 1 k + 1 k + 1 ≤ 2k
Tree-Width k

[DOSV98] Cor. 4.3.6

k + 1 k + 1 2k 2k
Degeneracy k

[HKU11] [HKU11] Thm. 4.3.3

⌈∆+1
2
⌉ ≤ ⌈∆

2
⌉ + 1 ≤ ∆

2
+O(log∆) ⌈∆

2
⌉ + 1 . . .∆ + 1

Max Degree ∆

[GW80] [HKU11] [AMR92] Thm. 4.3.10

Table 4.2: Summary of lower and upper bounds on the maximum interval-
number i(G), local track-number tℓ(G), track-number t(G), and bend-number b(G)
among all graphs of some graph classes (∗ = without subgraphs)
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4. Edge-Intersection Graphs of Grid Paths

associated with one interval from each track. Again vertex adjacency is equivalent to
interval intersection and the track-number t(G) is the minimum k, such that G has a
k-track representation. It is easy to see that i(G) ≤ t(G), since a k-track representa-
tion can be transformed into a k-interval representation by putting the tracks in any
order on a single real line. Equality does not hold in general as discussed below. The
same set of extremal questions has been considered for the track-number as well. Ku-
mar and Deo [DK94] determine the maximum track-number of trees, Kostochka and
West [KW99] for outer-planar graphs, Gonçalves [GO05, Gon07] for planar graphs,
and Gyárfás and West [GW95] for complete bipartite graphs. Again, for all these
(and several more) graph classes matching upper and lower bounds are known and
listed in Table 4.2.

We propose [HKU11] a third generalization as follows. In a local k-track representa-

tion of a simple graph G there are arbitrarily many parallel lines, called tracks. Every
vertex is associated with at most k intervals, no two from the same track. Again ver-
tex adjacency is equivalent to interval intersection and the local track-number tℓ(G) is
the minimum k, such that G has a local k-track representation. It is easy to see that
i(G) ≤ tℓ(G) ≤ t(G), since a k-track representation is a local k-track representation
and a local k-track representation can be transferred into a k-interval representation
by putting the tracks in any order on a single real line.

Now recall that in a k-bend representation every vertex is associated with a grid
path with at most k+1 segments and edges correspond to intersections of segments of
non-zero length. A k-bend representation can be transformed into a local (k+1)-track
representation (and hence to a (k+1)-interval representation) by considering the grid
lines supporting some segment as the set of tracks. However, this is a local track
representation only if no two segments of the same vertex path are supported by the
same grid line, which is the case in every EPG representation in the literature that
we know of, including this thesis. Hence, all lower bounds for the interval-number
and local track-number in Table 4.2 carry over to the bend-number plus 1. On the
other hand, all upper bounds on the bend-number plus 1 in Table 4.2 carry over to
the local track-number and hence to the interval-number.

In general, the bend-number of a graph G is at most 4(i(G) − 1), since a set of k
intervals can be traced by a 4(i(G) − 1)-bend path without creating unwanted edge-
intersections. Similarly, one can show that b(G) ≤ 4(tℓ(G) − 1) ≤ 4(t(G) − 1). In
particular, the bend-number is always bounded in terms of the interval-number and
local track-number. Perhaps surprisingly, this is not true for the track-number. As
we conjectured [HKU10] and K. Milans proved [Mil11], the track-number of L(Kn),
i.e., the line graph of the complete graph on n vertices, goes to infinity with n→∞.
On the other hand, every line graph admits a 2-bend representation [BS09], which
even inherits a local 2-track representation.
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Another interesting aspect concerns the Lower-Bound-Lemma (c.f. Lemma 4.1.1),
which states that in a simple k-bend representation of a graph G = (V,E) with ∣L∣
supporting grid lines, we have ∣E∣ + ∣L∣ ≤ (k + 1)∣V ∣. The same statement (and the
same proof) holds for simple k-interval representations, simple local k-track repre-
sentations, and simple k-track representations. In the first and last case we know
the number ∣L∣ of supporting grid lines exactly, i.e., ∣L∣ = 1 and ∣L∣ = k, respectively.
For a local k-track representation, we have ∣L∣ ≥ k. In any case, the Lower-Bound-
Lemma proves tight lower bounds for the interval-number, track-number and local
track-number of all complete bipartite graphs. Indeed, the Lower-Bound-Lemma has
been discovered several times [DK94, HT79, HKU10]. In case of the bend-number of
Km,n, the Lower-Bound-Lemma is tight only for some values of m and n, e.g., when
n = m (Theorem 4.1.3) and when n = (m + 1)(m − 2) for even m and n = m(m − 2)
for odd m (Theorem 4.1.4).

To end this section, consider the recognition problem associated with each graph
representation. It is known that interval graphs can be recognized in polynomial, even
linear, time [BL76]. But recognizing graphs with a fixed interval number k ≥ 2 is NP-
complete [SW84]. Moreover, Gyárfás and West [GW95] proved NP-completeness of
recognizing 2-track graphs, and recently Jiang [Jia10] proved this for k-track graphs
with every fixed k ≥ 2. In Section 4.4 we presented the first NP-completeness result
for k-bend graphs, i.e., we show that recognizing 1-bend graphs is NP-complete. It
remains open whether the recognition of k-bend graphs is NP-complete for every fixed
k ≥ 2 (c.f. Question 4.4.5).
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Open Questions

Let us list some of the problems that remain unsolved in this thesis. Some of them
evolved just recently, some were already posed by several people. The questions are
ordered according to appearance of relevant material in this document.

Question 1. Is the α-orientation problem for planar graphs solvable in

linear time?

Description: We are given a planar graph G = (V,E) and a mapping α ∶ V → N.
Can one decide in linear time whether there exists an orientation of the edges of G,
such that the out-degree at v equals α(v) for every vertex v ∈ V ?

Comments: If the answer is ’YES’, one can compute the minimal α-orientation
in linear time by Remark 1.2.6. Conversely, computing the minimal α-orientation
in linear time, would answer Question 1 in the affirmative. Furthermore, a similar
question asks, whether there is an orientation of G, such that out-deg(v) ≤ α(v) for
every v ∈ V (G). As before, it is not know how to answer it in linear time.

Question 2. What is the relation between -representations and Schnyder

woods with L1 ∩L2 = {vn−1}?
Description: We are given a 4-connected maximally planar graph G with an em-
bedding with outer triangle {v1, v2, vn} and the corresponding 4-connected near-
triangulation G ∖ (v1, vn) with fourth outer vertex vn−1. When do different -
representations of G ∖ (v1, vn) define the same Schnyder wood of G? What is
a good characterization of the Schnyder wood corresponding to the minimal -
representation?

Comments: How a Schnyder wood of G is inherited from a -representation of G∖
(v1, vn) is given by Definition 2.1.2. We refer to Remark 2.1.5 for further information.

Question 3. Does every maximally planar n-vertex graph admit a hole-free

rectilinear representation with at most ⌈4n
3
⌉ supporting grid lines?

Comments: By Theorem 2.1.8 ⌊5n−2
3
⌉ supporting grid lines are always enough. Liao,

Lu and Yen [LLY03] prove the same upper bound, as well as, a lower bound of ⌈4n
3
⌉.
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Note that the 2 × 2 grid is considered to consist of four grid lines. For additional
considerations see Subsection 2.1.1.

Question 4. Can a nesting assignment be found in linear time?

Description: We are given a maximally planar graph. Can one decide in linear time
whether it admits a nesting assignment? And if so, can it be found in linear time?

Comments: Nesting assignments are defined in Definition 2.2.2. One may assume
or not, that the graph is given with a fixed embedding. Sun and Sarrafzadeh [SS93]
present an algorithm with O(n3/2) runtime, where n is the number of vertices.

Question 5. When is a rectilinear layout rectilinear area-universal?

Comments: The definition of rectilinear area-universality is given in Section 3.1. By
Theorem 3.1.3 a -layout is rectilinear area-universal if and only if it is one-sided.
From Lemma 3.1.5 follows that a layout is area-universal if some refinement of it is
a one-sided -layout. However, this is not necessary as illustrated in Figure 4.38.

Figure 4.38: An area-universal rectilinear layout, which does not have a refinement
that is a one-sided rectangle-representation.

Question 6. Can a cartogram for a one-sided -layout be computed in

polynomial time?

Description: We are given a one-sided -layout Λ for a near-triangulation G =

(V,E) and a weight function w ∶ V → R
+. Can one compute in polynomial time a

-representation of G that realizes Λ and the given weights?

Comments: See Section 3.1 for one-sided layouts. There is an algorithm based in
numerical iteration and some very practical implementations of this and other ideas.
However, none of them ends in finite time with the exact solution. We briefly discuss
this issue in Remark 3.1.8. Computing any -representation of G respecting the
given weights, and not necessarily realizing Λ, in polynomial time would be equally
good.

Question 7. Can a hole-free rectilinear cartogram of a maximally planar

graph with complexity at most 8 be computed in linear time?
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Description: We are given a maximally planar graph G = (V,E) and a weight
function w ∶ V → R

+. Can one compute in linear time a hole-free rectilinear cartogram
Γ of G w.r.t. w with complexity at most 8?

Comments: By Theorem 3.1.7 such a cartogram exists. By Lemma 3.1.6 a suitable
rectilinear area-universal layout can be computed in linear time. The answer to Ques-
tion 7 is ’YES’ for Hamiltonian maximally planar graphs, given with a Hamiltonian
cycle, (Theorem 3.2.2), as well as for planar 3-trees. For the latter case, one easily
sets up a recursive construction similar to the one in Subsection 3.3.1.

Question 8. Does every 4-connected maximally planar graph admit a car-

togram with solely convex polygons?

Description: We are given a 4-connected maximally planar graph G = (V,E), i.e.,
G has no separating triangle, and a weight function w ∶ V → R

+. Is there a (not
necessarily rectilinear nor hole-free) cartogram of G w.r.t. w in which every vertex is
represented by a convex polygon?

Comments: By Lemma 3.3.1 the answer is ’NO’ for general maximally planar
graphs; even for Hamiltonian 3-trees. We conjecture that the answer to Question 8
is ’YES’ (c.f. Conjecture 3.4.1). Conjecture 3.4.4, which states that every two-sided

-layout is area-universal, is even much stronger, since this would give a cartogram
of G that additionally is hole-free and has polygonal complexity at most 4.

Question 9. Does every 4-connected maximally planar graph admit a

Hamiltonian cycle that is a canonical order?

Description: We are given a 4-connected maximally planar graph G on n vertices,
i.e., G has no separating triangle. Is there an embedding of G and a Hamiltonian
cycle (v1, . . . , vn) in G, such that (v1, vn) is an outer edge and (v1, v2, . . . , vn) is a
canonical order of G w.r.t. (v1, vn).
Comments: Canonical order are defined in Subsection 1.1.3. In Subsection 3.2.1
such a Hamiltonian cycle is called one-sided Hamiltonian cycle. Moreover it is shown
that equivalently G admits a Schnyder wood (T1, T2, T3) in which every inner vertex
is a leaf in T1 or T2. An affirmative answer to Question 9 would imply that ev-
ery 4-connected maximally planar graph admits a rectilinear cartogram of polygonal
complexity at most 6 (c.f. Conjecture 3.4.5).

Question 10. Is the worst-case complexity of hole-free cartograms for tri-

connected planar graphs finite?

Description: We are given a pair (G,w) of a tri-connected planar graph G = (V,E)
and a weight function w ∶ V → R

+. Is there a k ∈ N such that every (G,w) admits a
hole-free cartogram of complexity at most k?
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Comments: The cartogram does not have to be rectilinear. Indeed, inner faces
of length 5 or more are not representable with a rectilinear cartogram. We know
very little about the question, despite that tri-connectedness is necessary, since every
hole-free representation of K2,n for large n has large complexity.

Question 11. What is the bend-number of K3,11 and K4,5?

Comments: The bend-number is defined in Definition 4.0.7. We know that either
number is 2 or 3, and we suspect that 3 is the right answer for both. This question
illustrates our lack of understanding about the bend-number of complete bipartite
graphs. For instance, b(K2,n) is known for every n, but b(K3,n) is not. See Fig-
ure 4.11 for all we know about b(K5,n). We refer to Section 4.1 and in particular to
Question 4.1.10 for further information.

Question 12. Is there a planar graph with bend-number 4?

Comments: By Theorem 4.2.7 every planar graph has bend-number at most 4 and
there is a planar graph with bend-number 3. We suspect the answer to Question 12
to be ’YES’, c.f. Conjecture 4.2.8.

Question 13. What is the maximum bend-number in terms of the maxi-

mum degree?

Comments: By Theorem 4.3.10 the bend-number of any graph is at most its maxi-
mum degree, and there is a graph whose maximum degree is twice its bend-number.
In other words, the maximum bend-number among all graphs of maximum degree ∆

lies between ⌈∆
2
⌉ and ∆, both included. We strongly suspect that neither the upper

nor the lower bound already gives the right value.

Question 14. What is the complexity of recognizing k-bend graphs?

Comments: We have shown in Theorem 4.4.4 that recognizing 1-bend graphs, i.e.,
single-bend graphs, is NP-complete. However, we do not know how to modify the
reduction to larger k. See also Question 4.4.5.
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Index

3-orientation, 10, 19

4-connected planar graph, 16, 24, 34, 66,
93–98, 102, 119, 139

α-orientation, 17, 20, 24, 27
minimal α-orientation, 17, 23, 28

α4-orientation, 26, 41
minimal α4-orientation, 28

angular map, 26

arc-disjoint Menger problem, 23

area-universal, 68, 94
rectilinear area-universal, 68

bend of a grid path, 100

bend-number, 101

bipartite planar graph, 25, 139
building sequence, 6, 43, 90, 113, 127

c-orientation, 20

minimal c-orientation, 22

canonical order, 9, 12, 43–46, 82, 97
cartogram, 63, 63–98
clause gadget, 135, 133–135
complete bipartite graph, 102–112, 139
complexity of a polygon, 31

complexity of a representation, 31

degeneracy, 6, 102, 127–129, 139
depth of an EPG representation, 104

displayed, 113

distributive lattice, 10, 17

edge-intersection graph of grid paths, see

EPG graph
EPG graph, 99, 99–141

EPG representation, 99, 99–141
essential cycle, 17, 28

flip, 17, 27, 41
flop, 19, 27

G∆, 15, 53, 121

Hamiltonian graph, 34, 58, 66, 75–86
hill vertex, 9, 14, 43, 83
hole, 31, 53, 58, 71, 88
hole-free, 25, 31, 35–58, 64, 67–86, 88–93

inherited embedding, 30

inherited Schnyder wood, 37

interval graph, 101, 128, 129, 138

interval-number, 138

k-tree, 7

k-bend graph, 100

k-bend representation, 100

k-interval representation, 138

k-track representation, 138

-representation, 51, 51–58
L-shape polygon, 37

layout, 67

-layout, see -representation
-layout, see -representation

leaf in a Schnyder wood, 12

left graph, 75

level of a vertex, 16

level-i subgraph, 16, 53, 121
local k-track representation, 140

local track-number, 140
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Index

lower bound, 33, 58–60, 66, 79, 86–88,
101, 139

minimum feature size, 32, 73

near-triangulation, 24, 34, 39, 66, 94
nesting assignment, 51, 51–58, 79
non-empty triangle, 14, 51, 90
non-rotated -representation, 36, 36–46,

84
non-rotated -representation, 36, 41–51

one-sided Hamiltonian cycle, 81, 98
one-sided layout, 68, 73, 77
outer boundary, 31

outer-planar graph, 8, 25, 34, 66, 85, 102,
114, 130, 139

overall complexity, 49

part of an EPG representation, 113

-representation, 51, 51–58
planar 3-tree, 7, 12, 34, 59, 66, 87–93,

102, 115–120, 139
planar graph, 8–98, 102, 112–126, 139
point contact, 29

point contact representation, 30, 89
polygonal complexity, see complexity

realization, 67

-representation, 25, 33, 39, 47, 53, 63,
119, 122

minimal -representation, 28, 41, 97
rectangle-representation, see -represen-

tation
rectilinear cartogram, 68, 67–86
rectilinear polygon, 32

rectilinear representation, 25, 32, 35–58
refinement, 70

representation, 30, 29–98
right graph, 75

Schnyder wood, 11, 19, 37–51, 83, 97

see each other, 113

segment in a representation, 50, 67

segment of a grid path, 99

separating triangle, 14, 51, 79, 94
separation-tree, 15, 52, 121
side contact, 29

side contact representation, see represen-
tation

simple EPG representation, 104, 120
single-bend graph, 101, 132–138
SINGLE-BEND-RECOGNITION, 133

sub-segment, 113

T-shape polygon, 37

track-number, 140

transversal structure, 26, 40
tree-width, 7, 102, 129–131, 139
two-sided layout, 96

-representation, 75

U-shape polygon, 37

upper bound, 33, 66, 101, 139

valley vertex, 9, 14, 43, 83
vertex ordering, 5, 9, 13, 83, 114, 127
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