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Research Summary

Torsten Ueckerdt

This is a brief summary of the research I conducted in discrete mathematics and
theoretical computer science, particularly in graph theory, combinatorics, discrete
geometry, order theory and game theory. In many cases we are concerned with
combinatorial problems in a geometric setting, being motivated and driven by the
question of how discrete combinatorial properties can capture the continuous world
of geometry. Within this summary I focus on coloring problems, intersection rep-
resentations, and covering problems.

Geometrically defined graphs and hypergraphs are a classical topic in discrete mathematics. In fact,
the Four-Color-Problem for planar graphs is generally recognized as the driving force that led to the
development of modern graph theory. Nowadays, some of the most intriguing areas of combinatorics
concern graphs, hypergraphs and partially ordered sets that arise from geometric settings, the majority
of which seeks to color or cover the elements at hand. The interest in combinatorial geometry stems not
only from its beauty and complexity, but also from the fact that geometric arrangements play a central
role in many sciences, such as physics, biology and computer science, as well as in many applications,
such as geographical maps, sensor networks, chip designs, or resource allocations.

1 Coloring Problems

Many combinatorial questions, and many important combinatorial questions, can be stated as a coloring
problem. Colorings, being an illustrative model for labelings, assignments, partitions, and clusterings,
are easily accessible and at the same time absolutely intriguing. A famous example is the Four-Color-
Problem for planar graphs. The question of how the combinatorial property of admitting a proper
4-coloring is related to the geometric property of admitting a crossing-free embedding in the plane has
attracted hundreds of researchers and resulted in rich theories with very deep, fundamental insights,
before and even after the problem has been finally proven by Appel and Haken [3]. Besides plain inquis-
itiveness, coloring problems became a central topic in discrete mathematics because of their numerous
and manifold applications in all areas of combinatorics and real-world problems. Even structural results
for graphs and hypergraphs –especially those defined in a geometric setting– are often stated in terms
of coloring the vertices, edges, relations, hyperedges, angles, or faces. Surely, fascinating coloring prob-
lems will continue to be the engine that drives the development of a deeper understanding of discrete
geometry and combinatorics.

1.1 Range capturing hypergraphs

Let X be a locally finite point set in Rd and R be a class of subsets of Rd, which we call ranges. Typical
ranges are the class of all lines, all balls, or all axis-aligned octants. We then obtain the range capturing
hypergraph H = H(X,R) with vertex set X by defining the hyperedges to be exactly those Y ⊆ X for
which there exists a range R ∈ R satisfying Y = X ∩ R. I.e., hyperedges are those subsets of vertices
that can be captured by a range.

Range capturing hypergraphs appear naturally in applications. For example when X is the set of
positions of radio masts and R is the class of all unit disks, then the corresponding range capturing
hypergraph characterizes those subsets of radio masts that can communicate with each other. In prox-
imity representations the range capturing hypergraph is pruned as to contain only the hyperedges of a
given size k. The case when k = 2 and R is the class of all homothetic copies of a fixed convex set S,
the resulting graphs are called convex distance function Delaunay triangulations [17]. In fact if k = 2
and S is a triangle, these planar graphs are closely related to Schnyder realizer and the dimension of
the vertex-edge poset of the graph [49]. For k > 2 range capturing hypergraphs are the central objects
in the study of weak ε-nets [41].
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Figure 1: Left: Vertex coloring of proximity hypergraphs. Middle: 3-good 2-coloring of 7 points with
respect to a family R of squares. Right: Improper edge coloring into two trees and one path.

A particularly important coloring problem for range capturing hypergraphs is the following: Given
a finite point set X ⊂ R2, a class of ranges R, and a natural number t, can we color the points in X
with t colors such that every hyperedge in H(X,R) of size at least p, for some p, contains at least one
point of each color, i.e.,

∀R ∈ R with |R ∩X| ≥ p we have that R ∩X contains every color?

Let us call such a coloring a p-good t-coloring of X with respect to R, and define

p(t) = min{p | ∀ finite X ⊂ R2 ∃ p-good t-coloring of X with respect to R}.

The left of Figure 1 shows a 3-good 2-coloring of a set X of 7 points with respect to a familyR of squares.
The dual version of this problem is known as cover-decomposability and can be stated as follows: Given
a finite set R of ranges and a natural number t, can we color the ranges in R with t colors such that
every point that is contained in at least p(t) ranges, for some function p(t), is contained in at least one
range of each color? These problems, where we are interested for every t in the smallest p(t) possible
(if at all possible), have immediate implications for the existence of weak ε-nets. We proved some of
the currently best known upper and lower bounds on p(t) for ranges that are bottomless rectangles [4],
triangles [12] and octants in 3D [13].

Theorem 1 (Asinowski et al. [4]).
For R being the class of all bottomless rectangles we have 5

2 t ≤ p(t) ≤ 3t− 2.

Theorem 2 (Cardinal, Knauer, Micek, Ueckerdt [13]).
For R being the class of negative octants in R3 we have p(t) ≤ p(2) · tlog2(2p(2)−1).

Using the currently best upper bound p(2) ≤ 9 due to Keszegh and Pálvölgyi [33], we conclude from
Theorem 2 that p(t) ≤ 9t4,088. We remark that negative octants in R3 generalize both, bottomless
rectangles and homothetic triangles in R2, c.f. the middle of Figure 1. In fact, Theorem 1 gives the best
known lower bound for octants, while Theorem 2 gives the best known upper bound for homothetic
triangles. The linear upper bound p(t) = O(t) in Theorem 1 immediately implies the following.

Corollary 3. For R being the class of all bottomless rectangles the following holds. For every finite
point set X ⊂ R2 and every ε > 0 there exists Y ⊆ X with |Y | ≤ 3/ε = O(1/ε) such that

∀R ∈ R with |R ∩X| ≥ ε|X| we have R ∩ Y 6= ∅.

For given R and ε, a subset Y ⊆ X as in Corollary 3 is called an ε-net of X with respect to R.
It is known that whenever the VC-dimension of H(X,R) is O(1), there exists an ε-net Y ⊆ X of size
|Y | = O( 1

ε log 1
ε ). (See, for instance, Chapter 10 in Matoušek’s lectures [42].) But for some family of

ranges R there exist ε-nets of size O(1/ε), which is asymptotically optimal. Corollary 3 indeed can
be generalized to say that whenever p(t) = O(t) for a given R, then such linear size ε-nets Y with
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|Y | = O(1/ε) exist. As it is known that negative octants admit linear size ε-nets [19], it is interesting
to see whether p(t) = O(t) for homothetic triangles in R2 or even negative octants R3.

Finally, we mention that octants in R3 and homothetic triangles in R2 are self-dual and hence
Theorem 2 also proves that p(t) < ∞ for the dual coloring problem with respect to these ranges. On
the other hand, for the dual coloring problem with respect to bottomless rectangles, we only know that
p(2) = 3 [32] and that we can not prove that p(t) <∞ via any semi-online coloring [13] (a concept used
to prove Theorem 1 for the primal coloring problem). understanding for which classes R of ranges it is
true that p(t) <∞ implies p(t+ 1) <∞ is surely the most interesting open problem here.

In order to prove coloring results for a range capturing hypergraph H = H(X,R), it is necessary to
investigate the structure of this hypergraph, depending on the set R of ranges. Most of what is known
here concerns only the convex distance function Delaunay triangulations, i.e., the graph (2-uniform
subhypergraph) G arising from H by considering only hyperedges of size 2. Whenever R is the class of
all homothetic copies of a fixed convex set S, then G is planar, and if X lies in general position with
respect to R (no four points in X lie on the boundary of a range R ∈ R), then every inner face of G is a
triangle. Schnyder’s Theorem [49] implies that every inner triangulated plane graph G can arise in this
way for S being a triangle. On the other hand, not every triangulated planar graph G arises when S is
not a triangle; for example Dillencourt proves that S being a disk gives rise to 1-tough planar graphs
only [23], while it is easily seen that S being a square can never create a planar graph with a separating
triangle.

But there is one property that all range capturing hypergraphs and all proximity hypergraphs share,
as long as R is the set of all homothetic copies of a fixed convex shape S: the maximum number of
(hyper)edges on a given number of vertices.

Theorem 4 (Axenovich, Ueckerdt [7]).
Let S ⊂ R2 be any convex compact set and R be the class of all homothetic copies of S. For any k ≥ 2
and any finite point set X ⊂ R2, the number of hyperedges of size k in H(X,R) is at most

(2k − 1)|X| − k2 + 1−
k−1∑

i=1

ai,

where ai is the number of i-element subsets of X that can be separated from the rest of X with a straight
line.

Most interestingly, the inequality in Theorem 4 is tight whenever the boundary of S contains no
corners and no straight segments, and X lies in general position with respect to R. Summing over all
k ∈ {1, . . . , n} one obtains that the total number of hyperedges in H(X,R) is at most

(
n
3

)
+
(
n
2

)
+
(
n
1

)
,

which again is tight whenever the boundary of S has everywhere positive and finite curvature and no
four points of X lies on the boundary of a homothetic copy of S.

1.2 Improper colorings

Surely, the most important colorings of graphs are the proper vertex colorings, i.e., colorings of the
vertices such that any two adjacent vertices receive different colors. However, finding proper colorings
is usually very hard, requiring high computational effort and possibly many colors. And coloring with
fewer colors than needed for a proper coloring, necessarily results in at least one conflict. But can we
color the graph improperly in such a way that the deficiency is not too bad? For example, can we
guarantee that every vertex v has no more than four neighbors with the same color as v, or that each
color induces only connected components of size at most ten? Let us refer to the right of Figure 1 and
the middle of Figure 2 for an improper edge-coloring and improper vertex-coloring of a planar graph
with three colors, respectively. It turns out that improper colorings with low deficiency have many
connections to various areas of graph theory.

The majority of the enormous amount of literature on improper colorings concerns vertex colorings
(and list colorings) of restricted planar graphs with two, three or four colors. Starting from proper
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Figure 2: Left: Proper 5-coloring of a fan-planar graph. Middle: Improper vertex coloring with bounded
monochromatic degree. Right: Proper 3-coloring of an ordered graph without nesting edges.

colorings where each color class induces a set of isolated vertices, one line of research is to restrict the
subgraph induced by any color class to be a set of only short paths. It is known that every planar graph
G of girth at least 7 admits a vertex 2-coloring such that any color class induces a set of paths of at
most 2 vertices [10]. We have considered the case of girth 4, 5 and 6.

Theorem 5 (Axenovich, Ueckerdt, Weiner [8]).
Every planar graph G of girth at least 6 admits a vertex coloring in 2 colors such that every color class
induces a forest in which each component is a path on at most 15 vertices.

Theorem 6 (Axenovich, Ueckerdt, Weiner [8]).
For every k ∈ N there exists a planar graph Gk of girth 4 such that for every vertex coloring in 2 colors
one color class induces a path on at least k vertices.

Interestingly, in many cases of improper colorings of planar graphs girth 5 remains the only unknown
case. For example, is it possible to 2-color the vertices of any planar graph of girth 5 so that each
monochromatic component has at most 3 vertices?

Let us mention that improper vertex colorings of planar graphs are also closely related to the colorings
of range capturing hypergraphs as defined above. For example, if the 2-regular proximity graph G is
planar and every hyperedge on at least t vertices induces a triangle in G, this proves that p(2) ≤ t since
planar graphs can be 2-colored with no monochromatic triangles. Surely, further developments in the
field of improper colorings would have further applications for range capturing hypergraphs.

1.3 Coloring embedded graphs

The Four-Color-Problem is the classic example of a coloring problem in a geometric setting. In related
questions we are given an embedded graph G, i.e., G is implicitly defined by a geometric arrangement
of a certain kind, and the question is to determine or bound the chromatic number χ(G).

Most naturally, G is given with a classical node-link diagram in 2D and we have a forbidden pattern
of how sets of edges are not allowed to cross. Then one way to upper bound the chromatic number is
to show that the number of edges in G is only linear in its number of vertices. This has been done for
1-planar graphs [45], 4-quasiplanar graphs [1], and fan-crossing free graphs [16].

We have introduced a new class of almost planar graphs: the fan-planar graphs. A graph is fan-
planar if it admits a simple topological drawing in which for each edge e the edges crossing e have
a common endpoint on the same side of e. I.e., all crossings are of the form that a fan of incident
edges at some vertex are crossed left-to-right by another edge e. See the left of Figure 2. This can be
formulated by two forbidden patterns, one of which is the configuration where an edge e is crossed by
two independent edges and the other where e is crossed by incident edges with the common endpoint on
different sides of e. We remark that every 1-planar graph is also fan-planar, and every fan-planar graph
is also 3-quasiplanar, where both inclusions are strict.

Theorem 7 (Kaufmann, Ueckerdt [31]).
Every n-vertex fan-planar graph has at most 5n−10 edges and there exists an infinite family of fan-planar
graphs with n vertices and 5n− 10 edges.
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Figure 3: Left: Stretching an L-representation into a segment representation. Middle: Rectangle ar-
rangement that is not stretchable into squares. Right: Contacts of circular arcs.

Theorem 7 immediately implies that every fan-planar graph G has a vertex of degree at most 9, prov-
ing that χ(G) ≤ 10. A similar statement for the class of k-quasiplanar graphs is a famous conjecture [11]
in the field: Is it true that for every fixed k the number of edges in k-quasiplanar n-vertex graphs is
linear in n? This would in particular imply that there is some f(k) such that every for k-quasiplanar
graph G we have χ(G) ≤ f(k).

It is also sensible to consider graphs embedded in 1D where vertices are mapped to integers and
edges to intervals. This setting, usually under the name ordered graphs, has become quite popular over
the last few years, e.g., in terms of extremal functions [35] and Ramsey theory [44].

We recently investigated very general forbidden edge patterns, such as k pairwise crossing (overlap-
ping) edges or k pairwise nesting edges, where we determine exactly the maximum chromatic number
of such embedded ordered graphs [5]; see for example the right of Figure 2. We also considered the
chromatic number of an ordered graph G with a forbidden ordered subgraph H [6]. In sharp contrast to
the unordered setting, we prove that there are some ordered paths H such that ordered graphs avoiding
H as an ordered subgraph can still have arbitrarily large chromatic number.

2 Intersection Representations

An intersection representation of a graph is a set of (geometric) objects, one for each vertex, such
that two vertices are adjacent if and only if the corresponding objects have a non-empty intersection.
Intersection representations arise naturally from applications, for example in constellations of objects
(vertices), each with a geometric position and a sphere of influence, like radio towers with broadcast
coverages or electric cables with fields of tension, but also when objects are moving entities and one is
interested in the intersections of their trajectories.

When arbitrary objects are allowed to represent the vertices, every graph admits an intersection
representation. But as soon as we restrict ourselves to objects only of a certain type or allow inter-
sections to be only of a certain type, we naturally obtain the class of all those graphs admitting such
restricted intersection representations. In the following I discuss several important examples of restricted
intersection representations. Further examples will follow in the Section 3 on coverings problems.

2.1 Connected sets in the plane – String graphs

A very natural and well-studied type of intersection representations uses as objects path-connected sets
in the Euclidean plane. The corresponding class of intersection graphs is the class of string graphs.
String graphs contain numerous non-planar graphs, but are not closed under taking subgraphs, and
indeed some graphs (like full subdivisions of non-planar graphs) are not string graphs.

Variants of such intersection representations with very restricted sets in the plane, such as disks [18],
segments [40], or squares [39], are as numerous as relevant, and play a key role in applications such as
chip designs and frequency assignment problems.

In 1985 Scheinerman conjectured that every planar graph is a segment graph, that is, it admits an
intersection representation with segments in the plane [47]. After being a famous open problem for more
than 20 years, it has been finally verified in 2009.



6 Torsten Ueckerdt

Figure 4: From left to right: Proper side-contacts of polygons; Triangle contacts induce a Schnyder
realizer; Cartogram of central Europe with respect to CO2-emissions in 2009; Contacts of 3D tetrahedra.

Theorem 8 (Chalopin, Gonçalves [14]).
Every planar graph is a segment graph.

A subclass of segment graphs are so-called L-graphs, that is, graphs that admit an intersection
representation with axis-aligned paths with one bend and with the same orientation as the letter ’L’
(in other words, the union of the lower and left side of an axis-aligned box). Indeed, Middendorf and
Pfeiffer proved in 1992 that every L-representation can be “stretched” into a segment representation [43];
see the left of Figure 3. Generalizing L-graphs, one defines Bk-VPG graphs, which admit intersection
representations with axis-aligned paths with k bends each.

In the light of Theorem 8 there are two main open problems in the field, both of which we could
partially but not completely answer.

Problem 9. Is every planar graph an L-graph? And is the complement of every planar graph a segment
graph?

Theorem 10 (Chaplick, Ueckerdt [15]).
Every planar graph is a B2-VPG graph.

Theorem 11 (Felsner, Knauer, Mertzios, Ueckerdt [25]).
Every planar 3-tree is an L-graph. And every complement of a planar graph is a B19-VPG graph.

Both questions in Problem 9 remain open in their full generality.

2.2 Contact representations

A contact representation is a special kind of intersection representation where we require the geometric
objects representing the vertices to be interiorly disjoint. Then intersections can happen only along the
boundaries of the objects, i.e., when the objects “touch” or “make contact”. If we additionally require
that contacts are not just isolated points and each object is a connected set, then in the plane only
planar graphs admit such contact representations. We refer to Figure 4 and the right of Figure 3 for
some illustrative examples.

Contact representations inherit a close relationship between the actual geometric realization of the
arrangement and its combinatorial properties. Every contact representation naturally induces a plane
embedding for the underlying planar graph G, but sometimes we can read off much more than that:
When using polygonal objects such as polygons or polylines, every contact involves at least one cor-
ner or endpoint of at least one of the two objects involved. The information for each contact which
corner/endpoint of which object is used, can be seen as a coloring and orientation of the edges of G
that satisfies some local properties around each vertex depending on the type of objects. Examples are
Schnyder realizer that arise from triangle contact representations [22], separating decompositions arising
from 2-directional segment contact representations [21] and transversal structures arising from proper
side-contact representations with rectangles [27].

Perhaps surprisingly, the local combinatorial information in all these combinatorial structures is
enough to characterize the contact representation up to topological equivalence, showing that the ge-
ometry of touching polygons is combinatorially equivalent to graph theoretic criteria. Moreover, the
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existence of Schnyder realizer, separating decompositions and transversal structures characterizes the
respective subclasses of planar graphs and so these became important tools in tasks such as enumeration,
construction sequences, random generation, underlying poset structures and grid drawings.

We have extended the set of bijections between specific contact representations and coloring and
orientations of the underlying contact graphs by two more entries. A Laman graph is a minimally rigid
graph, or equivalently, a Laman graph on n vertices has exactly 2n− 3 edges, and any set of k vertices
(2 ≤ k ≤ n) induces at most 2k − 3 edges.

Theorem 12 (Kobourov, Ueckerdt, Verbeek [38]).
Every planar Laman graph admits a contact representation with axis-aligned one-bend paths and these
representations are encoded by angular trees.

Theorem 13 (Klawitter, Nöllenburg, Ueckerdt [34]).
Every maximal triangle-free planar graph admits a contact representation with axis-aligned boxes and
these representations are encoded by corner edge labelings.

In most recent investigations in this area, one is interested to see what happens beyond planarity.
Here one tries to find higher-dimensional analogues of both, the geometric contact representations and
the combinatorial graph structures. We succeeded in generalizing Schnyder realizer to any dimension [24]
and most recently transversal structures to 3 dimensions [26].

Theorem 14 (Evans, Felsner, Kobourov, Ueckerdt [24]).
There is a d-dimensional analogues of Schnyder realizer, which encode analogous kinds of contact rep-
resentations with d-dimensional boxes in Rd.

3 Covering Problems

One might argue that scientific progress is just decomposing big problems into smaller pieces, until
complex obstacles become series of doable steps. Decomposing graphs into smaller graphs, or equiv-
alently, covering graphs by smaller graphs, is one of the most fundamental subjects of graph theory.
Indeed, proper vertex-colorings and proper edge-colorings are just coverings by independent sets and
matchings, respectively, and improper colorings can also be equivalently seen as coverings with simpler
graphs. In applications, a covering by interval graphs is for example important for scheduling a set of
interdependent jobs onto a number of processors.

Let G be a graph and let C denote the class of graphs with which we want to cover G. In the classical
covering problem, one seeks to cover G with as few graphs from C as possible, that is, we ask for the
smallest t such that G = H1 ∪H2 ∪ · · · ∪Ht with H1, . . . ,Ht ∈ C. We proposed [37] a unifying approach
to graph covering problems, capturing the classical model (which we call t-global coverings) as well as
two relaxations of it: t-local coverings and t-folded coverings, which have been considered only in a few
special cases before.

Definition 15 (Knauer, Ueckerdt [37]).
Let G be a graph and C be a class of graphs. A C-cover of G is an edge-surjective homomorphism
ϕ : C1∪̇ · · · ∪̇Ck → G. A C-cover ϕ : C1∪̇ · · · ∪̇Ck → G is

• t-global if ϕ|Ci is injective for i = 1, . . . , k, and t = k,

• t-local if ϕ|Ci is injective for i = 1, . . . , k and |ϕ−1(v)| ≤ t for every v ∈ V (G),

• t-folded if |ϕ−1(v)| ≤ t for every v ∈ V (G).

Finally, and cCg (G) (respectively cC` (G) and cCf (G)) is the smallest t ∈ N for which there exists a t-global
(respectively t-local and t-folded) C-cover of G.

In other words, the global covering number cCg (G) is the smallest t such that G can be covered with t
graphs from C, i.e., the global covering number corresponds to the classical covering problem. The local
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Figure 5: Left: 3-folded C-cover of a graph with C being all paths. Middle: 6-global C-cover of a bipartite
graph with C being all complete bipartite graphs. Right: 2-folded C-cover of a graph with C being all
interval graphs.

covering number cC` (G) is the smallest t such that G can be covered with an arbitrary number of graphs
from C but each vertex of G is contained in at most t such graphs. Finally, the folded covering number
cCf (G) is the smallest t such that each vertex v of G can be split into at most t vertices, keeping each
incident edge at v incident to at least one of the split vertices, such that the resulting graph is a disjoint
union of graphs in C. We refer to Figure 5 and the right of Figure 6 for some illustrative examples.

For any graph G and any class C we have cCf (G) ≤ cC` (G) ≤ cCg (G), because t-folded coverings
are less restrictive than t-local coverings, which in turn are less restrictive than t-global coverings. In
fact, in some cases where coverings are used as an ingredient in a bigger argumentation, the classical
global model is used even though the local model would be sufficient. In other cases, two of the three
cover variants have been investigated, but without realizing the close relation between them. With
our framework we provide the concepts and the tools to discover general properties inherent to many
covering problems, which we feel did not receive the appropriate attention before. Let us also mention
that by considering local and folded covering numbers instead of global covering numbers, one can
provide supporting evidence for some classic decomposition conjectures, such as the Double Cycle Cover
Conjecture and the Linear Arboricity Conjecture.

3.1 General phenomena

During our work on the initiating paper [37], a follow-up paper [9], and third projected paper, we
encountered several interesting phenomena yet to be explored and understood in full detail.

One phenomenon concerns the question by how much the folded, local and global covering number
of the same graph G with respect to the same class C can differ.

Theorem 16 (Knauer, Ueckerdt [37]).
If G is the class of all line graphs and C is the class of all complete graphs, then

max{cC` (G) | G ∈ G} = 2 and max{cCg (G) | G ∈ G} =∞.

In other cases, for example when G is the class of all graphs and C is the class of all bipartite graphs,
then max{cCf (G) | G ∈ G} = 2 and max{cC` (G) | G ∈ G} = ∞. On the other hand, we can prove that
if C is closed under taking vertex-disjoint unions and topological minors, then there exists a function ϕ
such that for every graph G we have cCg (G) ≤ ϕ(cCf (G)), i.e., such a tremendous separation of local and
global, or local and folded covering numbers is impossible. However, more precise conditions under which
folded, local and global covering numbers have always comparable magnitude are yet to be discovered.

A second phenomenon concerns the computational complexity of computing the folded, local or
global covering number. All graph classes C (that satisfy some reasonable assumptions) for which we
know some computationally easy or hard cases show the following pattern: computing cCf (G) is “at most

as difficult” as computing cC` (G), which in turn is “at most as difficult” as computing cCg (G). While
we know cases for which all three covering numbers are efficiently computable, other cases for which
this holds only for the folded and local variant, yet other cases for which folded covering numbers are
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Figure 6: Left: 1-local boxes in R3. Right: 2-folded C-cover of K7 with C being all outerplanar graphs.

computationally easy while the local and global covering number are not, and also cases where the
computation of all three covering numbers is NP-complete, we lack any explanation of this phenomenon.

Theorem 17 (Knauer, Ueckerdt [37]).
Let C be the class of all stars. Then for every graph G we have cCf (G) = cC` (G). Moreover, computing

cC` (G) can be done in polynomial time.

On the other hand, deciding whether cCg (G) ≤ k is known to be NP-complete for k = 2 [30] and
k = 3 [29]. Curiously, it remains open whether there is a union-closed graph class C such that computing
the local or folded covering number is NP-complete, whereas the global covering number can be computed
in polynomial time.

3.2 Coverings with interval graphs

For many classical covering problems we seek to cover a given graph G with graphs from C where C
is the class of some particular geometric intersection graphs. A very important type of intersection
graph, that was not mentioned in Section 2, is one in which vertices are represented by intervals on
the real line and edges correspond to non-disjoint intervals. The graphs admitting such intersection
representation are the famous and versatile interval graphs, which received a lot of attention and are
today quite well understood. Less understood, although important in many real-world applications, are
intersection representations in which each vertex is represented by a set of more than one interval.

Now, an intersection representation of G in which every vertex is represented by a set of at most
t intervals corresponds exactly to a t-folded cover of G where C is the class of interval graphs and
every vertex is split into at most t vertices. Minimizing t leads to the so-called interval number of G,
or equivalently the folded covering number cCf (G). On the other hand, the track number of G is the
smallest t such that G is the union of t interval graphs, and hence the track number is the same as
the global covering number cCg (G). Important results of Scheinerman and West, respectively Gonçalves,

state that if G is planar then cCf (G) ≤ 3 [48] and cCg (G) ≤ 4 [28], where both results are best-possible.

However, the corresponding local covering number cC` (G) has not been considered so far. In particular,
it is open whether for any planar graph G we have cC` (G) ≤ 3 for C being the class of interval graphs,
i.e., G can be split into interval graphs such that every vertex appears in only three interval graphs.

Theorem 18 (Knauer, Ueckerdt [37]).
Let C be the class of all interval graphs. Then for every planar graph G of tree-width 3 and every planar

bipartite graph G we have cC` (G) ≤ 3.

We remark that the known planar graphs G with cCg (G) = 4 are bipartite, for which by Theorem 18

we have cC` (G) ≤ 3. Trying to prove that cC` (G) ≤ 3 for every planar graph G, a gap in the proof of
Scheinerman and West [48] that cCf (G) ≤ 3 for every planar G was found, which could not be fixed.
Very recently, we could reprove their result with completely different arguments [36] and we hope to
generalize our techniques to prove that even cC` (G) ≤ 3 holds for every planar G.

A higher-dimensional analog to intervals on the real line are axis-aligned boxes in Rt, i.e., Cartesian
products of t real intervals. The smallest integer t such that a given graph G admits an intersection



10 Torsten Ueckerdt

representation with t-dimensional boxes is called the boxicity of G, denoted by box(G). The boxicity
was introduced by Roberts [46] in 1969 and has many applications in as diverse areas as ecology and
operations research [20].

The boxicity of any graph G can be equivalently seen as the smallest integer t such that G =
H1 ∩ · · · ∩Ht for H1, . . . ,Ht being interval graphs. Note that this is equivalent to Gc = Hc

1 ∪ · · · ∪Hc
t

where Gc denotes the complement of G and thus Hc
1 , . . . ,H

c
t are co-interval graphs (also known as

comparability graphs of interval orders). Hence we can interpret the boxicity as a covering parameter
by box(G) = cCg (Gc) where C denotes here the class of all co-interval graphs. Using our framework of
folded, local and global covering numbers [37], we recently introduced two boxicity-related concepts,
which we call the local boxicity box`(G) and the union boxicity box(G). Indeed, the three parameters
boxicity, local boxicity and union boxicity are non-trivial and reflect different aspects of the graph.

Theorem 19 (Bläsius, Stumpf, Ueckerdt [9]).
For every graph G we have box`(G) ≤ box(G) ≤ box(G). Moreover, for every positive integer k there

exist graphs Gk, G′k , G′′k with

• box`(Gk) ≥ k,

• box`(G
′
k) = 2 and box(G′k) ≥ k,

• box(G′′k) = 1 and box(G′′k) = k.

We also give geometric interpretations of the local and union boxicity of a graph G in terms of
intersecting high-dimensional boxes. For positive integers k, d with k ≤ d we call a d-dimensional box
B = I1 × · · · × Id k-local if for at most k indices i ∈ {1, . . . , d} we have Ii 6= R. Thus a k-local d-
dimensional box is the Cartesian product of d intervals, at least d − k of which are equal to the entire
real line R. See the left of Figure 6 for an illustration.

Theorem 20 (Bläsius, Stumpf, Ueckerdt [9]).
Let G be a graph.

• We have box(G) ≤ k if and only if there exist d1, . . . , dk such that G is the intersection graph of
Cartesian products of k boxes, where the ith box is 1-local di-dimensional, i = 1, . . . , k.

• We have box`(G) ≤ k if and only if there exists some d such that G is the intersection graph of
k-local d-dimensional boxes.

Let us remark that the boxicity of graphs is closely related to the dimension of posets [2]. It is a
promising task to carry over the exciting connections between boxicity and poset dimension to the new
concepts of local boxicity and union boxicity.
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Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Computer
Science, pages 299–310. Springer, 2014. http://dx.doi.org/10.1007/978-3-662-44465-8_26.

[26] S. Felsner, K. B. Knauer, and T. Ueckerdt. Contact graphs of axis-aligned rectangles in 3D. work
in progress, 2016.
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Abstract. We consider a coloring problem on dynamic, one-dimensional
point sets: points appearing and disappearing on a line at given times.
We wish to color them with k colors so that at any time, any sequence of
p(k) consecutive points, for some function p, contains at least one point
of each color.

We prove that no such function p(k) exists in general. However, in the
restricted case in which points appear gradually, but never disappear,
we give a coloring algorithm guaranteeing the property at any time with
p(k) = 3k−2. This can be interpreted as coloring point sets in R2 with k
colors such that any bottomless rectangle containing at least 3k−2 points
contains at least one point of each color. Here a bottomless rectangle is
an axis-aligned rectangle whose bottom edge is below the lowest point of
the set. For this problem, we also prove a lower bound p(k) > ck, where
c > 1.67. Hence, for every k there exists a point set, every k-coloring
of which is such that there exists a bottomless rectangle containing ck
points and missing at least one of the k colors.

Chen et al. (2009) proved that no such function p(k) exists in the case
of general axis-aligned rectangles. Our result also complements recent
results from Keszegh and Pálvölgyi on cover-decomposability of octants
(2011, 2012).
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1 Introduction

It is straightforward to color n points lying on a line with k colors in such
a way that any set of k consecutive points receive different colors; just color
them cyclically with the colors 1, 2, . . . , k, 1, . . . . What can we do if points can
appear and disappear on the line, and we wish a similar property to hold at any
time? More precisely, we fix the number k of colors, and wish to maintain the
property that at any given time, any sequence of p(k) consecutive points, for
some function p, contains at least one point of each color.

We show that in general, such a function does not exist: there are dynamic
point sets on a line that are impossible to color with two colors so that monochro-
matic subsequences have bounded length. This holds even if the whole schedule
of appearances and disappearances is known in advance. This family of point
sets is described in Section 2.

We prove, however, that there exists a linear function p in the case where
points can appear on the line at any time, but never disappear. Furthermore,
this is achieved in a constructive, semi-online fashion: the coloring decision for
a point can be delayed, but at any time the currently colored points yield a
suitable coloring of the set. The algorithm is described in Section 3.

In Section 4, we restate the result in terms of a coloring problem in R2: for
any integer k ≥ 1, every point set in R2 can be colored with k colors so that
any bottomless rectangle containing at least 3k − 2 points contains one point of
each color. Here, an axis-aligned rectangle is said to be bottomless whenever the
y-coordinate of its bottom edge is −∞.

In Section 5, we give lower bounds on the problem of coloring points with
respect to bottomless rectangles. We show that the number of points p(k) con-
tained in a bottomless rectangle must be at least 1.67k in order to guarantee the
presence of at least one point of each color.

Finally, in Section 6, we consider an alternative problem in which we fix the
size of the sequence to k, but we are allowed to increase the number of colors.

Motivation and previous works. The problem is motivated by previous intriguing
results in the field of geometric hypergraph coloring. Here, a geometric hyper-
graph is a set system defined by a set of points and a set of geometric ranges,
typically polygons, disks, or pseudodisks. Every hyperedge of the hypergraph is
the intersection of the point set with a range.

It was shown recently [7] that for every convex polygon P , there exists a
constant c, such that any point set in R2 can be colored with k colors in such
a way that any translation of P containing at least p(k) = ck points contains
at least one point of each color. This improves on several previous intermediate
results [15,17,2]. Similar positive results for other families of geometric hyper-
graphs are given by Aloupis et al. [3,1], and Smorodinsky and Yuditsky [18].
Discussions on the relation between this coloring problem and ε-nets can be
found in Pach and Tardos [13].

The problem for translates of polygons can be cast in its dual form as a
covering decomposition problem: given a set of translates of a polygon P , we
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wish to color them with k colors so that any point covered by at least p(k) of
them is covered by at least one of each color. The two problems can be seen to
be equivalent by replacing the points by translates of a symmetric image of P
centered on these points. The covering decomposition problem has a long history
that dates back to conjectures by János Pach in the early 80s (see for instance
[11,4], and references therein). The decomposability of coverings by unit disks
was considered in a seemingly lost unpublished manuscript by Mani and Pach in
1986. Up to recently, however, surprisingly little was known about this problem.

For other classes of ranges, such as axis-aligned rectangles, disks, translates of
some concave polygons, or arbitrarily oriented strips [5,12,14,16], such a coloring
does not always exists, even when we restrict ourselves to two colors.

Keszegh [8] showed in 2007 that every point set could be 2-colored so that any
bottomless rectangle containing at least 4 points contains both colors. Our posi-
tive result on bottomless rectangles (Corollary 2) is a generalization of Keszegh’s
results to k-colorings. Later, Keszegh and Pálvölgyi [9] proved the following
cover-decomposability property of octants in R3: every collection of translates of
the positive octant can be 2-colored so that any point of R3 that is covered by at
least 12 octants is covered by at least one of each color. This result generalizes
the previous one (with a looser constant), as incidence systems of bottomless
rectangles in the plane can be produced by restricted systems of octants in R3.
It also implies similar covering decomposition results for homothetic copies of a
triangle. More recently, they generalized their result to k-colorings, and proved

an upper bound of p(k) < 122k

on the corresponding function p(k) [10].

2 Coloring Dynamic Point Sets

A dynamic point set S in R is a collection of triples (vi, ai, di) ∈ R3, with di ≥ ai,
that is interpreted as follows: the point vi ∈ R appears on the real line at time
ai and disappears at time di. Hence, the set S(t) of points that are present at
time t are the points vi with t ∈ [ai, di). A k-coloring of a dynamic point set
assigns one of k colors to each such triple.

We now show that it is not possible to find a 2-coloring of such a point set
while avoiding long monochromatic subsequences at any time.

Theorem 1. For every p ∈ N, there exists a dynamic point set S with the
following property: for every 2-coloring of S, there exists a time t such that S(t)
contains p consecutive points of the same color.

Proof. In order to prove this result, we work on an equivalent two-dimensional
version of the problem. From a dynamic point set, we can build n horizontal
segments in the plane, where the ith segment goes from (ai, vi) to (di, vi). At
any time t the visible points S(t) correspond to the intervals that intersect the
line x = t. It is therefore equivalent, in order to obtain our result, to build a
collection of horizontal segments in the plane that cannot be 2-colored in such a
way that any set of p segments intersecting some vertical segment contains one
element of each color.
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Our construction borrows a technique from Pach, Tardos, and Tóth [14]. In
this paper, the authors provide an example of a set system whose base set cannot
be 2-colored without leaving some set monochromatic. This set system S is built
on top of the 1 + p + · · · + pp−1 = 1−pp

1−p vertices of a p-regular tree T p of depth
p, and contains two kinds of sets :

• the 1 + p + · · · + pp−2 sets of siblings: the sets of p vertices having the same
father,

• the pp−1 sets of p vertices corresponding to a path from the root vertex to
one of the leaves in T p.

It is not difficult to realize that this set system is not 2-colorable: by contradic-
tion, if every set of siblings is non-monochromatic, we can greedily construct a
monochromatic path from the root to a leaf.

We now build a collection S of horizontal segments corresponding to the
vertices of T p, in such a way that for any set E ∈ S there exists a time t at
which the elements of E are consecutive among those that intersect the line
x = t. For any p (see Fig. 1), the construction starts with a building block B1

p

of p horizontal segments, the ith segment going from (− i
p , i) to (0, i). Because

these p segments represent siblings in T p, they are consecutive on the vertical
line that goes through their rightmost endpoint, and hence cannot all receive
the same color.

Block Bj+1
p is built from a copy of B1

p to which are added p resized and

translated copies of Bj
p : the ith copy lies in the rectangle with top-right corner

(− i−1
p , i+1) and bottom-left corner (− i

p , i). By adding to Bp−1
p a last horizontal

segment below all others, corresponding to the root of T p, the ancestors of
a segment are precisely those that are below it on the vertical line that goes
through its leftmost point. When such sets of ancestors are of cardinality p − 1,
which only happens when one considers the set of ancestors of a leaf, then the
set formed by the leaf and its ancestors is required to be non-monochromatic.

With this construction we ensure that a feasible 2-coloring of the segments
would yield a proper 2-coloring of S, which we know does not exist. ��
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(a) The tree T 3.
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(b) The corresponding set of horizontal
segments B2

3 , with a root segment a.

Fig. 1. The recursive construction of Theorem 1, for p = 3
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The above result implies that no function p(k) exists for any k that answers
the original question. If it were the case, then we could simply merge color
classes of a k-coloring into two groups and contradict the above statement.

x

z

y

a

b

c

c

Fig. 2. A corner with coordinates (a, b, c)

Theorem 1 can also be interpreted as
the indecomposability of coverings by
a specific class of unbounded poly-
topes in R3. We define a corner with
coordinates (a, b, c) as the following
subset of R3: {(x, y, z) ∈ R3 : a ≤ x ≤
b, y ≤ c ≤ z}. An example is given
in Fig. 2. One can verify that a point
(x, y, z) is contained in a corner a, b, c
if and only if the vertical line segment
with endpoints (x, y) and (x, z) inter-
sects the horizontal line segment with
endpoints (a, c) and (b, c). The corol-
lary follows.

Corollary 1. For every p ∈ N, there exists a collection S of corners with the
following property: for every 2-coloring of S, there exists a point x ∈ R3 con-
tained in exactly p corners of S, all of the same color. In other words, corners
are not cover-decomposable.

3 Coloring Point Sets under Insertion

Since we cannot bound the function p(k) in the general case, we now consider
a simple restriction on our dynamic point sets: we let the deletion times di be
infinite for every i. Hence, points appear on the line, but never disappear.

A natural idea to tackle this problem is to consider an online coloring strategy,
that would assign a color to each point in order of their arrival times ai, without
any knowledge of the points appearing later. However, we cannot guarantee any
bound on p(k) unless we delay some of the coloring decisions. To see this, consider
the case k = 2, and call the two colors red and blue. An online algorithm must
color each new point in red or blue as soon as it is presented. We can design an
adversary such that the following invariant holds: at any time, the set of points
is composed of a sequence of consecutive red points, followed by a sequence
of consecutive blue points. The adversary simply chooses the new point to lie
exactly between the two sequences at each step.

Our computation model will be semi-online: The algorithm considers the
points in their order of the arrival time ai. At any time, a point in the se-
quence either has one of the k colors, or is uncolored. Uncolored points can be
colored later, but once a point is colored, it keeps its color for the rest of the
procedure. At any time, the colors that are already assigned suffice to satisfy the
property that any subsequence of 3k − 2 points has one point of each color, i.e.,
p(k) ≤ 3k − 2.
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Theorem 2. Every dynamic point set without disappearing points can be k-
colored in the semi-online model such that at any time, every subsequence of at
least 3k − 2 consecutive points contains at least one point of each color.

Proof. We define a gap for color i as a maximal interval (set of consecutive
points) containing no point of color i, that is, either between two successive
occurrences of color i, or before the first occurrence (first gap), or after the last
occurrence (last gap), or the whole line if no point has color i. A gap is simply
a gap for color i, for some 1 ≤ i ≤ k. We propose an algorithm for the semi-
online model keeping the sizes of all gaps to be at most 3k−3. This means every
set of 3k − 2 consecutive points contains each color at least once and implies
p(k) ≤ 3k − 2. The algorithm maintains two invariants:
(a) every gap contains at most 3k − 3 points; (b) if there is some point colored
with i then every gap for color i, except the first and the last gap, contains at
least k − 1 points.

The two invariants are vacuous when the set of points is empty. Now, suppose
that the invariants hold for an intermediate set of points and consider a new
point on the line presented by an adversary. Clearly, invariant (b) cannot be
violated in the extended set as no gaps decrease in size. However, there may
arise some gaps of size 3k − 2 violating (a). If not then the invariants hold for
the extended set and the algorithm does not color any point in this step. Suppose
there are some gaps of size 3k − 2. Consider one of them, say a gap of color i,
and denote the points in the gap in their natural ordering on the line from left
to right as (�1, . . . , �k−1, m1, . . . , mk, r1, . . . rk−1). Now, color i does not appear
among these points. Invariant (b) yields that none of the k − 1 remaining colors
appears twice among m1, . . . , mk. Thus, there is some mj , which is uncolored
and the algorithm colors it with i. This splits the large gap into two smaller
gaps. Moreover, since there are k − 1 �-points and k − 1 r-points invariant (b)
is maintained for both new i-gaps. The algorithm repeats that process until all
gaps are of size at most 3k − 3.

This concludes the proof, as after the algorithm ends all remaining uncolored
points can be arbitrary colored. ��

4 Coloring Points with Respect to Bottomless Rectangles

A bottomless rectangle is a set of the form {(x, y) ∈ R2 : a ≤ x ≤ b, y ≤ c}, for a
triple of real numbers (a, b, c) with a ≤ b. We consider the following geometric
coloring problem: given a set of points in the plane, we wish to color them with k
colors so that any bottomless rectangle containing at least p(k) points contains
at least one point of each color. It is not difficult to realize that the problem is
equivalent to that of the previous section.

Corollary 2. Every point set S ⊂ R2 can be colored with k colors so that any
bottomless rectangle containing at least 3k − 2 points of S contains at least one
point of each color.
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Proof. The algorithm proceeds by sweeping S vertically in increasing y-
coordinate order. This defines a dynamic point set S′ that contains at time
t the x-coordinates of the points below the horizontal line of equation y = t. The
set of points of S that are contained in a bottomless rectangle {(x, y) ∈ R2 : a ≤
x ≤ b, y ≤ t} correspond to the points in the interval [a, b] in S′(t). Hence, the
two coloring problems are equivalent, and Theorem 2 applies. ��

5 Lower Bound

We now give a lower bound on the smallest possible value of p(k).

Theorem 3. For any k sufficiently large, there exists a point set P such that
for any k-coloring of P , there exists a color i ∈ [k] and a bottomless rectangle
containing at least 1.677k − 2.5 points, none of which are colored with color i.

Proof. Fix k ≥ 100. For n ∈ N and 0 ≤ a < k we define the point set P = P (n, a)
to be the union of point sets L, R and B (standing for left, right and bottom,
respectively) as follows:

L := {(i − n, 2i − 1) ∈ R2 | i ∈ [n]}
B := {(i, 0) ∈ R2 | i ∈ [a]}
R := {(a + i, 2n + 2 − 2i) ∈ R2 | i ∈ [n]}

See Figure 3(a) for an illustration. Note that |L| = |R| = n and |B| = a. Consider

L R

B

(a)

p1

p2

p3

p4

p5

X1

X2

X3

X4

X5

X6

(b)

Fig. 3. (a) The point set P = P (n, a) with n = 7 and a = 4, and (b) the bottomless
rectangles X1, . . . , X6 corresponding to the color class P (c∗) = {p1, . . . , p5}

any coloring of the points in P with colors from [k]. For a color i ∈ [k] we define
P (i) to be the subset of points of P colored with i. We assume for the sake of
contradiction that every bottomless rectangle that contains b := 	1.677k − 2.5

points, contains one point of each color. In the remainder of the proof we will
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identify a bottomless rectangle containing b′ points but no point of one particular
color. We give a lower bound for b′ depending on n and a, but independent of
the fixed coloring under consideration. Taking sufficiently large n and choosing
a = 	0.655k
 we will prove b′ > b, which contradicts our assumption and hence
concludes the proof.

A color used at least once for the points in B is called a low color and a point
colored with a low color is a low point. Note that there are low points outside of
the set B. Let � be the number of low colors. Clearly, � ≤ |B| = a.

Claim 1.

(i) For every non-low color c there are at least
⌊

n
b−a

⌋
points of color c in L.

(ii) There are at least
�−1∑
i=0

⌊
n

b−i

⌋
low points in L.

Proof. Fix a color c ∈ [k] and assume that the j leftmost points in B are not colored
with c. Order the points in L colored with c according to their x-coordinate: p1,
p2,. . . , pm. Now for each 1 < i ≤ m there is a bottomless rectangle containing all
points in L between pi−1 and pi, and the leftmost j points in B, and nothing else.
Additionally, there is a bottomless rectangle containing all points in L to the left
of p1 together with j leftmost points in B, and a bottomless rectangle containing
all points in L to the right of pm together with j leftmost points in B. Note that
all these rectangles are disjoint within L and each point from L not colored with
c lies in exactly one such rectangle. Since each such rectangle X avoids the color c
we get that |X ∩ P | ≤ b − 1 and |X ∩ L| ≤ b − 1 − j and therefore

m + (m + 1)(b − 1 − j) = m(b − j) + b − j − 1 ≥ |L| = n,

m ≥
⌊

n

b − j

⌋
. (1)

In order to prove (i) consider a non-low color c. As c is not used on points in B
at all we can put j = a in (1) and the statement of (i) follows. Now, if c is a low
color, then j defined as the maximum number of leftmost points in B avoiding c
is always less than a. However, for each low color c we obtain a different j. Thus
the sum of inequality (1) over all low colors is minimized by

∑�−1
i=0	 n

b−i
, which
gives (ii). ��

By Claim 1 (i) and (ii) combined we get that there is a set S of k − a non-

low colors such that at most n − ∑a−1
i=0 	 n

b−i
 points in L have a color from S.

Analogously, at most n−∑a−1
i=0 	 n

b−i
 points in R have a color from S. Summing
up we get:
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∑

c∈S

|P (c)| =
∑

c∈S

(
|P (c) ∩ L| + |P (c) ∩ R|

)

≤ 2n − 2

a−1∑

i=0

⌊
n

b − i

⌋
≤ 2n − 2

a−1∑

i=0

(
n

b − i
− 1

)

= 2n

(
1 −

b∑

i=b−a+1

1

i

)
+ 2a

= 2n

(
1 −

b∑

i=1

1

i
+

b−a∑

i=1

1

i

)
+ 2a.

Using that
∑x

i=1
1
i = ln(x + 1) − ∑∞

j=1
Bj

j(x+1)j + γ for every x ≥ 1, where Bj

are the second Bernoulli numbers and γ is the Euler-Mascheroni constant, we
obtain

∑

c∈S

|P (c)| < 2n (1 − ln(b + 1) + ln(b − a + 1)) + 2a

= 2n

(
1 − ln

(
b + 1

b − a + 1

))
+ 2a.

From the pigeonhole principle we know that there has to exist a color c∗ ∈ S,
such that

q := |P (c∗)| ≤
⌊

2n(1 − ln( b+1
b−a+1 )) + 2a

k − a

⌋
. (2)

Enumerate the points in P (c∗) by p1, p2, . . . , pq according to their increasing y-
coordinates, i.e., we have i < j iff pi has smaller y-coordinate than pj. Now we
consider all maximal bottomless rectangles that completely contain B and con-
tain no point of color c∗. There are exactly q +1 such rectangles: For every point
pi ∈ P (c∗) there is a bottomless rectangle Xi whose top side lies immediately
below pi. And one further bottomless rectangle Xq+1 containing the entire strip
between L and R, and with sides bounded by the point in P (c∗) ∩ L and the
point in P (c∗) ∩ R with the highest index. See Figure 3(b) for an illustration.

Claim 2.
∑q

i=1 |Xi ∩ (L ∪ R)| ≥ 3
2

(
2n − q − b + a

)
.

Proof. Let Y1 and Yq+1 be the sets of points in L ∪ R with y-coordinate smaller
than p1 and larger than pq, respectively. Let Yi, 2 ≤ i ≤ q, be the set of points
with y-coordinate between pi−1 and pi. Note that Yi ⊂ Xi ∩ (L ∪ R) for all
1 ≤ i ≤ q + 1, and that the q + 1 sets Y1, . . . , Yq+1 partition the points of
L ∪ R that are not colored with c∗. Clearly, |Xi ∩ Yi| = |Yi|. We claim that
|Xi+1 ∩ Yi| ≥ 1

2 |Yi|, for i = 1, . . . , q.
Without loss of generality, let us assume that pi ∈ L. Then either Yi = ∅

or the point in Yi with largest y-coordinate lies in R. Since points from L and
R alternate in the ordering of L ∪ R with respect to increasing y-coordinate it
follows that Yi is almost equally partitioned into its left part Yi ∩L and its right
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part Yi ∩ R. Since the topmost point in Yi lies in R we have |Yi ∩ R| ≥ 1
2 |Yi|.

Now since pi ∈ L we have Xi+1 ⊃ Yi ∩ R, and thus

|Xi+1 ∩ Yi| ≥ |Yi ∩ R| ≥ 1

2
|Yi|. (3)

Note also that |Xq+1 ∩ Yq| + |Yq+1| ≤ |Xq+1 ∩ (L ∪ R)| < b − a as Xq+1 avoids
color c∗, so |Xq+1| < b, and contains all a points in B.

Now we calculate

q∑

i=1

|Xi ∩ (L ∪ R)| ≥
( q∑

i=1

|Xi ∩ Yi| + |Xi+1 ∩ Yi|
)

− |Xq+1 ∩ Yq|

(3)

≥
q∑

i=1

3

2
|Yi| − |Xq+1 ∩ Yq|

=
3

2

(
2n − |P (c∗)| − |Yq+1|

)
− |Xq+1 ∩ Yq|

≥ 3

2

(
2n − q − (|Yq+1| + |Xq+1 ∩ Yq|)

)
≥ 3

2

(
2n − q − (b − a)

)
.

��

From Claim 2 we get from the pigeonhole principle that there is a bottomless
rectangle X∗ ∈ {X1, . . . , Xq} with

|X∗| ≥
3
2 (2n − q − b + a)

q
+ a =

3n

q
− 3

2
− 3(b − a)

2q
+ a

(2)

≥ 3(k − a)

2
(
1 − ln

(
b+1

b−a+1

)
+ 2a

n

) + a − 3

2
− 3(b − a)

2q

Now, if we increase n, then q = |P (c∗)| increases as well, and for sufficiently large

n the terms 2a
n in the denominator and the additive term 3(b−a)

2q become negli-

gible. In particular, with a := 	0.655k
 and b = 	1.677k − 2.5
 and sufficiently
large n we have

|X∗| ≥ 3(k − a)

2
(
1 − ln

(
b+1

b−a+1

)) + a − 3

2

=
3(k − 	0.655k
)

2
(
1 − ln

( �1.677k−2.5�+1
�1.677k−2.5�−�0.655k�+1

)) + 	0.655k
 − 3

2

∼
( 1.035

2
(
1 − ln

(
1.677
1.022

)) + 0.655
)
k > 1.68k.

Hence if k is big enough (k ≥ 100 is actually enough) the bottomless rectangle
X∗ contains strictly more than 1.677k−2.5 points but no point of color c∗, which
is a contradiction and concludes the proof. ��
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6 Increasing the Number of Colors

1

2

3

4

Fig. 4. A point set witnessing c(k) ≥ 2k−1
for k = 4

There is another problem which can
be tackled this time in an online
model. The number c(k) is the mini-
mum number of colors needed to color
the points on a line such that any set
of at most k consecutive points is com-
pletely colored by distinct colors. The
same problem has been considered for
other types of geometric hypergraphs
by Aloupis et al. [3]. Again, the algo-

rithm considers the points in their order of the arrival time ai but now colors
them immediately.

Proposition 1. Every dynamic point set without disappearing points can be
(2k − 1)-colored in the online model such that at any time, every subsequence of
at least k consecutive points contains no color twice.

Proof. At the arrival of a new point p denote by (�1, . . . , �k−1) and (r1, . . . , rk−1)
the k − 1 points to its left and to its right, respectively. Together they have at
most 2k − 2 colors, Thus, there is at least one of the 2k − 1 colors unused among
these points. The algorithm colors p with this color. ��

Corollary 3. Every point set S ⊂ R2 can be colored with 2k − 1 colors so that
any bottomless rectangle containing at least k points of S contains no color twice.

The number of colors used in Corollary 3 is smallest possible. This is witnessed
by a point set S consisting of k points of the form {(i, 2i) | 0 ≤ i ≤ k − 1} and
k − 1 points of the form {(2k − i, 2i − 1) | 1 ≤ i ≤ k − 1}, see Fig. 4 for an
example. It is easy to see that every pair of points in such a point set is in a
common bottomless rectangle of size at most k. Finally, let us remark that an
upper bound on c(k) for dynamic point sets in which points can both appear and
disappear, as in Section 2, can be obtained by bounding the chromatic number of
the corresponding so-called bar k-visibility graph, as defined by Dean et al. [6]. In
particular, they show that those graphs have O(kn) edges, yielding c(k) = O(k)
for that case.
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17. Pálvölgyi, D., Tóth, G.: Convex polygons are cover-decomposable. Discrete & Com-
putational Geometry 43(3), 483–496 (2010)

18. Smorodinsky, S., Yuditsky, Y.: Polychromatic coloring for half-planes. J. Comb.
Theory, Ser. A 119(1), 146–154 (2012)



JoCG 7(1), 1–21, 2016 1

Journal of Computational Geometry jocg.org

DENSITY OF RANGE CAPTURING HYPERGRAPHS

Maria Axenovich,∗and Torsten Ueckerdt∗

Abstract. For a finite set X of points in the plane, a set S in the plane, and a positive
integer k, we say that a k-element subset Y of X is captured by S if there is a homothetic
copy S′ of S such that X ∩S′ = Y , i.e., S′ contains exactly k elements from X. A k-uniform
S-capturing hypergraph H = H(X,S, k) has a vertex set X and a hyperedge set consisting
of all k-element subsets of X captured by S. In case when k = 2 and S is convex these
graphs are planar graphs, known as convex distance function Delaunay graphs.

In this paper we prove that for any k ≥ 2, any X, and any convex compact set S,
the number of hyperedges in H(X,S, k) is at most (2k − 1)|X| − k2 + 1 −∑k−1

i=1 ai, where
ai is the number of i-element subsets of X that can be separated from the rest of X with
a straight line. In particular, this bound is independent of S and indeed the bound is tight
for all “round” sets S and point sets X in general position with respect to S.

This refines a general result of Buzaglo, Pinchasi and Rote [2] stating that every
pseudodisc topological hypergraph with vertex set X has O(k2|X|) hyperedges of size k or
less.

Keywords: Hypergraph density, geometric hypergraph, range-capturing hypergraph, homothets,
convex distance function, Delaunay graph.

1 Introduction

Let S and X be two subsets of the Euclidean plane R2 and k be a positive integer. In
this paper, S is a convex compact set containing the origin and X is a finite set. An S-
range is a homothetic copy of S, i.e., a set obtained from S by scaling with a positive
factor with respect to the origin and an arbitrary translation. In other words, an S-range is
obtained from S by first contraction or dilation and then translation, where two S-ranges
are contractions/dilations of one-another if in their corresponding mappings the origin is
mapped to the same point.

We say that an S-range S′ captures a subset Y of X if X∩S′ = Y . An S-capturing
hypergraph is a hypergraph H = (X, E) with vertex set X and edge set E ⊆ 2X such that
for every Y ∈ E there is an S-range S′ that captures E.

In this paper we consider k-uniform S-capturing hypergraphs, that is, those hy-
pergraphs H = H(X,S, k) with vertex set X and hyperedge set consisting of all k-element
subsets of X captured by S. I.e., the hyperedges correspond to S-ranges containing exactly
k elements from X. These hypergraphs are often referred to as range-capturing hypergraphs

∗Karlsruher Institut für Technologie, {maria.aksenovich,torsten.ueckerdt}@kit.edu
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or range spaces. The importance of studying k-uniform S-capturing hypergraphs was em-
phasized by their connection to epsilon nets and covering problems of the plane [12,13,16].
See also some related literature for geometric hypergraphs, [1–4,8–11,14,15,17–19,23,24,26].

The first non-trivial case k = 2, i.e., when H(X,S, k) is an ordinary graph, was
first considered by Chew and Dyrsdale in 1985 [7]. They showed that if S is convex and
compact, then H(X,S, 2) is a planar graph, called the Delaunay graph of X for the convex
distance function defined by S. In particular, H(X,S, 2) has at most 3|X|−6 edges and this
bound can be achieved. We remark that it follows from Schnyder’s realizer [21] that every
maximally planar graph can be written as H(X,S, 2) for some X and S being any triangle.

1.1 Related work.

Recently, Buzaglo, Pinchasi and Rote [2] considered the maximum number of hyperedges
of size k or less in a pseudodisc topological hypergraph on n vertices. Here, a family of
pseudodiscs is a set of closed Jordan curves such that any two of these curves either do not
intersect or intersect in exactly two points. A hypergraph is called pseudodisc topological
hypergraph if its vertex set X is a set of points in the plane and for every hyperedge Y there
is a closed Jordan curve such that the bounded region of the plane obtained by deleting the
curve contains Y and no point from X \Y , and the set of all these Jordan curves is a family
of pseudodiscs.

The authors of [2] observed that pseudodisc topological hypergraphs have VC-di-
mension [25] at most 3, and that using this fact the number of hyperedges can be bounded
from above. For this, a version of the Perles-Sauer-Shelah theorem [20, 22] is applied. Let,
for a set A and a positive integer d,

(
A
≤d
)
denote the set of all subsets of A of size at most d.

Theorem 1 (Perles-Sauer-Shelah Theorem). Let F = {A1, . . . , Am} be a family of distinct
subsets of {1, 2, . . . , n} and let F have VC-dimension at most d. Then m ≤

∣∣∣
⋃m

i=1

(
Ai
≤d
)∣∣∣ .

Applying this theorem to the family of hyperedges in a pseudodisc topological hy-
pergraph, one can see that the number of hyperedges in such a hypergraph is at most O(n3).
In fact, if one considers only hyperedges of size k or less, a much stronger bound could be
obtained.

Theorem 2 (Buzaglo, Pinchasi and Rote [2]). Every pseudodisc topological hypergraph on
n vertices has O(k2n) hyperedges of size k or less.

However, the methods used to prove Theorem 2 do not seem to give any non-trivial
bound on the number of hyperedges of size exactly k. Tight bounds are only known is case
k = 2. Indeed, every 2-uniform S-capturing hypergraph is a planar graph [7], called the
convex distance function Delaunay graph, and thus has at most 3n− 6 edges.

1.2 Our results.

In this paper, we consider the case when every hyperedge has exactly k points. In par-
ticular, we consider k-uniform S-capturing hypergraphs, for convex and compact sets S.
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One can show that these hypergraphs are pseudodisc topological hypergraphs. Indeed, the
family of all homothetic copies of a fixed convex set S is surely the most important example
of a family of pseudodiscs. For a finite point set X of the plane, a subset Y of X can be
separated with a straight line if there exists a line ` such that one halfplane defined by `
contains all points in Y and the other contains all points in X − Y . For a positive integer
i, let ai denote the number of i-subsets of X that can be separated with a straight line.

Theorem 3. Let S be a convex compact set, X be a finite point set and k be a positive
integer. Any k-uniform S-capturing hypergraph on vertex set X has at most (2k − 1)|X| −
k2 +1−∑k−1

i=1 ai hyperedges. Moreover, equality holds whenever S is nice and X is in general
position with respect to S.

Here a set S is called nice if S has “no corners” and “no straight segments on its
boundary”. We define such nice shapes formally later. Moreover, X is in general position
with respect to S if no three points of X are collinear and no four points of X lie on the
boundary of any S-range.

Note that for k = 2 the bound in Theorem 3 amounts for at most 3|X|− 3− t edges,
where t = a1 is the number of corners of the convex hull of X. We obtain the following
refinement of Theorem 2.

Corollary 4. Let S be a convex compact set and k, n be positive integers. Any S-capturing
hypergraph on n vertices has at most k2n+O(k3) hyperedges of size k or less.

The paper is organized as follows. Section 2 provides general definitions. Here
we also show how to reduce the general case of an arbitrary capturing hypergraph to one
with a nice shape S and a point set X in general position with respect to S. Section 3
introduces different types of ranges. The number of ranges of Type I is determined exactly
in Section 3.1. Section 3.2 gives an identity involving the number of ranges of both types in
X. Finally, Theorem 3 is proven in Section 4.

2 Nice shapes, general position and next range

In this section we introduce nice shapes, the concepts of the next range and state their basic
properties. For the ease of reading, the proofs of some results in this section are provided
in the appendix because they are quite straightforward but also technical. We denote the
boundary of a set S by ∂S. We denote the line through distinct points p and q by pq. A
halfplane defined by a line ` is a connected component of the plane after the removal of `.
In particular, such halfplanes are open sets. A closed halfplane is the closure of a halfplane,
i.e., the union of the halfplane and its defining line. Typically we denote the two halfplanes
defined by a line by L and R (standing for “left” and “right”).

For a set X of n points in the plane and any i ∈ [n] an i-set of X is a subset Y of
X on i elements that can be separated with a straight line. In other words, Y is an i-set if
it is captured by a closed halfplane. The number of i-sets of X is denoted by ai. Note that
some (but in general not all) i-sets can be captured by a halfplane that has two points of X
on its boundary. Such halfplanes are called representative halfplanes and we denote the set
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of all representative halfplanes of i-sets of X by Ai. Note that (even if i ≥ 2) the number
of representative halfplanes for a fixed i-set might be anything, including 0.

Lemma 5. For any set X of n points in the plane, no three on a line, and any i ∈ {1, . . . , n−
1} we have ai = |Ai+1|.

Proof. Let X be a finite point set with no three points in X on a line, |X| = n and
i ∈ {1, . . . , n− 1}. We shall give a bijection between the set Xi of i-sets of X and Ai+1.

Let Y ∈ Xi be an i-set. Assume (by rotating the plane if needed) that Y is separated
from X−Y by a vertical line, such that Y is contained in the corresponding right halfplane.
Consider all closed halfplanes that contain all points in Y and whose interior does not contain
any point in X−Y . Among all lines defining such halfplane let ` be one with smallest slope.
Then ` ∩X contains a point p ∈ X − Y and a point q ∈ Y and going from p to q along `
we have the corresponding halfplane that contains X on the right. In particular this right
halfplane of ` is in Ai+1.

On the other hand, for any closed halfplane H ∈ Ai+1 consider the line ` defining H
and the two points p, q ∈ X ∩ ` so that going from p to q along ` we have H on the right.
Then rotating ` slightly counterclockwise around any point on ` between p and q shows that
(H ∩X)− p is an i-set of X.

The above bijection shows that ai = |Xi| = |Ai+1|, as desired.

2.1 Nice shapes and general position of a point set.

A convex compact set S is called a nice shape if

(i) for each point in ∂S there is exactly one line that intersects S only in this point and

(ii) the boundary of S contains no non-trivial straight line segment.

For example, a disc is a nice shape, but a rectangle is not. A nice shape has no
“corners” and we depict nice shapes as discs in most of the illustrations.

Lemma 6. If S is a nice shape, S1 and S2 are distinct S-ranges, then each of the following
holds.

(i) ∂S1 ∩ ∂S2 is a set of at most two points.

(ii) If ∂S1 ∩ ∂S2 = {p, q} and L and R are the two open halfplanes defined by pq, then

• S1 ∩ L ⊂ S2 ∩ L and S1 ∩R ⊃ S2 ∩R or

• S1 ∩ L ⊃ S2 ∩ L and S1 ∩R ⊂ S2 ∩R.

(iii) Any three non-collinear points lie on the boundary of a unique S-range.

(iv) For a subset of points X ⊂ R2 and any Y ⊂ X, |Y | ≥ 2, that is captured by some
S-range there exists at least one S-range S′ with Y = X ∩ S′ and |∂S′ ∩X| ≥ 2.
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The proof of Lemma 6 is provided in the Appendix. We remark that only the last
item of Lemma 6 remains true if S is convex compact but not nice. For example, if S is
an axis-aligned square, then no three points with strictly monotone x- and y-coordinates lie
on the boundary of any S-range, whereas three points, two of which have the same x- or
y-coordinate lie on the boundary of infinitely many S-ranges.

For sets X,S ⊂ R2 we say that X is in general position with respect to S if

(i) no two points of X are on a vertical line,

(ii) no three points of X are collinear,

(iii) no four points of X lie on the boundary of any S-range.

Lemma 7. For any point set X, positive integer k and a convex compact set S, there is a nice
shape S′ and a point set X ′ in general position with respect to S′, such that |X ′| = |X| and
the number of edges in H(X ′, S′, k) is at least as large as the number of edges in H(X,S, k).

To prove Lemma 7, we show that one can move the points of X slightly and modify
S slightly to obtain the desired property. See the Appendix for a detailed account of the
argument. From now on we will always assume that S is a nice shape and X is a finite point
set in general position with respect to S.

2.2 Next Range.

For two distinct points p, q in the plane, we define S(p, q) to be the set of all S-ranges S1 with
p, q ∈ ∂S1. The symmetric difference of two sets A andB is given by A4B = (A\B)∪(B\A).

Lemma 8. Let p, q be two points such that no four points in X ∪ {p, q} lie on the boundary
of an S-range. Let L be a halfplane defined by pq. Then the following holds.

(i) The S-ranges in S(p, q) are linearly ordered, denoted by ≺pq, by inclusion of their
intersection with L:

S1 ≺pq S2 ⇔ S1 ∩ L ⊂ S2 ∩ L for all S1, S2 ∈ S(p, q)

(ii) For each S1 ∈ S(p, q) there exists a ≺pq-minimal S2 ∈ S(p, q) with

(∂S2 \ ∂S1) ∩X 6= ∅ and S1 ≺pq S2

if and only if S14L contains a point from X in its interior.

The proof of Lemma 8 is provided in the Appendix.

Whenever no four points in X ∪ {p, q} lie on the boundary of an S-range, L is a halfplane
defined by pq and S1 ∈ S(p, q), we define nextL(S1), called the next range of S1 in L, as
follows.
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• If the interior of S14L contains a point from X, then nextL(S1) = S2 for the S-range
S2 ∈ S(p, q) in Lemma 8 (ii).

• If the interior of S14L contains no point from X, then nextL(S1) = L.

Informally, we can imagine continuously transforming S1 into a new S-range containing p
and q on its boundary and containing S1 ∩ L and all points of (S1 \ ∂S1) ∩X. As soon as
this new S-range contains a point from X \ {p, q} on its boundary, we choose it as the next
range of S1 in L. Note that if S2 = nextL(S1) and ∂S1 contains a point from X \ {p, q},
then nextR(S2) = S1, where R denotes the other halfplane defined by pq.

As no four points in X ∪ {p, q} lie on the boundary of an S-range, we have |∂S1 ∩
(X \ {p, q})| ≤ 1 for each S1 ∈ S(p, q). This implies that if S1 captures k elements of X
then nextL(S1) captures k − 1, k or k + 1 elements of X. Indeed, if nextL(S1) = L, then
|X ∩ L| = k and if nextL(S1) 6= L, then the following holds.

If R ∩ ∂S1 ∩X 6= ∅, then nextL(S1) captures k or k − 1 points. (1)
If R ∩ ∂S1 ∩X = ∅, then nextL(S1) captures k or k + 1 points. (2)

See Figure 1 for the three possible case scenarios.

p

q

S1

p

q

nextL(S1)

S1
p

q

S1

R
L

nextL(S1)
nextL(S1)

R
L

R
L

Figure 1: Three cases of an S-range S1 with two boundary points p and q, and the next
S-range of S1 in a halfplane L defined by pq. Note that |X ∩ nextL(S1)| − |X ∩S1| is −1 on
the left, 0 in the middle, and 1 on the right.

3 Representative S-ranges and Types I and II

Let X be a set in a general position and S be a nice shape. Let Y be any hyperedge in
H(X,S, k). An S-range S′ is a representative S-range for Y if Y = X∩S′ and among all such
S-ranges S′ has the maximum number of points from Y on its boundary. From Lemma 6 (iv)
it follows that each hyperedge has a representative range and if S′ is a representative S-range
for Y , then S′ has two or three points of X on its boundary.

We say that S′ is of Type I if |∂S′ ∩X| = 3 and of Type II if |∂S′ ∩X| = 2.

We say that Y is of Type I if it has a representative range of Type I, otherwise it is of
Type II. Note that in total we have at most

(
k
3

)
many Type I ranges representing a Type I
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hyperedge since by Lemma 6 (iii) any three points of X are on the boundary of only one
S-range. On the other hand, every Type II hyperedge has infinitely many representative
ranges, see Figure 2. The representative set of Y contains all representative ranges for a
Type I set Y and it contains one arbitrarily chosen representative range for a Type II set
Y . We denote a representative set of Y by R(Y ).

(a) (b)

Figure 2: (a) A Type I hyperedge and with only two representative ranges. (b) A Type II
hyperedge with two of its infinitely many representative ranges.

We define

Ek1 = {Y ⊆ X | Y is a Type I hyperedge},
Rk

1 = {S ∈ R(Y ) | Y ∈ Ek1 },
Ek2 = {Y ⊆ X | Y is a Type II hyperedge} and
Rk

2 = {S ∈ R(Y ) | Y ∈ Ek2 }.

Lemma 9. All Type II representative S-ranges for the same hyperedge have the same pair
of X in their boundary.

Proof. Consider a representative range S1 for a Type II hyperedge Y with {p1, q1} = Y ∩∂S1.
Assume for the sake of contraction that there is another representative range, S2 for Y with
{p2, q2} = Y ∩ S2 and {p2, q2} 6= {p1, q1}. We have that p2, q2 ∈ S1, p1, q1 ∈ S2. Assume,
without loss of generality that q2 6∈ {p1, q1} and q1 6∈ {p2, q2}. Then q2 ∈ S1 − ∂S1 and
q1 ∈ S2 − ∂S2.

We need to distinguish the following cases: segments p2q2 and p1q1 cross properly,
p2q2 and p1q1 share a vertex, i.e., p2 = p1, and finally p1q1 is to the left of p2q2. The
first case does not occur by the argument presented in the previous item. In the other two
cases, let L and R be the halfplanes defined by p1q1 not containing q2 and containing q2,
respectively. Consider the S-range S3 = nextL(S1), which exists by Lemma 8 as S1∆L
contains q2. We see that R contains at least one point in ∂S3∩∂S2, see Figure 3. Moreover,
S3 must contain a point z ∈ X \ Y because it is a next range and Y is not of Type I. It
follows that z ∈ L\S2, which implies that the closure of L contains two points in ∂S3∩∂S2,
a contradiction to Lemma 6 (i).

From Lemma 9 and the definitions above we immediately get the following.
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p1 = p2

q1

q2

z
z

q1

q2

p2

p1

S1
S2 S2 S1

S3

S3

L R L R

Figure 3: The second and third case in the proof of Lemma 9.

|Ek1 | = |Rk
1| −

∑

Y ∈Ek1

(|R(Y )| − 1) (3)

|Ek2 | = |Rk
2| (4)

For a Type I hyperedge Y , let Y ′ ⊆ Y be the subset of vertices that are on the
boundary of at least one representative range for Y . We define the graph G(Y ) = (Y ′, EY )
with vertex set Y ′ and edge set EY = {{p, q} | p, q ∈ ∂S′, S′ ∈ R(Y )}. Then G(Y ) is the
union of triangles, one for each representative range of Y . We call an edge of G(Y ) inner
edge if it is contained in at least two triangles.

Lemma 10. For every Type I hyperedge Y the graph G(Y ) is a maximally outerplanar
graph. In particular, G(Y ) has exactly |R(Y )| − 1 inner edges.

Proof. We shall show that G = G(Y ) is maximally outerplanar by finding a planar embed-
ding of G in which every vertex lies on the outer face, every inner edge lies in two triangles
and every outer edge lies in one triangle. To this end draw every vertex of G at the position
of its corresponding point in Y ′ and every edge as a straight-line segment.

First observe that every point in Y ′ lies on the convex hull of Y ′. Hence, if G is
drawn crossing-free, then every vertex of G lies on the outer face of G.

Second, assume for the sake of contraction that two edges x1y1, x2y2 ∈ E(G) cross.
Without loss of generality these four vertices appear on the convex hull of Y ′ in the clockwise
order x1, x2, y1, y2. But then the S-ranges S1 and S2 with Y ⊂ Si and {xi, yi} = ∂Si ∩ Y
for i = 1, 2 have at least four intersections on their boundaries. See Figure 4(a) for an
illustration. This is a contradiction to Lemma 6 (i), i.e., that |∂S1 ∩ ∂S2| ≤ 2.

Finally, for any edge xy in G we shall show that x and y are consecutive points on
the convex hull of Y ′, or xy is contained in two triangles. Note that this proves that G is
maximally outerplanar.

As xy is an edge in G, there is a representative range S1 ∈ R(Y ) with x, y ∈ ∂S1.
Let L,R be the two open halfplanes defined by xy. Assume without loss of generality that
the third point in ∂S1 ∩X lies in L. We distinguish two cases.
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x1 x2

y1
y2

S2

S1

(a)

t

S1y

x

S3

S2

L R

(b)

Figure 4: (a) If two edges x1y1 and x2y2 in G(Y ) cross, then the corresponding S-ranges
have at least four intersections on their boundaries. (b) Illustration of the proof of Lemma 10.

If R ∩ Y ′ = ∅, then x and y are consecutive on the convex hull of Y ′ and the edge
xy is an outer edge of G. Otherwise, there exists some point t ∈ R ∩ Y ′ and we shall
show that the edge xy lies in two triangles. Let S2 ∈ R(Y ) be a representative range with
t ∈ ∂S2, which exists as t ∈ Y ′. Also consider S3 = nextL(S1). By (2) we have Y ⊂ S3 and
|X ∩ S3| ∈ {k, k + 1}. If S2 = S3, then the edge xy lies in two triangles, one for S1 and
one for S2 = S3. Otherwise the situation is illustrated in Figure 4(b). We have x, y ∈ S2

and t ∈ S3 − ∂S3. It follows that ∂S2 and ∂S3 intersect (at least) twice in the closure of
R. By Lemma 6 (i),(ii), we have L ∩ S2 ⊂ L ∩ S3. Thus, S3 ⊂ S1 ∪ S2, which implies that
S3 ∩X = Y , i.e., S3 ∈ R(Y ) and the edge xy lies in two triangles of G, as desired.

To summarize, G is drawn crossing-free with all vertices on the outer face, and every
edge of G lies on the convex hull of Y ′ or in two triangles. This implies that G is maximally
outerplanar.

3.1 The number of Type I ranges.

Recall that for i = 2, . . . , |X| we denote by Ai the set of representative halfplanes for i-sets of
X. In the next two proofs we treat representative halfplanes similarly to S-ranges. Indeed,
one can think of a halfplane as a homothet of S with infinitely large dilation and at the
same time infinitely large translation (however, formally this is incorrect!). In the light of
Lemma 8, a halfplane defined by pq arises as a kind of limit object of a sequences of S-ranges
in S(p, q). Accordingly, we defined nextL(S1) = L if (S14L) ∩X = ∅.
Proposition 11. For k ≥ 3 we have

|Rk
1| = 2(k − 2)|X| −

k−1∑

i=2

|Ai| − (k − 1)(k − 2).

Proof. For a point p ∈ X and a set S′ that is either a Type I S-range or a representative
halfplane, we say that p is the second point of S′ if

• ∂S′ ∩ X = {p, q, r} and the x-coordinate of p lies strictly between the x-coordinates
of q and r, or
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• ∂S′ ∩X = {p, q} and S′ is on the right when going from p to q along pq.

Clearly, every representative halfplane has a unique second point. Note that also every
Type I S-range has a unique second point, because no two points in X have the same x-
coordinate. Moreover, if p is the second point of S′ and ` denotes the vertical line through
p, then S′ ∩ ` is a vertical segment (if S′ is an S-range) or ray (if S′ is a halfplane) with an
endpoint p. We say that p is a lower, respectively upper, second point of S′ if S′ ∩ ` has p
as its lower, respectively upper endpoint.

Now, fix p ∈ X and the vertical line ` through p. Let L and R denote the left
and right open halfplanes defined by `, respectively. We want to show that roughly k − 2
S-ranges in Rk

1 have the lower second point p. We say S′ ∈ Rk
1 ∪
⋃

i≥2Ai has property (a, b)
if

• S′ has the lower second point p,

• L ∩ S′ contains exactly a points from X, one on ∂S′ if a ≥ 1, and

• R ∩ S′ contains exactly b points from X.

Claim. Let m ≥ 0 be the number of points in X whose x-coordinate is smaller than the
x-coordinate of p. Then for each a = 1, . . . ,min(m, k − 2) there exists Sa,p ∈ Rk

1 ∪
⋃

i≥2Ai

with property (a, b), so that

• either a+ b ≤ k − 2 and Sa,p is a halfplane,

• or a+ b = k − 1 and Sa,p is a Type I range.

Proof of Claim. Let a ∈ {1, . . . ,min(m, k − 2)} be fixed. We shall first construct S-
ranges with properties (0, 0), (1, 0), . . . , (a, 0), respectively, and then S-ranges with properties
(a, 1), (a, 2), . . . , (a, b), respectively. We start with any S-range S0 with property (0, 0). Let
q denote the upper endpoint of ` ∩ S0. We choose S0 so that no four points of X ∪ q lie on
the boundary of any S-range. Then we define for i = 1, . . . , a Si to be the next S-range of
Si−1 in L, i.e., Si = nextL(Si−1). By (1),(2), Si has property (i, 0). In particular, Sa has
property (a, 0). See Figure 5(a) for an illustration.

Next, we shall construct a sequence T0, T1, . . . Tt of S-ranges and possibly one half-
plane, and a sequence r0, r1, . . . rt of elements of X with the following properties.

A) ri ∈ ∂Ti ∩ L (i = 1, . . . , t).

B) ` ∩ Ti is a segment strictly shorter than ` ∩ Ti+1 (i = 1, . . . , t− 1).

C) |Ti ∩R ∩X| = xi (i = 1, . . . , t) with xi ≤ xi+1 (i = 1, . . . , t− 1).

D) |(Ti\γi)∩L∩X| = a, where γi denotes the component of ∂Ti\{p, ri} that is completely
contained in L (i = 1, . . . , t).

E) When xi < xi+1, then Ti+1 has property (a, xi+1), i.e., Ti+1 is a Type I range with the
second point p (i = 1, . . . , t− 1).
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p

`

q

S4

S0

S1

S3

S2

L R

(a)

p

ri ri ri

Case 1 Case 2

p′

p p

Ti

Ti+1

Ti

Ti+1

Ti

Ti+1p′

p′

q q q

L R L R
Hi

L R
HiHi

Case 3

(b)

Figure 5: (a) The S-ranges S0, . . . , S4 have property (0, 0), . . . , (4, 0), respectively. (b)
The three cases in the construction of Ti+1 based on Ti and ri. The component γi+1 of
∂Ti+1 \ {p, ri+1} that is completely contained in L is drawn bold.

F) Tt is a halfplane.

We construct the sequence T0, T1, . . . , Tt as follows. Let T0 = Sa, r0 ∈ ∂T0∩ (L∩X).
Assume that T0, . . . , Ti and r0, . . . , ri have been constructed and Ti is not a halfplane. Let
Hi denote the right halfplane defined by pri, i.e., q ∈ Hi. We define Ti+1 = nextHi(Ti).
Then by Lemma 8 we have Ti+1 ∩ Hi ⊃ Ti ∩ Hi and hence the segment ` ∩ Ti is strictly
shorter than ` ∩ Ti+1. Moreover, Lemma 8 implies that |(Ti+1 \ γi+1) ∩ L ∩ X| = a and
xi+1 = |Ti+1 ∩R ∩X| ∈ {xi, xi+1}.

Finally, we shall define the point ri+1. If Ti+1 = Hi is a halfplane, we set ri+1 = ri,
t = i + 1 and the sequence is complete. Otherwise, Ti+1 is a bounded S-range, and we
consider the unique point p′ in (∂Ti+1 \ ∂Ti) ∩X. We distinguish three cases.

Case 1: p′ ∈ R. We have that |Ti+1∩L∩X| = a, |Ti+1∩R∩X| = xi +1 and ∂Ti+1∩X =
{ri, p, p′}. So Ti+1 has property (a, xi+1) with xi+1 = xi + 1. Set ri+1 = ri, which
implies γi+1 ∩X = ∅.

Case 2: p′ ∈ L \Hi. Then |Ti+1 ∩ L ∩X| = a and |Ti+1 ∩ R ∩X| = xi, just like Ti. In
this case we set ri+1 = p′, which gives again γi+1 ∩X = ∅.

Case 3: p′ ∈ L ∩ Hi. Then |Ti+1 ∩ L ∩ X| = a + 1 and |Ti+1 ∩ R ∩ X| = xi. We set
ri+1 = p′, which implies ri ∈ γi+1 and hence |(Ti+1 \ γi+1) ∩ L ∩X| = a.

We refer to Figure 5(b) for an illustration. We see that if Ti+1 is not a halfplane, we
either have ri+1 6= ri or xi+1 > xi. Since there are finitely many possibilities for ri and xi
and no pair {ri, xi} occurs twice, at some point Ti+1 is a halfplane.

Note that Tt is a halfplane with property (a, xt). Hence, if xt < k − 1 − a, then Tt
is the desired S-range Sa,p ∈

⋃
i≥2Ai. Otherwise, a subsequence of T0, T1, . . . Tt consists of

Type I ranges with properties (a, 0), (a, 1), . . . , (a, b) with a+ b = k− 1 and the last element
of this subsequence is the desired S-range Sa,p ∈ Rk

1. This completes the proof of the claim.
4
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Note that for every S′ ∈ Rk
1 ∪
⋃

i≥2Ai we have S′ = Sa,p for at most one pair (a, p)
of a number a ∈ {1, . . . , k − 2} and a point p ∈ X. The above claim states that for given
(a, p) we find Sa,p, unless fewer than a points in X have smaller x-coordinate than p. This
rules out

(
k−1

2

)
of the (k − 2)|X| pairs (a, p) and we conclude that

(k − 2)|X| −
(
k − 1

2

)
≤ |Rk,↓

1 |+
k−1∑

i=2

|A↓i |, (5)

where Rk,↓
1 ⊆ Rk

1, respectively A↓i ⊆ Ai (i = 2, . . . , k− 2), are the subsets of Type I ranges,
respectively representative halfplanes, with a lower second point.

By symmetry, we obtain an analogous inequality for the Type I ranges Rk,↑
1 and

representative halfplanes A↑i with an upper second point. Together with Rk,↓
1 ∩ Rk,↑

1 = ∅
and A↓i ∩ A

↑
i = ∅ for i ≥ 2 this shows that

2(k − 2)|X| − (k − 1)(k − 2) ≤ |Rk,↓
1 |+ |Rk,↑

1 |+
k−1∑

i=2

(|A↓i |+ |A
↑
i |) ≤ |Rk

1|+
k−1∑

i=2

|Ai|. (6)

In order to finish the proof of Proposition 11 it remains to prove that (5) (and hence also (6))
holds with equality. For this, we show that for every point p ∈ X and every a ∈ {1, . . . , k−2}
there is at most one S-range in Rk

1 with property (a, b) for a + b = k − 1 and at most one
halfplane in

⋃
i≥2Ai with property (a, b) for a + b ≤ k − 2. If S1, S2 ∈ Rk

1 are two distinct
S-ranges with the same lower second point p, then by Lemma 6 (ii) S1 ∩ L ⊂ S2 ∩ L or
S2 ∩ L ⊂ S1 ∩ L. Observe that, if S1, S2 ∈

⋃
i≥2Ai are distinct closed halfplanes with the

same lower second point p, then we also have S1 ∩ L ⊂ S2 ∩ L or S2 ∩ L ⊂ S1 ∩ L. So
in either case we may assume that S1 ∩ L ⊂ S2 ∩ L. Now, if S2 has property (a, b), then
∂S2 ∩L∩X 6= ∅ and hence |S2 ∩L∩X| > |S1 ∩L∩X|. Thus S1 and S2 can not both have
property (a, b) for the same a.

We conclude that inequality (5) holds with equality. Thus (6) also holds with equal-
ity, which is the statement of Proposition 11.

3.2 Relation between the number of Type I and Type II ranges.

Recall that for a fixed Type I hyperedge Y in H(X,S, k) we denote by R(Y ) the set of
representative ranges for Y .

Proposition 12. For k ≥ 3 we have

3|Rk
1|+ 2|Rk

2| = 3|Rk+1
1 |+ |Ak|+ 2

∑

Y ∈Ek1

(|R(Y )| − 1).

Proof. Consider the set P of all ordered pairs (S1, S2) of an S-range S1 and an S-range or
representative halfplane S2, such that

(A) S1 ∈ Rk
1 ∪Rk

2.
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(B) ∂S1 ∩ ∂S2 is a pair p, q of points in X.

(C) S2 = nextL(S1), where L is one of the halfplanes defined by pq.

(D) X ∩ S1 ⊆ X ∩ S2.

For a pair (S1, S2) ∈ P we say that S2 is an image of S1 and S1 is a preimage of S2.
Note that, if S2 is an image of S1, then S1 contains k points from X and thus by (1),(2) S2

contains either k or k + 1 points from X. In the former case, S1 and S2 are either distinct
representative S-ranges for the same Type I hyperedge in H(X,S, k) or S2 is a halfplane, see
Figure 6(a), while in the latter case S2 is a Type I range in H(X,S, k + 1), see Figure 6(a)
and (b).

S3

p3

p1

p2
S2

S1

p1p2

p1p3

p2p3

S0

(a)

p1p2
p1

p2

(b)

S2

S3

S1

p1

p2

p3

(c)

Figure 6: (a) The three images S1, S2, S3 of a Type I range S0 (in bold). Note that S1

and S3 correspond to the same hyperedge in H(X,S, k+ 1), and that S0 and S2 correspond
to the same hyperedge in H(X,S, k). (b) The two images of a Type II range (in bold);
one being also an image of the Type I range in (a). (c) Three representative ranges for
the same hyperedge Y and the outerplanar graph G(Y ) (in bold). Here (S1, S2) ∈ P4 and
(S2, S1) ∈ P4, both with respect to {p2, p3}, as well as (S2, S3) ∈ P4 and (S3, S2) ∈ P4, both
with respect to {p1, p2}.

We partition P in two different ways; once with respect to the possibilities for preim-
ages and once with respect to the possibilities for preimages. Firstly, P = P1∪̇P2, where
P1 and P2 contain all pairs (S1, S2) with S1 ∈ Rk

1 and S1 ∈ Rk
2, respectively. Secondly,

P = P3∪̇P4∪̇P5, where P3, P4 and P5 contain all pairs (S1, S2) with S2 ∈ Rk+1
1 , S2 ∈ Ak

and S2 ∈ Rk
1, respectively. We summarize:

Pi = {(S1, S2) ∈ P | S1 ∈ Rk
i }, i = 1, 2,

P3 = {(S1, S2) ∈ P | S2 ∈ Rk+1
1 },

P4 = {(S1, S2) ∈ P | S2 ∈ Ak},
P5 =

⋃

Y ∈Ek1

{(S1, S2) ∈ P | S1, S2 ∈ R(Y )},

P = P1∪̇P2 and P = P3∪̇P4∪̇P5.

We shall show that, on one hand, |P1| = 3|Rk
1| and |P2| = 2|Rk

2|, while on the other hand,
|P3| = 3|Rk+1

1 |, |P4| = |Ak| and |P5| = 2
∑

Y ∈Ek1 (|R(Y )| − 1). Together with |P1| + |P2| =

|P | = |P3|+ |P4|+ |P5| this will conclude the proof.
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To prove that |P1| = 3|Rk
1|, consider S1 ∈ Rk

1 and let ∂S1 ∩ X = {p0, p1, p2}. For
i = 0, 1, 2 let Hi be the halfplane defined by pi−1pi+1 containing pi, where indices are taken
modulo 3. By (B),(C) and (D), every image S2 of S1 is the next S-range of S1 in Hi for
some i ∈ {0, 1, 2}, whose existence and uniqueness is given by Lemma 8 (ii). As every such
next S-range contains X ∩ S1, S1 has exactly three images.

To prove that |P2| = 2|Rk
2|, consider S1 ∈ Rk

2 and let X ∩∂S1 = {p1, p2}. If S2 is an
image of S1, then by (B),(C) S2 = nextH(S1), where H is a halfplane defined by p1p2. As
∂S1 ∩X = {p, q}, the next S-range in either halfplane contains S1 ∩X, i.e., (D) is satisfied.
Hence S1 has two images, one for each halfplane.

To prove that |P3| = 3|Rk+1
1 |, consider any S2 ∈ Rk+1

1 and let X∩∂S2 = {p0, p1, p2}.
Let Hi and H̄i be the halfplanes defined by pi−1pi+1 containing pi and not containing pi,
respectively, where indices are taken modulo 3 again. By (B), (C) and (D) every preimage
S1 of S2 corresponds to a point pi ∈ {p0, p1, p2} with pi ∈ S2\S1, such that S2 = nextHi(S1).
Indeed, if S′ = nextH̄i

(S2) captures k points from X, then (S′, S2) ∈ P1. Whereas, if S′

captures k + 1 points from X, then Y = X ∩ S′ ∩ S2 is a Type II hyperedge and for its
representative range S′′ we have (S′′, S2) ∈ P2. Finally, S′ can not capture k+2 points since
pi ∈ S2 \ S′. Hence S2 has exactly three preimages.

To prove that |P4| = |Ak|, we need to show that every halfplane H ∈ Ak is the
image of exactly one S-range in Rk

1 ∪Rk
2. In fact, if {p, q} = X ∩ ∂H and Y = H ∩X, then

consider S-ranges defined by p, q and a third point from Y . By Lemma 6 these S-ranges are
well-defined and by Lemma 8 they are linearly ordered by inclusion in H. For the S-range
S′ with S′ ∩H being inclusion-maximal we have (S′, H) ∈ P4, as desired.

Finally, we prove that |P5| = 2
∑

Y ∈Ek1 (|R(Y )| − 1). Consider any hyperedge Y ∈ Ek1
and the graph G(Y ) defined above, whose edges are all pairs {p, q} ⊆ Y such that p, q ∈ ∂S′
for a representative S-range S′ ∈ R(Y ) ⊂ Rk

1. By Lemma 10, connecting any two points
in Y that are adjacent in G(Y ) with a straight line segment gives a maximally outerplanar
drawing of G(Y ). Now if (S1, S2) ∈ P5, then ∂S1 ∩ ∂S2 = {p, q} is an inner edge of
G(Y ), see Figure 6(c). Moreover, exactly two S-ranges in R(Y ) have p and q on their
boundary, because S-ranges inR(Y ) correspond to triangles in G(Y ) and G(Y ) is maximally
outerplanar.

Thus, every pair (S1, S2) ∈ P5 with S2 ∈ Rk
1 gives rise to an inner edge of G(Y )

and every inner edge {p, q} of G(Y ) gives exactly two such ordered pairs in P5. Because a
maximally outerplanar graph with |R(Y )| triangles has |R(Y )| − 1 inner edges, we have the
desired equality.

Now we conclude that |P | = |P1|+ |P2| = 3|Rk
1|+ 2|Rk

2|, whereas |P | = |P3|+ |P4|+
|P5| = 3|Rk+1

1 |+ |Ak|+ 2
∑

Y ∈Ek1 (|R(Y )| − 1). Together this gives the claimed equality.

4 Proof of Theorem 3.

Proof of Theorem 3. For k = 1 and any X, the hypergraph H(X,S, k) clearly has |X| =
(2k−1)|X|−k2+1−∑k−1

i=1 ai hyperedges. For k = 2 and anyX, H(X,S, k) is the well-known
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Delaunay triangulation DS with respect to the convex distance function defined by S. In
particular, every inner face of DS is a triangle and the outer face is the convex hull of X,
i.e., has length a1. Thus, by Euler’s formula the number of hyperedges of H(X,S, 2) (edges
of DS) is given by 3|X| − 3− a1 = (2k− 1)|X| − k2 + 1−∑k−1

i=1 ai. So we may assume that
k ≥ 3. Moreover, by Lemma 7 we may assume that S is nice and X is in general position
with respect to S.

By Proposition 12 we have

3|Rk
1|+ 2|Rk

2| = 3|Rk+1
1 |+ |Ak|+ 2

∑

Y ∈Ek1

(|R(Y )| − 1). (7)

By Proposition 11 we have

|Rk
1| = 2(k − 2)|X| −

k−1∑

i=2

|Ai| − (k − 1)(k − 2), and (8)

|Rk+1
1 | = 2(k − 1)|X| −

k∑

i=2

|Ai| − k(k − 1). (9)

Putting (3), (4), (7), (8) and (9) together, we conclude that

2(|Ek1 |+ |Ek2 |)
(3),(4)

= 2|Rk
1| − 2

∑

Y ∈Ek1

(|R(Y )| − 1) + 2|Rk
2|

(7)
= 3|Rk+1

1 |+ |Ak| − |Rk
1|

(8),(9)
= 6(k − 1)|X| − 3

k∑

i=2

|Ai| − 3k(k − 1) + |Ak|

− 2(k − 2)|X|+
k−1∑

i=2

|Ai|+ (k − 1)(k − 2)

= 2

(
(2k − 1)|X| − k2 + 1−

k∑

i=2

|Ai|
)
.

Thus we have with Lemma 5 that |Ek1 | + |Ek2 | = (2k − 1)|X| − k2 + 1 −∑k
i=2 |Ai| = (2k −

1)|X| − k2 + 1−∑k−1
i=1 ai, as desired.

5 Conclusions and remarks

In this paper we investigated k-uniform hypergraphs whose vertex set X is a set of points in
the plane and whose hyperedges are exactly those k-subsets of X that can be captured by a
homothetic copy of a fixed convex compact set S. These are so called k-uniform S-capturing
hypergraphs. We have shown that every such hypergraph has at most (2k − 1)|X| − k2 +
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1 −∑k−1
i=1 ai hyperedges and that this is tight for every nice shape S. Here ai denotes the

number of i-subsets of X that can be separated with a straight line.

As an immediate corollary we obtain that if S is nice, then the total number of subsets of X
captured by some homothet of S is given by the cake number

(|X|
3

)
+
(|X|

2

)
+
(|X|

1

)
. Moreover,

we obtain a bound on the number of hyperedges of size at most k: For every point set X,
every convex set S and every k ≥ 1 at most k2|X| different non-empty subsets of X of size
at most k can be captured by a homothetic copy of S. This refines the recent O(k2|X|)
bound by Buzaglo, Pinchasi and Rote [2].

Another interesting open problem concerns topological hypergraphs defined by a
family of pseudodiscs. Here, the vertex set X is again a finite point set in the plane and
every hyperedge is a subset of X surrounded by a closed Jordan curve such that any two
such curves have at most two points in common. Buzaglo, Pinchasi and Rote [2] prove that
every pseudodisc topological hypergraph has at most O(k2|X|) hyperedges of size at most
k.

Question 1. What is the maximum number of hyperedges of size exactly k in a pseudodisc
topological hypergraph?

As we learned after submission, Chevallier et al. [5,6] have an unpublished manuscript
in which they prove that every inclusion-maximal k-uniform convex pseudodisc topological
hypergraph with n vertices has exactly (2k − 1)|X| − k2 + 1 −∑k−1

i=1 ai hyperedges. This
independent result implies our Theorem 3. However, their proof is 40 pages long and involves
higher-order Voronoi diagrams and higher-order centroid Delaunay triangulations. Our proof
uses a completely different technique; it is short and completely self-contained, and hence is
of independent interest.
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Appendix

Here we give the omitted proofs of Lemma 6, Lemma 7, and Lemma 8.

For a set S, we call a line ` touching S if ` intersects S in exactly one point. So, S is
nice if and only if for each point on its boundary there is exactly one touching line touching
S at this point.

Lemma 6. If S is a nice shape, S1 and S2 are distinct S-ranges, then each of the following
holds.

(i) ∂S1 ∩ ∂S2 is a set of at most two points.

(ii) If ∂S1 ∩ ∂S2 = {p, q} and L and R are the two open halfplanes defined by pq, then

• S1 ∩ L ⊂ S2 ∩ L and S1 ∩R ⊃ S2 ∩R or

• S1 ∩ L ⊃ S2 ∩ L and S1 ∩R ⊂ S2 ∩R.

(iii) Any three non-collinear points lie on the boundary of a unique S-range.

(iv) For a subset of points X ⊂ R2 and any Y ⊂ X, |Y | ≥ 2, that is captured by some
S-range there exists at least one S-range S′ with Y = X ∩ S′ and |∂S′ ∩X| ≥ 2.

Proof. (i) We show that for any two S-ranges S1, S2 such that {p, q, r} ⊆ ∂S1 ∩ ∂S2, for
distinct p, q, r, S1 coincides with S2. Assume not, and consider homothetic maps f1,
f2 from S1, S2 to S, respectively. Let pi, qi, ri be the images of p, q, r under fi, i = 1, 2.
Then we have that p1, q1, r1 and p2, q2, r2 form congruent triangles T1, T2 with vertices
on ∂S. If these two triangles coincide, then S1 = S2. Otherwise consider two cases:
a corner of one triangle is contained in the interior of the other triangle or not. If,
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without loss of generality, a corner of T1 is in the interior of T2, then by convexity, this
corner can not be on ∂S. Otherwise, T1 and T2 are either disjoint or share a point on
the corresponding side. In either case, one of the sides of T1 is on the same line as the
corresponding side of T2, otherwise convexity of S is violated. Then, the boundary of
S contains 3 collinear points, a contradiction to the fact that S is a nice shape.

(ii) We have, without loss of generality that S1 ∩ L ⊂ S2 ∩ L. If S1 ∩R ⊃ S2 ∩R, we are
done. Otherwise, we have that S1∩R ⊂ S2∩R, and, in particular S1 ⊆ S2. Note that
at p and q the S-ranges S1 and S2 have the same touching lines. Indeed, these lines
are unique since S is nice. Consider maps f1 and f2 as before. We see that p, q are
mapped into the same pair of points under both maps. Thus S1 = S2, a contradiction.

The remaining two items can be proven by considering two points p, q in the plane and the
set S(p, q) of all S-ranges S′ with p, q ∈ ∂S′. Indeed, given fixed p and q there is a bijection
φ between the S-ranges in S(p, q) and the set L (p, q) of lines whose intersection with S is
a non-trivial line segment parallel to the line pq. We refer to Figure 7(a) for an illustration.

p

q

φ−1

−→

`1 `2
`3 S3

S2

S1
S

p1

p2
p3

q1 q2

q3

pq

R
L

←−
φ

(a)

p

q
r
S1

p2

q2

qr

φ(S1)
`2

pqS2

φ−1

−→←−
φ

`

(b)

Figure 7: (a) A nice shape S, two points p, q in the plane, three lines `1, `2, `3 ∈ L (p, q)
and the corresponding S-ranges S1, S2, S3 ∈ S(p, q). (b) Given an S-range S1 ∈ S(p, q) with
r ∈ S1 we can find an S-range S2 ∈ S(p, q) with r /∈ S2.

We verify that this bijection exists: For a line `′ ∈ L (p, q) such that `∩∂S = {p1, q1},
let S′ be an S-range obtained by contracting and translating S such that p1 and q1 are
mapped into p and q, respectively. Let φ−1(`) = S′. Given an S′-range with p, q ∈ ∂S,
consider a translation and contraction that maps S′ to S. Let p1 and q1 be the images of
p and q under this transform, then let φ(S′) = `, where ` is a line through p1 and q1. See
again Figure 7(a) for an illustration.

(iii) Consider any three non-collinear points p, q, r in the plane. We shall first show that
there is an S-range with p, q, r on its boundary. Let S1 be an S-range of smallest area
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containing all three points. Clearly, |∂S1 ∩ {p, q, r}| is either 2 or 3. In the latter case
we are done. So assume without loss of generality that ∂S1 ∩ {p, q, r} = {p, q}.
Now, we claim that there is another S-range S2 that contains p and q but not r, with
p, q ∈ ∂S2. To find S2, containing p, q on its boundary and not containing r, consider
the triangle p, q, r and a line ` that goes through q having p and r on the different
sides. Assume without loss of generality that q is the lowest point among p, q, r, and
that qr and ` have positive slopes. Next, let q2 be a point on ∂S whose touching line
is parallel to ` and such that S is above this touching line. See Figure 7(b). Let `2
be the line parallel to pq and containing q2 and let p2 be the unique point in ∂S ∩ `2
different from q2. Note that |`2 ∩ ∂S| = 2 follows from the fact that S is a nice shape
and `2 and ` have different slopes. Let S2 = φ−1(`2). We see that S2 is above `, but
r is below `. So, r /∈ S2.

Since φ is continuous and any two lines in L (p, q) can be continuously transformed
into each other within L (p, q), we conclude that S1 can be continuously transformed
into S2 within S(p, q). Thus, there is an S-range S′ ∈ S(p, q) such that r ∈ ∂S′. This
proves that any three non-collinear points p, q, r lie on the boundary of some S-range.
The uniqueness of such a range follows from (i).

(iv) Let Y be a hyperedge in H(X,S, k) and S1 be an S-range capturing Y . Contract
S1 until the resulting range S2 contains at least one point, p of Y , on its boundary.
If |∂S2 ∩ Y | ≥ 2, we are done. Otherwise, consider a small S-range S3 containing
p on its boundary and not containing any other points of X. Let q be the second
point in ∂S2 ∩ ∂S3. Similarly to the previous argumentation, S2 can be continuously
transformed into S3 within S(p, q). Each intermediate S-range is contained in S2 ∪S3

and thus contains no points of X \ Y . One of the intermediate S-ranges will contain
another point of Y on its boundary.

Lemma 7. For any point set X, positive integer k and a convex compact set S, there is a nice
shape S′ and a point set X ′ in general position with respect to S′, such that |X ′| = |X| and
the number of edges in H(X ′, S′, k) is at least as large as the number of edges in H(X,S, k).

Proof. First, we shall modify S slightly. Consider all hyperedges of H(X,S, k) and for each
of them choose a single capturing S-range. Recall that two S-ranges are contraction/dilation
of one-another if in their corresponding homothetic maps the origin is mapped to the same
point. For each hyperedge consider two distinct capturing S-ranges S1, S2 with S2 being
a dilation of S1. Among all hyperedges, consider the one for which these two S-ranges,
S1 ⊂ S2 are such that the stretching factor between S1 and S2 is the smallest.

Let S′ be a nice shape, S1 ⊂ S′ ⊂ S2. Replace each of the other capturing ranges with
an appropriate S′-range. Now, we have that H(X,S′, k) has at least at many hyperedges as
H(X,S, k). Next, we shall move the points from X slightly so that the new set X ′ is in a
general position with respect to S′ and contains as many hyperedges as H(X,S′, k).

Observe first that since X is a finite point set, we can move each point of X by some
small distance, call it ε in any direction such that the resulting hypergraph has the same set
of hyperedges as H(X,S′, k).
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Call a point x ∈ X bad if either x is on a vertical line together with some other point
of X, x is on a line with two other points of X, or x is on the boundary of an S′-range
together with at least three other vertices of X.

We shall move a bad x such that a new point set has smaller number of bad points
and such that the resulting hypergraph has at least as many edges asH(X,S′, k). From a ball
B(x, ε) delete all vertical lines passing through a point ofX, delete all lines that pass through
at least two points of X and delete all boundaries of all S′-ranges containing at least 3 points
of X. All together we have deleted at most n +

(
n
2

)
+
(
n
3

)
, where n = |X|, curves because

there is one vertical line passing through each point, at most
(
n
2

)
lines passing through some

two points of X and at most
(
n
3

)
S′-ranges having some three points of X on their boundary.

So, there are points left in B(x, ε) after this deletion. Replace x with an available point x′

in B(x, ε). Observe that x′ is no longer bad in a new set X−{x}∪{x′}. Moreover, if z ∈ X,
z 6= x was not a bad point, it is not a bad point in a new set X − {x} ∪ {x′}. Indeed, since
x′ is not on a vertical line with any other point of X and not on any line containing two
points of X, z is not on a bad line with x′. Moreover, since x′ is not on the boundary of
an S′-range together with at least three other points of X, z can not be together with x′ on
the boundary of an S′-range containing more than 3 points of X on its boundary.

Lemma 8. Let p, q be two points such that no four points in X ∪ {p, q} lie on the boundary
of an S-range. Let L be a halfplane defined by pq. Then the following holds.

(i) The S-ranges in S(p, q) are linearly ordered, denoted by ≺pq, by inclusion of their
intersection with L:

S1 ≺pq S2 ⇔ S1 ∩ L ⊂ S2 ∩ L for all S1, S2 ∈ S(p, q)

(ii) For each S1 ∈ S(p, q) there exists a ≺pq-minimal S2 ∈ S(p, q) with

(∂S2 \ ∂S1) ∩X 6= ∅ and S1 ≺pq S2

if and only if S14L contains a point from X in its interior.

Proof. (i) This follows immediately from Lemma 6 (ii).

(ii) First assume that (S14L) ∩ X 6= ∅. For each point r ∈ (S14L) ∩ X consider the
S-range Sr with {p, q, r} ⊂ ∂Sr. The existence and uniqueness of Sr is given by
Lemma 6 (iii). By the first item, the S-ranges in {Sr | r ∈ (S14L) ∩X} are linearly
ordered by inclusion of their intersection with L. Hence there exists an S-range S2 in
this set, which is ≺pq-minimal.
Let r be the point in ∂S2 different from p and q. If r ∈ L, then r /∈ S1 and thus
L ∩ S1 ⊂ L ∩ S2. If r /∈ L, then r ∈ S1 \ ∂S1 and thus S2 ∩ R ⊂ S1 ∩ R, where
R is the other halfplane defined by pq. In any case we have S1 ≺pq S2. Moreover,
r ∈ (∂S2 \ ∂S1) ∩X and hence S2 is the desired S-range.

Now assume that S2 is a ≺pq-minimal S-range in S(p, q) with (∂S2 \∂S1)∩X 6= ∅ and
S1 ≺pq S2. We claim that the point r in (∂S2 \ ∂S1) ∩X lies in the interior of S14L.
If r ∈ R, then r ∈ S1, because ∂S2 ∩ R ⊂ S1 ∩ R. On the other hand, if r ∈ L, then
r /∈ S1, because ∂S1 ∩ L ⊂ S2 ∩ L. Hence r lies in the interior of S14L, as desired.
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a graph whose connected components are short paths. The length of a path is the number
of its edges. The Four Color Theorem [3, 4] implies that four parts are sufficient to
guarantee such a partition with paths of length 0, that is, on one vertex each. A result
of Goddard [20] and Poh [26] shows that any planar graph can be vertex-colored with
three colors such that each monochromatic component is a path. However, one cannot
always restrict the lengths of monochromatic paths in 3-colorings of planar graph as was
shown by a specific triangulation construction of Chartrand, Geller, and Hedetniemi [11].
Chappell, Gimbel, and Hartman [10] gave an explicit construction of a planar graph of
girth 4 that can not be vertex colored in two colors such that each color class induces a
path forest.

However, when the girth of a planar graph is sufficiently large, one can not only 3-
color, but 2-color the vertices of the graph such that monochromatic components are short
paths. Borodin, Kostochka, and Yancey [9] proved that the vertices of each planar graph
of girth at least 7 can be 2-colored so that each monochromatic component has at most
two vertices, that is, is a path of length at most 1. Note that the order of monochromatic
components cannot be decreased to 1 as long as the graph is not bipartite.

Chappell, Gimbel, and Hartman [10] proved that any planar graph of girth at least
6 can be 2-colored such that each monochromatic component is a path, however no
bound on the sizes of these paths was given. Borodin and Ivanova [8] conjectured
that there is such a coloring with monochromatic components being paths of length at
most 2.

Here, we show that planar graphs of girth at least 6 can be 2-colored such that each
monochromatic component is a path of length at most 14. Moreover, we prove a list
version of this result. On the other hand, for each positive integer t ≥ 3, we construct
a planar graph of girth 4 such that in any coloring of vertices in two colors there is a
monochromatic path of length at least t. It remains open whether one can 2-color the
vertices of a planar graph of girth 5 such that each monochromatic component is a short
path.

Note that the problem we consider is a problem of strong linear arboricity or a k-path
chromatic number introduced by Borodin et al. [8] and Akiyawa et al. [1], respectively.
Here, a linear arboricity of a graph is the smallest number of parts in a vertex-partition
of the graph such that each part induces a forest with path components. The k-strong
linear arboricity or k-path chromatic number is the smallest number of colors in a vertex-
coloring of the graph such that each monochromatic component is a path on at most k
vertices.

Let L be a color list assignment for vertices of a graph G, that is, L : V (G) → 2Z. We
say that c is an L-coloring if c : V → Z such that c(v) ∈ L(v) for each v ∈ V (G).

We prove the following theorems.

Theorem 1. For any planar graph of girth at least 6 and any list assignment L with
lists of size 2 there is an L-coloring so that each monochromatic component is a path of
length at most 14.

Theorem 2. For every positive integer t there is a planar graph Gt of girth 4 such that
any vertex coloring of Gt in two colors results in a monochromatic path of length t − 1.

Our results are a contribution to the lively and active field of improper vertex colorings
of planar graphs, where the number of colors is strictly less than four but various

Journal of Graph Theory DOI 10.1002/jgt
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restrictions on the monochromatic components are imposed. For standard graph theoretic
notions used here, we refer to [15].

1.1. Organization of the Article

In Section 2, we give a short survey of improper colorings of planar graphs, explain the
relation to our results in the present article, and point out some open problems. In Section
3, we prove Theorem 1 and in Section 4 we prove Theorem 2. We conclude with some
open questions in Section 5.

2. IMPROPER COLORINGS OF PLANAR GRAPHS

A proper vertex-coloring of a graph is a coloring in which each monochromatic compo-
nent is a single vertex, or, equivalently, in which there are no two adjacent vertices of the
same color. In this article, a c-coloring, c ≥ 1, of a graph is a (not necessarily proper)
vertex coloring using c colors. As every planar graph has a proper 4-coloring, we focus
here on 2-colorings and 3-colorings. The most studied variants of improper colorings
are defective, fragmented, and Pk-free colorings. A survey on the topic was done in the
bachelor’s thesis of Pascal Weiner [28].

2.1. Defective Colorings

For a nonnegative integer k, a vertex coloring is called k-defective if each monochromatic
component has maximum degree at most k. We define kd(g, c) to be the smallest k such
that every planar graph of girth at least g admits a k-defective c-coloring. Defective col-
orings were introduced in 1986 by Cowen, Cowen, and Woodall [13], who showed that
kd(3, 3) = 2, that is, every planar graph admits a 3-coloring in which every monochro-
matic component has maximum degree at most 2. In fact, there is a 3-coloring of any
planar graph in which every monochromatic component is a path [26]. Eaton and Hull
[16], and independently Škrekovski [27], proved that kd(3, 2) = ∞, that is, there are
planar graphs of girth 3 for which any 2-coloring results in a monochromatic component
of arbitrarily high maximum degree. Cowen, Goddard, and Jerum [14] proved that every
outerplanar graph admits a 2-defective 2-coloring. Havet and Sereni [21] showed that
for c ≥ 2, k ≥ 0 every graph of maximum average degree less than c + ck

c+k admits a k-
defective c-coloring. By Euler’s formula a planar graph of girth g has maximum average
degree less than 2g

g−2 . Hence, the last result implies that kd(5, 2) ≤ 4 and kd(6, 2) ≤ 2.
The result of Borodin et al. [9] shows that kd(7, 2) = 1.

2.2. Fragmented Colorings

A c-coloring is k-fragmented if each monochromatic component has at most k vertices,
and k f (g, c) denotes the smallest k such that every planar graph of girth at least g admits a
k-fragmented c-coloring. Fragmented coloring were first introduced in 1997 by Kleinberg
et al. in [23], where they showed that k f (3, 3) = ∞, that is, there is no k such that every
planar graph admits a k-fragmented 3-coloring, a result that has been independently
proven by Alon et al. [2]. Esperet and Joret [17] recently proved that k f (4, 2) = ∞,

Journal of Graph Theory DOI 10.1002/jgt
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TABLE I. Improper 2-coloring results for planar graphs of girth g

Girth g 3 4 5 6 7

kd (g, 2) ∞ ∞ ≥ 2 Figure 7 ≤ 2 1
[16] [27] ≤ 4 [21] [21] [9]

kf (g, 2) ∞ ∞ ≥ 3 ≤ 12 2
[2, 23] [17] Figure 7 [18] [9]

kp(g, 2) ∞ ∞ ≥ 4 ≤ 6 3
[1, 7, 11] Thm. 2 Figure 7 [19] [9]

although this already follows from the fact that kd(4, 2) = ∞ [27]. Esperet and Ochem
[18] proved that k f (6, 2) ≤ 12.

2.3. Pk -free Colorings

Finally, a c-coloring is Pk-free if there is no monochromatic path on k vertices, and
kp(g, c) denotes the smallest k such that every planar graph of girth at least g admits a
Pk-free c-coloring. Such Pk-free colorings were already introduced in 1968 by Chartrand,
Geller, and Hedetniemi [11], who showed that kp(3, 3) = ∞, that is, there is no k
such that every planar graph admits a Pk-free 3-coloring. In a different paper [12], the
same authors showed that same holds for outerplanar graphs and two colors. More than
20 years later, the former result has been reproved by Akiyama et al. [1], as well as
Berman and Paul [7]. Recently, Glebov and Zambalaeva [19] showed that every planar
graph of girth at least 6 can be 2-colored such that every color class induces a P6-free
forest, that is, kp(6, 2) ≤ 6. We summarize the results for defective, fragmented, and
Pk-free colorings using two colors.

Theorems 1 and 2 immediately imply the following (c.f. Table I).

Corollary 1. We have that k f (6, 2) ≤ 15, kp(6, 2) ≤ 16, and kp(4, 2) = ∞.

Let us also mention that defective and fragmented colorings have also been considered
for nonplanar graphs of bounded maximum degree [2, 6, 22], bounded number of vertices
[24], and for minor-free graphs [29]. In natural generalizations, one allows different color
classes to have different defect (see, e.g., [5, 25]), or considers list-coloring, which, in
fact, is the case in many of the results above.

3. PROOF OF THEOREM 1

For a list assignment L, we call an L-coloring of a planar graph good if each monochro-
matic component is a path of length at most 14. Throughout this section we let, for the
sake of contradiction, a graph G be a counterexample to Theorem 1, so that G is vertex-
minimal, and among all such graphs has the largest number of edges. That is, G has no
good L-coloring, an addition of any new edge to G creates a nonplanar graph or a cycle
of length at most 5, and any subgraph of G with fewer vertices has a good L-coloring. To
avoid a special treatment of an outer face we assume G to be embedded without crossings
on the sphere and shall refer to the faces of the corresponding plane graph as faces of G.

Journal of Graph Theory DOI 10.1002/jgt
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Note also that if a graph has no good L-coloring, then any of its supergraphs has no good
L-coloring.

3.1. Idea of the Proof

Our proof extends the ideas of Havet and Sereni [21]. We start by proving some structural
properties of G, that is, that G has minimum degree 2, all faces of G are chordless cycles
of length at most 9, and proving a statement about the distribution of vertices of degree
2 around every face F in G.

If G has a path P of length at most 14 with endpoints of degree 2 and all inner vertices
of degree 3, then each vertex in P has exactly one neighbor not in P. Deleting the vertices
of P from G gives a graph that has a good coloring. Color each vertex of P with a
color different from the color of its neighbor not in P. This gives a good coloring of G
contradicting the fact that G is a minimal counterexample.

We generalize this simple argument, which uses a single path, to path systems, that is,
sets of (directed) facial paths in G with all inner vertices of degree 3. Next, we consider
a charge of deg(v) − 3 at every vertex v and define discharging rules shifting a charge of
1/2 from the out-endpoint of every path in X0 to its in-endpoint, based on a specific path
system X0. The total charge on all the vertices, before as well as after the discharging,
is negative, giving some vertices ending up with negative charge. We consider such a
vertex w0, build another path system based on what is “outgoing” from this vertex, and
show that the corresponding subgraph of G is a reducible configuration. Here, a subgraph
H is reducible if any good L-coloring of G − V (H) (which exists by the minimality of
G) could be extended to a good L-coloring of the whole graph G. This contradicts the
assumption that G is a counterexample and hence concludes the proof.

3.2. Structural Properties of G

Lemma 1. G is connected and has minimum degree at least 2.

Proof. Indeed, if G has a vertex v of degree 1, then a good coloring of G − v can
be extended to a good coloring of G by choosing the color of v to be different from
its neighbor in G − v. If G is not connected, then one of its connected components is a
smaller counterexample, contradicting the definition of G. �

Lemma 2. The boundary of each face of G forms a chordless cycle of length at
most 9.

Proof. First assume for the sake of contradiction there is a face F whose closed
boundary walk W = u0, . . . , um is not a cycle. Then there is a vertex u appearing at least
twice on W , say u = u0 = u j with j 	= 0. As G has minimum degree 2, each of the closed
walks W1 = u0, u1, . . . , u j and W2 = u j, u j+1, . . . , u0 contains at least one cycle, that is,
has at least six vertices. Note that the vertices u2 from W1 and u j+3 from W2 lie in distinct
connected components of G − u. Moreover, as G has minimum degree 2, u2 and u j+3 are
at distance 2 and 3 from u along W , respectively. Hence any u2 − u j+3 path goes through
u and, as there are no cycles of length at most 5, the distance between u2 and u j+3 in G
is 5. Thus we can add an edge u2u j+3 into F , creating a planar graph with girth at least
6. A contradiction to edge-maximality of G.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 1. Illustration of Case 1 (left), Case 2 with w ∈ {u0, u} (middle), and
Case 2 with w = uk (right). The face F bounded by C is shown as the outer face.
The numbers indicate the minimum length of a path between the corresponding

vertices.

Thus, the boundary of each face F forms a cycle, C = u0, . . . , um, u0. Assume that C
has length at least 10, that is, that m ≥ 9. Recall, that an ear E of a cycle C is a path that
shares only its endpoints with the vertex set of the cycle. For i = 0, . . . , m let G′(i) be
obtained from G by adding an edge ui, ui+5 into the face F , addition of indices modulo
m + 1. If G′(i) has girth at least 6, this contradicts the edge-maximality of G. So, there is
a cycle on at most five vertices containing edge uiui+5 in G′(i), denote a shortest ui − ui+5

path in G by P(i, i + 5). Its length is at most 4, less than the distance between i and i + 5
along C (as m ≥ 9), so there is an ear of length �, � ≤ 4, and � is less than the distance
between its endpoints along C. The width of an ear is the smallest distance between its
endpoints along the cycle. If Q is a path or a cycle and P is a path in Q with endpoints
u and v, we write P = uQv. We denote the length of P as ||P||. A k-ear is an ear of
length k.

Case 1. C has a chord.
Assume that u0uk is a chord, k ≥ 5. A path P = P(−3, 2) must contain u0 or uk. If P

contains u0, then ||u−3Pu0|| ≥ 3 and ||u0Pu2|| ≥ 2, as otherwise P ∪ C contains a cycle
of length at most 5. Similarly, if P contains uk, then ||u−3Puk|| ≥ 2 and ||ukPu2|| ≥ 3. In
any case we have that ||P|| ≥ 5, a contradiction. See Figure 1 left.

Case 2. C has an ear of length 2 and no chords.
Let E be a 2-ear of smallest width, with vertices u0, u, uk, 4 ≤ k ≤ (m + 1)/2. A path

P = P(−3, 2) contains w ∈ {u0, u, uk}. If w = u0, see Figure 1 center, then (as in Case 1)
||u−3Pu0|| ≥ 3 and ||u0Pu2|| ≥ 2, and if w = u, then ||u2Pu|| ≥ 3 and ||uPu−3|| ≥ 2, as
otherwise there is a cycle of length at most 5 in P ∪ C. In both cases we have ||P|| ≥ 5, a
contradiction. So w = uk, see Figure 1 right, ||wPu2|| ≥ 2, and ||u−3Pw|| ≥ 2, otherwise
there is a chord. Thus each of these segments has length 2. Since ||ukPu2|| = 2, ukPu2 is a
subpath of C, otherwise there is a 2-ear of a smaller width. So k = 4. Since ||u−3Puk|| = 2
and m ≥ 9, ||u−3Cuk|| ≥ 4, so ||C|| ≥ 11. Looking at E in the other direction along C,
and taking P′ = P(2, 7), we see symmetrically that u0P′u7 is an ear of length 2, that
together with E and P creates a cycle of length 4.

Case 3. C has no ears of length 2 or chords.
Since each P(i, i + 5) results in an ear whose length is smaller than its width, we see

that either there is a ui-ui+5 ear of length 4 or an ear of length 3 with width between 4
and 6. If all such ears are of length 4, then a u0 − u5 ear and u1 − u6 ear intersect and
form, together with C, a cycle of length at most 5, a contradiction, see Figure 2 left.
Assume that E is a 3-ear u0, u, u′, uk, 4 ≤ k ≤ 6, and all other 3-ears have width either
at most 3 or at least k, see Figure 2 center and right. A path P = P(2, −3) contains a 3-
or a 4-ear. Let w be a point on P and E. We have that ||u−3Pw|| ≥ 2 and ||wPu2|| ≥ 2,
otherwise there is either a chord, a 2-ear, or a cycle of length at most 5. It follows that

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 2. Illustration of Case 3 with only 4-ears (left) and Case 3 with a 3-ear
(middle and right). The face F bounded by C is shown as the outer face.

||u−3Pw|| = 2 = ||wPu2||. Then w = u′, and k ≥ 5. Looking at E in the other direction,
we see symmetrically, that there is a path of length 2 between uk−2 and u, implying the
existence of a triangle containing u and u′, a contradiction.

Thus C has length at most 9. If C has a chord, then there is a cycle of length at most 5,
a contradiction. So, C is a chordless cycle. This concludes the proof the Lemma. �

Lemma 3. Let F be any face of G incident to a vertex of degree 2. Then F is incident
to a vertex of degree at least 4, and if F is incident to at least two vertices of degree 2,
then there is a vertex of degree at least 4 between any two such vertices on both paths
along F.

Proof. Let C be the simple chordless cycle bounding F . First, assume for the sake
of contradiction that C contains exactly one vertex v of degree 2 and all other vertices
of degree 3. Consider a good L-coloring of G′ = G − V (C) and give each vertex u of
C of degree 3 a color in L(u) different from the color of its neighbor in G′. Give v a
color in L(v) such that C does not form a monochromatic cycle. As a result, the set of
monochromatic components of G is formed by the monochromatic components of G′,
and paths on at most 8 vertices formed by vertices of C.

Second, assume that C contains two vertices u, v of degree 2 and a u − v path P in
C has no inner vertices or only inner vertices of degree 3. Consider a good L-coloring
of G′ = G − V (P) and give the vertices of P colors from their lists, different from the
colors of their unique neighbors in G′. This does not extend any connected monochromatic
component of G′ and every new monochromatic component is contained in P, that is, a
path on at most eight vertices. That is, in both cases we have found a good L-coloring of
G, a contradiction to G being a counterexample. �

3.3. Path Systems

A path system is a set X of (not necessarily edge-disjoint) directed facial paths in G with
all inner vertices being of degree 3, such that no vertex is an endpoint of one path in
X and an inner vertex of another path in X . For a path P ∈ X directed from vertex u to
vertex v, we call u the out-endvertex and v the in-endvertex of P. For a path system X ,
the vertices that are the in-endvertices or out-endvertices of some path in X are called
the endvertices of X, while the inner vertices of X are the inner vertices of some path in
X . For any vertex v in G let out-degX (v) and in-degX (v) denote the number of paths in X
with out-endvertex v and in-endvertex v, respectively. Note that for an inner vertex v of X
we have out-deg(v) = in-deg(v) = 0. A directed path P is occupied by a path system X
if the first or last edge of P (incident to its out-endvertex or in-endvertex) is contained in
some path in X . So, if P ∈ X , then P is occupied by X . Let us emphasize that throughout
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(D1), (D3) (D2) (D4) (D5)

FIGURE 3. Illustration of properties (D1)–(D5).

the article deg(v) and N(v) always refer to the degree and neighborhood of vertex v in
G, even when we consider other subgraphs of G later.

For a path system X and any two vertices u, v in G we say that u reaches v in X,
denoted by u →X v, if there is a sequence u = v1, . . . , vk = v of vertices and a sequence
P1, . . . , Pk−1 of paths in X such that vi and vi+1 are out-endvertex and in-endvertex of
Pi, respectively, i = 1, . . . , k − 1. Then X is acyclic if there are no two distinct vertices
u, v with u →X v and v →X u. For a vertex w of G, we define X+(w) ⊆ X to be the path
system consisting of all paths in X whose out-endvertex is w or reachable from w in X .

A path system X is nice if each of the following properties (D1)–(D5) holds. A path
system X with a distinguished vertex r, called root, is almost nice if the properties
(D1)–(D5) hold for all vertices different from r.

See Figure 3 for an illustration.

(D1) Every edge that belongs to two paths in X joins two vertices of degree 3 each.
(D2) Every vertex of degree 2 has outdegree 0 in X .
(D3) Every vertex of degree 3 has indegree 0 and outdegree 0 in X .
(D4) Every vertex of degree 4 has positive indegree in X only if it has outdegree 3 in X .
(D5) Every vertex of degree at least 5 has in-degree 0 in X .

The following statements follow immediately from the definitions above.

Lemma 4. For every path system X each of the following holds.

(1) If no path P ∈ X is occupied by X − {P}, then X satisfies (D1).
(2) If X ′ ⊆ X and X satisfies any of (D1)–(D3), (D5), then so does X ′.
(3) If X ′ ⊆ X and X is acyclic, then so is X ′.
(4) If X is nice and w is a vertex, then X+(w) with root w is almost nice.

3.4. Discharging with respect to a Path System X

Given a path system X , consider the following discharging: Put charge ch(v) = deg(v) −
3 on each vertex of G. Note that ch(v) = −1 for a vertex of degree 2, and ch(v) ≥ 0 for all
other vertices. As all facial cycles have length at least 6, we have 6 f ≥ 2e, where f denotes
the number of faces of G. Together with Euler’s formula n − e + f = 2 this implies
n − e + e/3 ≥ 2. Thus, the total charge is

∑
v∈V (G)(deg(v) − 3) = 2e − 3n ≤ −6.

Define ch′(v) = ch(v) + 1
2 (in-degX (v) − out-degX (v)). Intuitively, for every path in

X a 1/2-charge is sent from out-endvertex to in-endvertex. Thus, the total sum of charges
in ch′ is the same as in ch, that is,

∑
v ch(v) = ∑

v ch′(v).
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FIGURE 4. A (part of a) planar graph of girth 6 and the path systems in P, X0 and
X +

0 (w ). The labels show the order in which paths of X0 were selected. Paths 13
and 14 were selected in step 2.

3.5. Defining a Path System P
As G has girth at least 6, there is a vertex v of degree 2 in G and by Lemma 3 both
faces incident to v contain a vertex of degree at least 4. So there are faces with at least
two vertices of degree different from 3. For each such face F the boundary of F can
be uniquely partitioned into edge-disjoint counterclockwise oriented paths with all inner
vertices of degree 3 and endpoints of degree different from 3. We denote by P the path
system consisting of all such paths with in-endvertex of degree 2 or 4 and out-endvertex
of degree at least 4, for all faces F with at least two vertices of degree different from 3. So
for each path in P the degrees d1, d2 of its in-endvertex and out-endvertex, respectively,
satisfy (d1, d2) ∈ {(2, 4), (2, �), (4, 4), (4, �) | � ≥ 5}.

By Lemma 2 every face of G is bounded by a simple chordless cycle of length at
most 9. Thus, every P ∈ P is a path on at most eight edges. As any two paths in P in
the boundary of the same face F are edge-disjoint, every edge of G lies in at most two
paths in P , at most one for each face incident to the edge. If an edge lies in two paths
in P , these paths have the edge oriented in opposite directions. For a vertex v in G with
deg(v) = 3 we have out-degP (v) = in-degP (v) = 0 by definition. Note that by Lemma
3 for every vertex v with deg(v) = 2 we have out-degP (v) = 0 and in-degP (v) = 2. For
a vertex v with deg(v) ≥ 5 we have in-degP (v) = 0, that is, P has properties (D2), (D3)
and (D5). We provide an example illustrating these concepts in Figure 4.

3.6. Defining a Path System X0 ⊆ P
We define X0 ⊆ P selecting paths one by one, using the following procedure, where we
go through the vertices in question in an arbitrary but fixed order. At all times, let X0

denote the set of already chosen paths, initially X0 = ∅.
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(1) For every vertex v with deg(v) = 2 we put a path from P into X0 if its in-endpoint
is v and if it is not occupied by X0.

After step 1 is done for all vertices of degree 2, we proceed as follows.

(2) For every vertex v with deg(v) = 4 and out-degX0
(v) = 3, put a path from P into

X0 if its in-endpoint is v and if it is not occupied by X0.

Later, we shall show that the final path system X0 is nice and acyclic. For now, we only
need to observe that (D2) is satisfied and in-degX0

(u) = 2 for every vertex u of degree
2. In fact, (D2) holds for P and thus by Lemma 4 (2) it also holds for X0 ⊆ P . Assume
now that in-degX0

(u) < 2. That is, P, one of the two paths in P with in-endvertex v, was
occupied by during step 1. As all in-endvertices of paths chosen in step 1 are of degree
2, and the out-endvertex of P has degree at least 4, this is impossible.

3.7. Defining the Vertex w0 Based on Discharging with respect to X0

Let us apply discharging to X0. For every vertex u with deg(u) = k, we have in-degX0
(u) ≥

0 and out-degX0
(u) ≤ k, that is, u looses a charge of at most k

2 . Thus if deg(u) = k ≥ 6,
the remaining charge ch′(u) is at least k − 3 − k

2 ≥ 0. If deg(u) = 3, then out-degX0
(u) =

in-degX0
(u) = 0 and hence ch(u) = ch′(u) = 0. If deg(u) = 2, then in-degX0

(u) = 2 and
out-degX0

(u) = 0 and hence ch′(u) = deg(u) − 3 + 1
2 (2 − 0) = 0.

On the other hand, we have
∑

v ch(v) = ∑
v ch′(v). As

∑
v ch′(v) ≤ −6 there is a

vertex w0 in G with ch′(w0) < 0. With the above considerations we conclude that
deg(w0) ∈ {4, 5}.

If deg(w0) = 5, then 0 > ch′(w0) ≥ (5 − 3) − 1
2 out-degX0

(w0), so out-degX0
(w0) ≥

5. Since out-degX0
(w0) ≤ deg(w0), we have that out-degX0

(w0) = 5. If deg(w0) = 4, then
0 > ch′(w0) = (4 − 3) + 1

2 (in-degX0
(w0) − out-degX0

(w0)), so either out-degX0
(w0) =

4 or (out-degX0
(w0) = 3 and in-degX0

(w0) = 0). In particular, exactly one of the following
must hold for the vertex w0 with ch′(w0) < 0:

Case 1: deg(w0) ∈ {4, 5} and out-degX0
(w0) = deg(w0).

Case 2: deg(w0) = 4, out-degX0
(w0) = 3 and in-degX0

(w0) = 0.
For example, in Figure 4 we see that Case 2 applies to vertex w.

3.8. Defining Rooted Path Systems X1, X2, X3, X4 Based on w0

and X0

Depending on the structure of w0 and X0 we shall define one of four path systems
X1, X2, X3, X4, each Xi with a specified vertex wi, called the root, i = 1, 2, 3, 4. Path
systems X1, X3 will be chosen as subsystems of X0, X2 as a subsystem of X0 together with
an additional path from P , and X4 as a subsystem of X0 together with a subpath of a path
from P . Note that each of X1, X2, X3, X4 consists of paths of length at most 8.

Case 1: deg(w0) ∈ {4, 5} and out-degX0
(w0) = deg(w0).

In this case we define X1 = X+
0 (w0) with root w0.

Case 2: deg(w0) = 4, out-degX0
(w0) = 3 and in-degX0

(w0) = 0.
Consider the unique edge e at w0 not contained in any path in X0. As w0 has outdegree 3,

the clockwise next edge e′ at w0 after e is contained in some path in X0 with out-endvertex
w0. The in-endvertex of this path is in the face F incident to w0, e, and e′. See the middle
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X1 = X+
0 (w0)
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deg(w0) = 4
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0 (w0) ∪ {P}

v
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F

e

e′

e
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Case 1 Case 2

e′′

e′′

FIGURE 5. Illustrations of the rooted path systems X1, X2, X3, X4 with highlighted
roots.

part of Figure 5 for an illustration. So F has at least two vertices of degree different from
3. Thus its boundary contains a counterclockwise path P with in-endvertex w0, using
the edge e, all inner vertices of degree 3 or no inner vertices at all and out-endvertex
v with deg(v) 	= 3. Let e′′ be the edge of P incident to v. If deg(v) = 2, then from the
definition of X0, in-degX0

(v) = 2. Thus e′′ belongs to a path in X0 with in-endpoint v.
If deg(v) ≥ 4 then P ∈ P , and in step 2 of the construction of X0 the path P must have
been rejected because it was occupied, that is, e′′ is contained in another path in X0. As
P has v as out-endvertex, the other path has v as in-endvertex and hence deg(v) = 4. So,
deg(v) ∈ {2, 4} and e′′ lies in some path in X0 with in-endvertex v. In particular it follows
that e 	= e′′, that is, P has at least one inner vertex.

Next, we distinguish the cases when v is reachable from w0 in X0 or not, corresponding
to the right and middle part of Figure 5, respectively. In case v is not reachable from w0

in X0, we define X2 = X+
0 (v) ∪ X+

0 (w0) ∪ {P} with root v.
When v is reachable from w0 in X0, let w0, w1, . . . , wk−1, wk = v, k ≥ 2, denote the

vertices of P in their order along P from its in-endvertex w0 to its out-endvertex v.
Recall that P has at least one inner vertex. Let i be the smallest index such that wi 	= w0

and wi is contained in a path in X+
0 (w0). See the right part of Figure 5. As v = wk is

reachable from w0 in X0, this index is well defined. If i = 1, we define X3 = X+
0 (w0)

with root w0. Otherwise we denote the directed wi−1-to-w0 subpath of P by P′ and define
X4 = X+

0 (w0) ∪ {P′} with root wi−1. This is for example the case for vertex w0 = w in
Figure 4.

Lemma 5.

(i) Each of X0, X1, X2, X3, X4 is acyclic.
(ii) X0 and X1 are nice.

(iii) If the root v of X2 has degree 4, then X2 is nice.
(iv) If the root v of X2 has degree 2, then X2 is almost nice with out-degX2

(v) = 1.
(v) X3 is almost nice with out-degX3

(w0) = 3 and in-degX3
(w0) = 0.

(vi) X4 is almost nice with out-degX4
(r) = 1 and in-degX4

(r) = 0 for the root r of X4.
(vii) If j ∈ {1, 2, 3, 4} then each endvertex of Xj, different from the root, has degree 2

or 4 in G, the root has degree 2, 3, 4, or 5, and each inner vertex of Xj has degree
3. Moreover, each vertex of Xj has at most one neighbor that is not in Xj.
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Proof.

(i) First, we shall show that X0 is acyclic. Assume for the sake of contradiction that
v0, . . . , vk−1 and P0, . . . , Pk−1 are two sequences of vertices and paths in X0 such that for
every i ∈ {0, . . . , k − 1} we have that vi and vi+1 are out-endvertex and in-endvertex of Pi,
respectively (all indices modulo k). For each i ∈ {0, . . . , k − 1} we have deg(vi) ∈ {2, 4},
as we add only paths with such in-endvertices to X0 in step 1 and 2. Moreover, vi is out-
endvertex of Pi−1 and thus we have that deg(vi) 	= 2. Hence for each i ∈ {0, . . . , k − 1},
we have deg(vi) = 4 and Pi was put into X0 in step 2 because vi+1 was the out-endvertex
of exactly three already chosen paths. Assume without loss of generality that P0 was the
path that was put into X0 in step 2 first among the paths P0, . . . , Pk−1. This means that the
path P1, whose out-endvertex is v1, was already put into X0. This contradicts that P0 was
the first and proves that X0 is acyclic.
Now, X1, X3 ⊆ X0 are acyclic by Lemma 4 (3). Moreover, X2 = X+

0 (v) ∪ X+
0 (w0) ∪ {P}

is acyclic, because X+
0 (v), X+

0 (w0) ⊆ X0, P has in-endvertex w0 and out-endvertex v, and
(in this case) v is not reachable from w0 in X0. Finally, X4 = X+

0 (w0) ∪ {P′} is acyclic,
because X+

0 (w0) ⊆ X0 and V (P′) ∩ (
⋃

P∈X0
V (P)) = {w0}.

(ii and v) Consider X0. As mentioned earlier, P satisfies (D2), (D3), and (D5) and by
Lemma 4 (2) so does X0. Moreover, by definition X0 satisfies (D1) and (D4), thus X0

is nice. Consider X1 and X3. By Lemma 4 (4) we have that X1 and X3 are almost nice,
as both are defined as X+

0 (w0) with root w0. By construction, out-degX3
(w0) = 3 and

in-degX3
(w0) = 0, which proves (v). For X1 note that, if deg(w0) = 4, then (D4) holds

for w0 in X1, and if deg(w0) = 5, then (D5) holds for w0 since X1 ⊆ X0 ⊆ P . Thus, X1 is
nice.

(iii and iv) Next consider X2 = X+
0 (v) ∪ X+

0 (w0) ∪ {P} with root v and path P as defined
above, see the middle part of Figure 5. Each of X+

0 (v), X+
0 (w0) is almost nice by Lemma

4 (4) and the niceness of X0. We have neither w0 →X0 v (by assumption) nor v →X0 w0 (as
in-degX0

(w0) = 0). So X+
0 (v) ∪ X+

0 (w0) satisfies (D1)–(D5), except perhaps for w0 and
v. As X2 additionally contains the path P from v to w0, we have that (D4) is satisfied for
w0 and thus X2 is nice when deg(v) = 2 and almost nice when deg(v) = 4. Because X0 is
nice, that is, satisfies (D2), we have out-degX0

(v) = 0 when deg(v) = 2. As X2 − P ⊆ X0

and P is outgoing at v, we have out-degX2
(v) = 1.

(vi) The system X4 = X+
0 (w0) ∪ {P′} is almost nice, because P′ and X+

0 (w0) share only
vertex w0, X+

0 (w0) is almost nice by Lemma 4 (4), and P′ is incoming at w0.

(vii) These properties are corollaries of the almost-niceness of X and the considerations
for the root in the previous items. �

3.9. Coloring Reducible Configurations based on X1, X2, X3, X4

Recall that a coloring is good if each monochromatic component is a path of length at
most 14. A reducible configuration is a nonempty subgraph H of G, such that any good
L-coloring of G − V (H) (which exists by the minimality of G) can be extended to a good
L-coloring of G in which every edge between a vertex in H and a vertex outside of H is
colored properly. Showing that G has a reducible configuration will conclude the proof
of Theorem 1. For convenience we say that Xi is reducible if the subgraph H of G induced
by the vertices in Xi is a reducible configuration, i = 1, 2, 3, 4.

Lemma 6. Each of X1, X2, X3, X4 is reducible, whenever it is defined.
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Proof. Consider j ∈ {1, 2, 3, 4}. Let r be the root of Xj, H be the subgraph of G
consisting of all vertices and undirected edges in the path system Xj. Let V1 be the
set of vertices of H and H ′ be the subgraph of G induced by V1, that is, H ⊆ H ′. Let
W ⊆ V1 be the set of endvertices of Xj. Recall, that by Lemma 5(vii), if w ∈ W − {r}, then
deg(w) ∈ {2, 4}, deg(r) ∈ {2, 3, 4, 5}, and if u ∈ V1 − W , then deg(u) = 3. In addition,
the niceness or almost niceness of Xj and the degree conditions for r given in Lemma 5
imply that any vertex fromV1 has at most one neighbor not inV1 and each vertex inV1 − {r}
has at most one incident edge from E(G) − E(H). In particular, E(H ′) − E(H) is a
matching, unless j = 4, in which case E(H ′) − E(H) might contain two edges incident to
r. In case j 	= 3, let E1 = E(H ′) − E(H). Otherwise (when j = 3) let e∗ = ru∗ denote the
unique edge in E(H ′) − E(H) incident to the root r and let E1 = E(H ′) − (E(H) ∪ e∗).
In Figure 5 on the right we have r = w0 and u∗ = w1. Note that if j ∈ {1, 2}, then there
are no edges from E(H ′) − E(H) incident to r.

We shall be coloring different sets of vertices of G one after another.� First we make a good L-coloring c′ of G − V1, which exists by the minimality of
G. Note that G − V1 might be empty.

We shall color V1 so that no vertex in V1 has the same color as its neighbor (if exists)
in V (G) − V1 and such that each monochromatic path with vertices in V1 is contained in
the union of two paths from Xj.� Consider A ⊆ V1, the set of vertices that have a neighbor in V (G) − V1. As Xj

satisfies (D4) no vertex of degree 4 in H ′ is in A, except for possibly the root r. We
color each vertex v ∈ A such that its color is from L(v) and differs from the color
of its neighbor in V (G) − V1.

Now, no matter how we color V1 − A, each monochromatic path has all its vertices
completely in V1 or completely in V (G) − V1. Since the coloring of V (G) − V1 is good,
each monochromatic path there has length at most 14. So, we only need to color V1 − A
so that each monochromatic path with vertices in V1 has length at most 14.� Consider the vertices of E1. First assume r ∈ V (E1), this could be only if j = 2 or

j = 4. If r ∈ A, then r is already colored and if r /∈ A, we give r any color from its
list. Next, we color every neighbor of r in E1 with a color from its respective list
different from the color of r. Finally, we color the remaining vertices of E1 from
their lists such that each edge of E1 has endpoints of different colors. If r 	∈ V (E1),
that is, E1 is a matching, color V (E1) such that each edge is colored properly.

This ensures that eventually every monochromatic component of H ′ is a subgraph of
H or H ∪ e∗ in case j = 3.� Consider the set B of vertices from V1 − A not incident to E1 and of degree 3.

Note that r /∈ B because it is either of degree different from 3 or is incident to
E1 in case when j = 3. Hence B consists only of inner vertices of Xj, that is,
B = V1 − (A ∪ V (E1) ∪ W ). For any u ∈ B all three edges incident to u are in H,
so u lies on at least two paths in Xj. We consider the paths in Xj in any order and
when we process a path P ∈ Xj, we color the vertices in B ∩ V (P). For the current
path P and the current vertex u ∈ B ∩ V (P), consider the neighbor u′ of u not in P.
If u′ is not colored, color u arbitrarily from its list. Otherwise, color u with a color
different from the color of u′.
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This ensures that every monochromatic component of H ′ − W is completely contained
in some path in Xj. It remains to color the vertices in W − A and in e∗ = ru∗ (if it exists)
in such a way that e∗ is not monochromatic and at most two monochromatic components
of H ′ − W are part of the same monochromatic component of H ′.� Consider the vertices in W − A and the vertex u∗ (if it exists). Recall that u∗ is an

inner vertex of some path in Xj and hence u∗ /∈ W . For each u ∈ W − A, consider
the paths in X with in-endvertex u and let S(u) be the set of immediate neighbors
of u on those paths, that is, v ∈ S(u) if uv ∈ E(H) and u is the in-endvertex of the
path in Xj containing uv. In particular, S(r) = ∅, and for u 	= r we have |S(u)| = 1
if deg(u) = 4 and |S(u)| = 2 for deg(u) = 2. Additionally let S(u∗) = {r} when
considering X3. We apply the following rules to still uncolored vertices (initially
the set (W − A) ∪ {u∗}) as long as any of these is applicable:

Rule 1: If for some uncolored vertex u three of its neighbors have the same color a,
we color u with a color in L(u) different from a.

Rule 2: If Rule 1 does not apply, but for some uncolored vertex u some u′ ∈ S(u) is
already colored, we color u with a color from its list different from the color
of u′.

Rule 3: If neither Rule 1 nor Rule 2 applies, and the root r is uncolored, consider
the set of colors appearing on N(r) and a color a that is repeated the most
in N(r). Let b ∈ L(r) − {a}. Then b is repeated at most twice in N(r) since
|N(r)| ≤ 5. Moreover, b is repeated at most once in N(r) if |N(r)| = 2 or 3.
Assign color b to r.

We claim that if none of the three rules applies, then all vertices are colored. Indeed, if
neither Rule 1 nor Rule 2 applies and some vertex u1 is uncolored, we have that u1 	= r
and S(u1) is uncolored, which implies S(u1) ⊆ (W − A) ∪ {u∗, r}. Let u2 be any vertex
in S(u1). So, u1, u2 ∈ W and thus u2u1 is a path of length 1 in X with in-endvertex u1

and out-endvertex u2. As u2 is uncolored and Rule 2 does not apply we have that S(u2) is
uncolored. Continuing this way we obtain a sequence u1, u2, . . . , of uncolored vertices
such that for each i = 1, 2, . . . , ui+1 ∈ S(ui) and ui+1ui is a path of length 1 in X with
in-endvertex ui and out-endvertex ui+1. As G is finite, we have ui = uk for some i < k,
which contradicts Lemma 5(i), stating that Xj is acyclic. This shows that if none of Rule 1,
Rule 2, Rule 3 applies, then all vertices in H ′ are colored. So, applying Rule 1–Rule 3 as
long as possible colors all the remaining vertices of G.

Next, we shall show that the produced coloring is good, or more specifically that each
monochromatic components of H ′ is a subpath of the union of two paths from Xj. Rule 1
and Rule 3 ensure that every vertex v ∈ W − A has at most two neighbors in the same
color as v. If u∗ exists, then deg(u∗) = 3, and hence Rule 2 ensures that e∗ = ru∗ is
colored properly. Moreover, for every vertex u ∈ W let X (u) be the set of paths P in Xj

containing u, for which the neighbor of u in P has the same color as u. Then Rule 1 and
Rule 2 ensure that X (u) = ∅, or X (u) consists of exactly one path with in-endvertex u,
or X (u) consists of at most two paths, both with out-endvertex u.

Recall that we colored the vertices in A so that no vertex in Xj has a neighbor outside
of Xj in the same color. Moreover, we colored V (E1) ∪ B ∪ {u∗} in such a way that every
monochromatic component of Xj − W is completely contained in a path of Xj. Finally,
we colored the vertices in W so that every monochromatic component of Xj is the union
of at most two monochromatic components of Xj − W . Together this implies that every
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FIGURE 6. The graph A5, B5 and G3.

monochromatic component is contained in the union of at most two paths in Xj. To
summarize, we see that our coloring is good on V (G) − V1. Now, each path of Xj is
facial, that is, has at most eight edges by Lemma 2 and each monochromatic component
in V1 is a path contained in the union of some two paths from Xj. This monochromatic
path has length at most 14, because it is induced and hence contains at most seven edges
from each of the two paths. So, our coloring is good on V1. Finally, since no vertex
of V1 has the same color as its neighbor (if exists) in V (G) − V1, the vertices of each
monochromatic component are completely contained in V1 or in V (G) − V1. Thus the
coloring is good. This concludes the proof of Lemma 6 saying that Xj, j = 1, 2, 3, 4, is
reducible.

To conclude the proof of Theorem 1, we see that Lemma 6 shows that G has a reducible
configuration, contradicting the fact that G is a minimal counterexample. �

4. PROOF OF THEOREM 2

For every integer t ≥ 2 we define two planar graphs of girth 4, denoted by At and Bt ,
respectively. The graph At consists of a path Pt on t vertices and two special vertices u
and w, such that the vertices along Pt are joined by an edge alternatingly to u and w.
For example, A2 is a path on four vertices and the left of Figure 6 shows A5. The graph
Bt consists of At with special vertices u and w, and for every neighbor v of u there is
another copy of At , with special vertices being identified with v and w, respectively. See
the middle of Figure 6.

Note that for every t ≥ 2 the graph Bt has girth 4 and the two special vertices u and w
are at distance 3 (counted by the number of edges) in Bt .

We construct Gt inductively. For t = 2, we define Gt to be the 5-cycle. Clearly, in any
2-vertex coloring of G2 there is a monochromatic P2.

For t ≥ 3, let G be a copy of Gt−1. We obtain Gt from G by considering every edge
xy in G, taking two copies B, B′ of Bt with special vertices u, w and u′, w′, respectively,
and identifying x, u′ and w, as well as y, u and w′. Note that Gt has girth 4 and is indeed
planar: We can embed B and B′ on different “sides” of the edge xy, as in the right of
Figure 6.

Now, fix any 2-vertex coloring of Gt and consider the inherited coloring of Gt−1. By
induction hypothesis there is a monochromatic copy Q of Pt−1 in Gt−1, say in color 1. Let
x be an endpoint of Q and y be the neighbor of x in Q. Consider the copy B of Ht where
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FIGURE 7. Every 2-coloring contains a monochromatic path on 3 vertices.

x is identified with w and y is identified with u and the copy A of At in Bt with special
vertices x = w and u = y.

If the copy P of Pt in A is not monochromatic, then at least one vertex v of P has color
1. If v is a neighbor of x = w, we have can extend Q by v into monochromatic Pt in color
1. Otherwise, v is a neighbor of u = y and we consider the copy A′ of At with special
vertices u′ = v and w′ = x. Again, if the copy P′ of Pt in A′ is not monochromatic, then at
least one vertex v′ of P′ has color 1. If v′ is a neighbor of x, then Q ∪ v′ is a monochromatic
Pt in color 1. Otherwise v′ is a neighbor of v, and Q ∪ {v, v′} forms a monochromatic Pt

in color 1. �

5. CONCLUSIONS AND OPEN QUESTIONS

In this article, we proved that for any planar graph of girth 6 and any assignment of lists
of two colors to each vertex, there is a coloring from these lists such that monochromatic
components are paths of lengths at most 14. This extends a corresponding recent result of
Borodin et al. [9] for planar graphs of girth 7. Our result can be interpreted as a statement
about linear arboricity with short paths.

The proof uses discharging and reducible configurations. Compared to most of the
previous discharging proofs, where the reducible configurations are small, here, the
reducible configuration can be arbitrarily large. A similar approach was used by Havet
and Sereni [21], who argued that every graph of maximum average degree less than
3 (which includes planar graphs of girth at least 6) has a 2-defective 2-list-coloring.
The main difference between this proof and the proof of Theorem 1 is that Havet and
Sereni can assume that in a minimal counterexample every edge is incident to a vertex of
degree at least 4. Indeed, if there are two adjacent vertices u, v of degree at most 3 each,
then a 2-defective 2-list-coloring of G − {u, v} can easily be extended to a 2-defective
2-list-coloring of G. Such a reduction does not work in our case, since we can not bound
the length of a longest monochromatic path. The reducible configurations of Havet and
Sereni are not only simpler (they contain no vertices of degree 3), with their coloring of
such a configuration one can get arbitrarily long monochromatic paths. Thus, our Lemma
6 requires less and proves more then the corresponding statement of Havet and Sereni
[21, Lemma 2].

According to Table I the remaining open questions concern 2-colorings of planar graphs
of girth 5 or 6. Figure 7 shows a planar graph of girth 5 that contains a monochromatic
P3 in every 2-coloring, that is, kd(5, 2) ≥ 2, k f (5, 2) ≥ 3, and kp(5, 2) ≥ 4. Indeed, we
may assume without loss of generality, that in a given 2-coloring vertices u and v both
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have color 1. Then ui and vi, for i = 1, 2, 3, have color 2 or there is a monochromatic P3

in color 1. Similarly, w1, w2, w3 have color 1 or there is a monochromatic P3 in color 2.
But then these three vertices form a monochromatic P3 in color 1.

This also follows from Montassier and Ochem [25] who provided an example of a
planar graph of girth 5 such that in any red/blue coloring of its vertices there is a red P3

or a vertex of degree at least 4 in the subgraph induced by blue vertices.
However, to the best of our knowledge, it is open whether k f (5, 2) and kp(5, 2) are

finite. On the other hand, it is still possible that every planar graph of girth 5 and 6
admits a 2-coloring where every monochromatic component is a subgraph of P3 and P2,
respectively.
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MAKING TRIANGLES COLORFUL∗

Jean Cardinal,†Kolja Knauer,‡Piotr Micek,§ and Torsten Ueckerdt¶

Abstract. We prove that for any finite point set P in the plane, a triangle T , and a
positive integer k, there exists a coloring of P with k colors such that any homothetic copy
of T containing at least 144k8 points of P contains at least one of each color. This is the first
polynomial bound for range spaces induced by homothetic polygons. The only previously
known bound for this problem applies to the more general case of octants in R3, but is
doubly exponential.

1 Introduction

Covering and packing problems are ubiquitous in discrete geometry. In this context, the
notion of ε-nets captures the idea of finding a small but representative sample of a data
set (see for instance Chapter 10 in Matoušek’s lectures [14]). Given a set system, or range
space, on n elements, an ε-net for this system is a subset of the elements such that any set,
or range, containing at least εn elements contains at least one element of the subset.

In this paper, we are interested in coloring the elements so that any range containing
sufficiently many elements contains at least one element of each color. Hence instead of
finding a single subset of representative elements, we wish to partition the elements into
representative classes.

For a given class of range spaces, we define the function p(k) as the minimum number
p such that the following holds: the elements of every range space in that class can be colored
with k colors so that any range containing at least p elements contains at least one of each
color. It is not difficult to show that if p(k) = O(k) for a class of range spaces, then this
class admits ε-nets of size O(1/ε).

We are interested in range spaces defined by a collection B of subsets of Rd. In what
follows, we are mainly concerned with the case where B is a collection of convex bodies,
that is, compact convex subsets of Rd. For given B we obtain a range space whose ground
set is a (countable or finite) point set P ⊆ Rd by considering all subsets of P formed by
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intersecting P with a member of B. This construction yields so-called primal range spaces
induced by B. For instance, if P is a set of points in the plane and B the set of all disks, then
the ranges are all possible intersections of P with a disk. Such range spaces and their ε-nets
appear frequently in discrete geometry and in applications such as sensor networks [8].

One can also consider dual range spaces induced by B, where the ground set is a
(countable or finite) subcollection B′ of B, and the ranges are all subsets X of B′ such that
there exists some p ∈ Rd with X = {B ∈ B′ | p ∈ B}. For instance, if B′ is a set of disks in
the plane, then the ranges are all maximal sets of disks containing a common point.

In general, those are also referred to as (primal and dual) geometric hypergraphs.

In the case of dual range spaces induced by a collection B of objects, the problem of
bounding p(k) is known as the covering decomposition problem of B. In this setting, we are
given a subcollection of these objects, and we wish to partition them into k color classes,
so that whenever a point is contained in sufficiently many objects of the initial collection,
it is contained in at least one object of each class.

We prove a polynomial upper bound on p(k) for primal range spaces induced by
homothetic triangles in the plane.

1.1 Previous Work

These questions were first studied by János Pach in the early eighties [15]. An account
of early related results and conjectures can be found in Chapter 2 of the survey on open
problems in discrete geometry by Brass, Moser, and Pach [4].

In the past five years, tremendous progress has been made in this area, for range
spaces induced by various families of convex bodies. One of the most striking achievements
is the recent proof that p(k) = O(k) for translates of convex polygons, the culmination
of a series of intermediate results for various special cases. We remark that convex bod-
ies are considered because p(k) = ∞ for range spaces induced by translates of concave
polygons [16]. We refer the reader to Table 1 for a summary of the known bounds.

The specific case of translates of a triangle with k = 2 was tackled by Tardos and
Tóth in 2007 [21]. They proved that every point set can be colored red and blue so that
every translate of a given triangle containing at least 43 points contains at least one red
and one blue. We generalize this result in two ways: we consider homothetic triangles, and
an arbitrary number of colors.

The only previously known results applying to our problem are due to Keszegh and
Pálvölgyi [11, 12]. They actually apply to the more general case of translates of (say) the
positive octant in a cartesian representation of R3. The special case of triangles homothetic
to the triangle with vertices (0, 0), (1, 0) and (0, 1) occurs when all points lie on a plane
orthogonal to the vector (1, 1, 1). The bound that was proven for arbitrary k is of the order

of 122
k
, and is most probably far from being tight.
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Range spaces primal dual

halfplanes p(k) = 2k − 1 [2, 10, 20]
p(2) = 3 [7]

p(k) 6 3k − 2 [2, 20]

translates of
p(k) = O(k) [21, 19, 17, 1, 9]

a convex polygon

translates of p(2) 6 12 [11]

an octant in R3 p(k) 6 122
k

[12]

unit disks ∞ [18]

bottomless rectangles
p(2) = 4 [10] p(2) = 3 [10]

1.6k 6 p(k) 6 3k − 2 [3] p(k) 6 122
k

[12] (from octants in R3)

axis-aligned ∞ [6] ∞ [16]
rectangles

disks and ∞ [16] ∞ [18]
halfspaces in R3

Table 1: Known results for various families of range spaces. For range spaces induced by
translates of a set, the primal problem is the same as the dual. When more than one
reference is given, they correspond to successive improvements, but only the best known
bound is indicated. The symbol ∞ indicates that p(k) does not exist.

1.2 Our Result

Theorem 1.1. Given a finite point set P ⊆ R2, a triangle T ⊆ R2 and a positive integer
k, there exists a coloring of P with k colors such that any homothetic copy of T containing
at least 144 · k8 points of P contains at least one of each color.

The proof is elementary, and builds on the previous work by Keszegh and Pálvölgyi [11,
12]. The degree of the polynomial depends on p(2). Hence any improvement on p(2) would
yield a polynomial improvement in the bound. For the same reason, it can be shown that
the same coloring method cannot be used to prove any upper bound better than O(k4) (as
p(2) > 4).

2 Proof

Let B be the collection of all homothetic copies of a fixed closed triangle T in the plane.
We consider the class of primal range spaces induced by B. From now on we denote by p(k)
the minimum p such that every finite set of points in the plane can be colored with k colors
so that any homothetic copy of T containing at least p points contains at least one point of
each color.

Lemma 2.1. If p(2) 6 c, for some constant c, then p(2k) 6 c2p(k), for all k > 2.

Proof. It suffices to prove the lemma for any fixed triangle T and then argue for all others
using an affine transformation of the plane. Let T be the triangle with vertices (0, 0), (1, 0)
and (0, 1).
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Consider a finite point set P and a k-coloring φ : P → {1, . . . , k} such that any
homothetic copy of T containing at least p(k) points contains one of each color. Note that
p(k) <∞ [12]. We suppose without loss of generality that no two points of P lie on a line
of slope −1, otherwise we can slightly perturb the points, and a suitable coloring for the
perturbed version will also work for P .

We now describe a simple procedure to double the number of colors. For 1 6 i 6 k
let Pi = φ−1(i) that is the set of points with color i. Provided p(2) 6 c there is a 2-coloring
φi : Pi → {i′, i′′} of Pi such that for any homothetic copy T ′ of T containing at least c points
of Pi, T

′ contains at least one point of each color. We define φ′ to be the disjoint union of
all φi, and claim that φ′ is a 2k-coloring of P such that for any homothetic copy T ′ of T
containing at least c2p(k) points, T ′ contains at least one point of each of the 2k colors.

Consider a homothetic copy T ′ of a triangle T containing at least c2p(k) points from
P , and in order to get a contradiction suppose that one of the 2k colors used by φ′ is missing
in T ′. Let i′ be this color. Note that if there are at least c points in T ′ with color i then i′

and i′′ must be present in T ′, from the correctness of the 2-coloring φi. Hence we conclude
that there are less than c points in T ′ with color i.

Order the points in T ′ ∩P = {p1, p2, . . .} in such a way that the sum of their x- and
y-coordinates is non-decreasing. Hence the order corresponds to a sweep of the points in
T ′ ∩P by a line of slope −1. By the pigeonhole principle, since there are less than c points
colored with i, there must exist a subsequence Q = (pj , pj+1, . . . , pj+`−1) of points of color
distinct from i, of length ` := c2p(k)/c = cp(k).

Q

R

P \ (Q ∪R)

p1

pj

pj+`−1

T ′

Figure 1: Illustration of the proof of Lemma 2.1.

Let R := Pi ∩ {p1, p2, . . . , pj−1} be the set of points of color i that come before Q in
the sweep order. By assumption, we have |R| < c. Hence the points of Q can be covered
with c translates of the first quadrant, such that none of them intersects R; see Figure 1.
For example, it is enough to consider all inclusion-wise maximal quadrants with apex in
T ′ that avoid points in R. Applying the pigeonhole principle a second time, one of these
quadrants must contain at least |Q|/c = cp(k)/c = p(k) points, none of which is colored i.
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This quadrant, together with the sweepline containing the last point pj+`−1 of Q, forms a
triangle that is homothetic to T , contains at least p(k) points, none of which has color i.
This is a contradiction with the correctness of the initial k-coloring φ.

Proof of Theorem 1.1. It was shown by Keszegh and Pálvölgyi that p(2) 6 12 [11]. Hence
it remains to solve the recurrence of the previous lemma with c = 12. We look for an upper
bound on p(k) satisfying p(2k) 6 144 · p(k) for any positive integer k, and p(2) 6 12. This
yields p(2i) 6 144i for any positive integer i, and p(k) 6 144dlog2 ke < 144·k8 for any positive
integer k.

3 Open Problems

The only lower bounds on p(k) the authors are aware of is the bound p(k) > 1.6k for bot-
tomless rectangles [3] (which improves the bound p(k) > 4k/3 for translates of squares [17])
and the tight bound p(k) > 2k − 1 for halfplanes [20].

No bound at all is known for the primal range space induced by axis-aligned squares:
does there exist a function p(k) such that for any point set P there is a k-coloring of P such
that any axis-aligned square containing at least p(k) points of P contains at least one point
of each color?

We remark that after this paper has been submitted the bound of 144k8 was im-
proved to O(k6) even in the more general setting of translates of octants in R3 [5], and also
by Keszegh and Pálvölgyi [13] to O(k4.58) again only in the case of homothetic triangles.
Both results rely on the same idea as the one in Lemma 2.1, namely defining a 2k-coloring
from a k-coloring by splitting each color class into two.
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Abstract. We give new positive results on the long-standing open problem of geometric covering
decomposition for homothetic polygons. In particular, we prove that for any positive integer k,
every finite set of points in R3 can be colored with k colors so that every translate of the negative
octant containing at least k6 points contains at least one of each color. The best previously known
bound was doubly exponential in k. This yields, among other corollaries, the first polynomial bound
for the decomposability of multiple coverings by homothetic triangles. We also investigate related
decomposition problems involving intervals appearing on a line. We prove that no algorithm can
dynamically maintain a decomposition of a multiple covering by intervals under insertion of new
intervals, even in a semionline model, in which some coloring decisions can be delayed. This implies
that a wide range of sweeping plane algorithms cannot guarantee any bound even for special cases
of the octant problem.
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1. Introduction and main results. We study coloring problems for hyper-
graphs induced by simple geometric objects. Given a family of convex bodies in Rd,
a natural colorability question that one may consider is the following: is it true that
for any positive integer k, every collection of points P ⊂ Rd can be colored with k
colors so that any element of the family containing at least p(k) of them, for some
function p(k), contains at least one of each color? This question has been investigated
previously for convex bodies in the plane such as halfplanes and translates of a convex
polygon.

Octants in three-space. In this paper, we give a polynomial upper bound
on p(k) when the family under consideration is the set of translates of the three-
dimensional negative octant {(x, y, z) ∈ R3 : x � 0, y � 0, z � 0}. The best previously
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x
y

z

(a) From octants to triangles.

x
y

z

(b) From octants to bottomless rectan-
gles.

Fig. 1. Special cases of the octant coloring problem.

known bound is due to Keszegh and Pálvölgyi, and is doubly exponential in k [21].

Theorem 1.1. There exists a constant a < 6 such that for any positive integer k,
every finite set P of points in R3 can be colored with k colors so that every translate
of the negative octant containing at least ka points of P contains at least one of each
color.

A dual version of the above problem, sometimes referred to as cover-decomposability,
can be stated as follows: Given a collection C of convex bodies, we wish to color them
with k colors so that any point of Rd covered by at least p(k) of them, for some func-
tion p(k), is covered by at least one of each color. In the primal setting with respect
to octants we can replace the point set P with a set C of positive octants with apices
in P . Then the primal value of P coincides with the dual value of C. Since clearly
the dual problem is equivalent if we pick negative instead of positive octants, we have
the following corollary.

Corollary 1.2. There exists a constant a < 6 such that for any positive integer
k, every finite set P of translates of the negative octant can be colored with k colors
so that every point of R3 contained in at least ka octants of P is contained in at least
one of each color.

The next corollary is obtained by observing that the intersections of a set of
octants with a plane in R3 that is not parallel to any axis form a set of homothetic
triangles (see Figure 1(a)).

Corollary 1.3. There exists a constant a < 6 such that for any positive integer
k, every finite set P of homothetic triangles in the plane can be colored with k colors
so that every point contained in at least ka triangles of P is contained in at least one
of each color.

Finally, using standard arguments, the latter result can be extended to infinite
sets, and cast as a cover-decomposability statement. Here a covering is said to be
decomposable into k coverings when the objects in the covering can be colored with k
colors so that every color class is a covering by itself.

Corollary 1.4. There exists a constant a < 6 such that for any positive in-
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time

t

a b

Fig. 2. Intervals under insertion and bottomless rectangles.

teger k, every locally finite ka-fold covering of the plane by homothetic triangles is
decomposable into k coverings.

The proof of Theorem 1.1 is given in section 3.

Intervals, bottomless rectangles, and sweeping algorithms. It is well-
known that a theorem similar to Corollary 1.4 holds for the simpler case of intervals
on the real line. Rado [32] observed that every k-fold covering of the real line by
intervals can be decomposed into k coverings. Using this result, it is not difficult to
prove that p(k) = k for translates of the negative quadrant in R2.

In the second part of this paper, we study the problem of maintaining a decom-
position of a set of intervals under insertion. This problem is similar in spirit, but
distinct from the previous one.

We are now given a positive integer k, a collection of intervals on the real line, and
for each such interval a real number representing an insertion time. This collection
represents a set of intervals that evolves over time, in which the intervals present at
time x are exactly those whose insertion time is at most x. We can now ask whether
there exists a function p(k) such that the following holds: there exists a k-coloring of
the intervals in the collection S such that, at any time, any point that is covered by
at least p(k) intervals present at that time is covered by at least one of each color.

This can be conveniently represented in the plane by representing each inter-
val [a, b] with insertion time t as an axis-aligned rectangle with vertex coordinates
(a, −t), (b, −t), (b, −∞), (a, −∞); hence viewing time goes downward in the vertical
direction. We refer to such rectangles, with a bottom edge at infinity, as bottomless
rectangles. Now the k-coloring must be such that every point p ∈ R2 that is contained
in at least p(k) such rectangles must be contained in at least one of each color. Hence,
the problem is actually about decomposition of coverings by bottomless rectangles. We
illustrate this point of view in Figure 2. Also note that bottomless rectangles can be
seen as degenerate homothetic triangles, which we will make use of for Corollary 1.7.

We now observe that bottomless rectangles can be formed by intersecting a nega-
tive octant with a vertical plane, as depicted in Figure 1(b). Hence we can formulate
a new corollary of our main theorem.

Corollary 1.5. There exists a constant a < 6 such that for any positive integer
k, every finite set P of bottomless rectangles in the plane can be colored with k colors
so that every point contained in at least ka rectangles of P is contained in at least
one of each color. Equivalently, every collection of intervals, each associated with an
insertion time, can be k-colored so that at any time every point covered by at least ka
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intervals present at this time is covered by at least one of each color.

With respect to the model of intervals with insertion times it is natural to ask
whether it is possible to maintain a decomposition of a set of intervals under insertion
without knowing the future insertions in advance. In section 4, we answer this question
in the negative even if coloring decisions can be delayed.

More precisely, we rule out the existence of a semionline algorithm. A semionline
k-coloring algorithm must consider the intervals in their order of insertion time. At
any time, an interval in the sequence either has one of the k colors, or is left uncolored.
Any interval can be colored at any time, but once an interval is assigned a color, it
keeps this color forever.

A semionline k-coloring algorithm is said to be colorful of value d if it maintains
at all times that the colors that are already assigned are such that any point contained
in at least d intervals is contained in at least one of each of the k colors.

In order to obtain that there is no semionline colorful coloring algorithm of
bounded value, we prove a stronger statement about the less restrictive proper coloring
problem. We call a semionline k-coloring algorithm proper of value d if it maintains at
all times that the colors that are already assigned are such that any point contained
in at least d intervals is contained in at least two of distinct colors. O ur theorem says
that for all natural numbers k, d, there is no semionline proper k-coloring algorithm
of value d.

Theorem 1.6. For all natural numbers k, d, there is no semionline algorithm
that k-colors intervals under the operation of inserting intervals, so that at any time,
every point covered by at least d intervals is covered by at least two of distinct colors.

Since any semionline colorful coloring algorithm is also proper, we obtain that
there is no such algorithm of bounded value.

Note that in the bottomless rectangle model a semionline colorful coloring algo-
rithm corresponds to sweeping the set of rectangles top to bottom with a line parallel
to the x-axis and assigning colors irrevocably to already swept rectangles such that
at any time every point contained in d of those already swept is contained in at least
one of each color. Similarly, one can define sweeping line algorithms for coloring
homothetic triangles, where the point set is swept top to bottom by a line parallel
to one of the sides of the triangles. For octants a sweeping plane algorithm would
sweep the point set from top to bottom with a plane parallel to the x, y-plane. Since
bottomless rectangles can be viewed as a special case of both, we can summarize with
the following corollary.

Corollary 1.7. For all natural numbers k, d, there is no sweeping line (plane)
coloring algorithm in the above sense such that for any set of bottomless rectangles,
or triangles, or octants, at any time every point contained in d of the already swept
ranges is contained in at least one of each color.

Since for octants primal and dual problem are equivalent by Corollary 1.7, no
such sweeping plane algorithm exists for the primal octant problem either.

We remark that Corollary 1.7 is in contrast with another recent result in [5], which
deals with the primal version of the problem. It can be expressed as coloring points
appearing on a line in such a way that at all times any interval containing p(k) points
contains one point of each color, or equivalently, coloring point sets in the plane such
that every bottomless rectangle containing p(k) points contains a point of each color.
In [5] it is shown that in this case a linear upper bound on p(k) can be achieved with
a semionline coloring algorithm, or equivalently a sweeping line algorithm.
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2. Previous results. The covering decomposition problem was first posed by
Pach in 1980 and 1986 [24, 25]. This was originally motivated by the problem of
determining the densities of the densest k-fold packings and the thinnest k-fold cover-
ings of the plane with a given plane convex body (see section 2.1 in [8] for a complete
historical account). In particular, he posed the following problem.

Is it true that for any plane convex polygon C and for any integer k, there exists
an integer p = p(C, k) such that every p-fold covering of the plane with homothetic
copies of C can be decomposed into k coverings?

Our contribution shows that p(C, k) = O(k6), provided that C is a triangle and
the covering is locally finite (Corollary 1.4).

Tremendous progress has been made recently in understanding the conditions for
the existence of a function p(k) for a given range space, that is, geometric hypergraphs
induced by a family of bodies in Rd. To the best of our knowledge, our result is the first
polynomial bound for cover-decomposability of homothetic copies of a polygon. Linear
upper bounds have been obtained for halfplanes [4, 34] and translates of a convex
polygon in the plane [35, 29, 3, 16]. A restricted version of this problem involving
unit balls is shown to be solvable using the probabilistic method in the eponymous
book from Alon and Spencer [2]. The function p(k) has been proved not to exist
for range spaces induced by concave polygons [30], axis-aligned rectangles [12, 26],
lines in R2, and disks [28]. In a remarkable recent preprint, Pálvölgyi proved the
nonexistence of a function p(k) even for unit disks [31], thereby invalidating earlier
claims from Pach and Mani-Levitska in an unpublished manuscript. Note that the
indecomposability results for axis-aligned rectangles imply the same for orthants in
R4, since arbitrary such rectangles can be formed by intersecting four-dimensional
orthants with a plane in R4.

Finally, in another recent preprint, Kovács [22] proved that there exists indecom-
posable coverings by homothets of any polygon with at least four edges, disproving
the general conjecture above. Overall, this collection of results essentially closes most
of Pach’s questions on cover-decomposability of plane convex bodies.

Previous results on octants. Pálvölgyi proved the indecomposability of cov-
erings by translates of a convex polyhedron in R3 [30]. His proof, however, does not
hold for unbounded polyhedra with three facets. This prompted the first author of the
current paper to pose the problem of decomposability of coverings by octants. This
was solved by Keszegh and Pálvölgyi, who showed that p(2) � 12 in this case [19].
Since we will reuse this theorem in our proof, it is worth reproducing it here.

Theorem 2.1 (see [19]). There exists a constant c � 12 such that every finite
collection P ⊂ R3 of points can be 2-colored so that every negative octant containing
at least c points of P contains at least one of each color.

In the past two years, the above result was improved and generalized. First,
Keszegh and Pálvölgyi proved that Theorem 2.1 implies that p(k) is bounded for every
k [21]. Note that this is not obvious, as one could well imagine that for some range
spaces, p(2) is bounded, but not p(k) for some k > 2. Their upper bound on p(k),

however, is doubly exponential in k. In particular, their proof implies p(k) � 122k

.
Later, the current authors gave a polynomial upper bound on p(k), but restricted

themselves to the special case of homothetic triangles in the plane, where points are
to be colored [9]. The proof uses a new technique involving recoloring each color class
of a k-coloring with two colors in order to obtain a 2k-coloring.

Finally, in May 2013, a manuscript from Keszegh and Pálvölgyi was communi-
cated to us by Pach, in which an improved polynomial upper bound was given for
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the same special case of homothetic triangles [20]. This improvement makes use of a
lemma stating the so-called self-coverability property of triangles.

We managed to harness the power of these observations for the general case of
octants. In particular, we reuse the recoloring algorithm given in [9] in Lemma 3.2,
and also give a three-dimensional generalization of the self-coverability lemma of [20]
in the form of Lemma 3.1. Our proof of Theorem 1.1 is longer than that of the doubly
exponential upper bound in [21], but not significantly more involved.

Previous results on online coloring problems and proper colorings of
geometric hypergraphs. Semionline algorithms have proved to be useful in an
interesting special case of the problem with octants, in which all points considered in
Theorem 1.1 lie on a vertical plane. This setting can be thought of as points appearing
on a line, and we want to color the points with k colors such that at any time, any set
of p(k) consecutive points contains at least one of each color. This problem has been
studied by a number of authors, whose results were compiled in a joint paper [5]. In
particular, they showed that under this restriction, we have 1.6k � p(k) � 3k − 2.
The upper bound is achieved using a semionline algorithm, which does not require the
knowledge of the future point insertions, and never recolors a point. This also amounts
to coloring primal range spaces induced by bottomless rectangles with a sweeping line
algorithm, i.e., coloring points such that bottomless rectangles containing many of
them contain all colors.

In contrast to our negative result about semionline algorithms, a larger class of
algorithms called quasi-online has led to a short proof that p(2) = 3 in the setting
corresponding to our Corollary 1.5 (see [18]) and is indeed also used to obtain Theo-
rem 2.1 in [19].

Clearly, colorful 2-colorings and proper 2-colorings coincide, but also for a larger
number of colors proper colorings of geometric hypergraphs have been considered
in the primal and dual setting. There are results for bottomless rectangles [17],
halfplanes [15, 17], octants [10], rectangles [12, 1, 26], and disks [28, 33].

Similarly to our Theorem 1.6, Keszegh, Lemons, and Pálvölgyi [18] consider online
proper coloring algorithms (points must be colored on arrival). While it is easy to
see that there is an optimal online algorithm to color points such that quadrants
are colorful, they show that there is no online proper coloring algorithm of bounded
value in the primal setting of bottomless rectangles and octants. This is implied by
Theorem 1.6 and indeed the proof methods have similarities. In [18] the quality of
online algorithms is then measured as a function of the input size.

In another vein, Bar-Noy et al. [7, 6] considered conflict-free colorings in an online
setting. There, the problem is to maintain that every d-covered point p is covered by
one interval whose color is unique among all intervals covering p.

Other related results. In 2010, Varadarajan gave a feasibility result for the
fractional set cover packing problem with fat triangles (Corollary 2 in [36]). This
problem can be seen as a fractional variant of the covering decomposition problem.
This result involves the construction of so-called quasi-uniform ε-nets. This construc-
tion was recently improved by Chan et al. [11]. These results are essentially motivated
by the design of improved approximation algorithms for geometric versions of the
weighted set cover problem. However, they can also be seen as an intermediate step
between the problem of finding small ε-nets and the covering decomposition problem,
which involves partitioning a set into ε-nets (see our conclusion for a discussion on
this relation).
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3. Proof of Theorem 1.1. In what follows, we will use the shorthand notation
[n] = {1, 2, . . . , n} for a positive integer n. We will refer to the three coordinates of a
point p as px, py, and pz, respectively. The negative octant with apex (px, py, pz) ∈ R3

is the set {(x, y, z) ∈ R3 : x � px, y � py, z � pz}. Similarly the positive octant
of (px, py, pz) is {(x, y, z) ∈ R3 : x � px, y � py, z � pz}. For convenience we also
allow the coordinates of an apex to be equal to ∞. In what follows, an octant will
generally be considered to be negative, unless explicitly stated otherwise. For two
points p, q ∈ R3, we say that p dominates q whenever the negative octant with apex
p contains q, or, equivalently, whenever p is greater than q coordinatewise. We say
that a set of points P ⊂ R3 is independent whenever no point in P is dominated by
another. Finally, we say that a point set is in general position whenever no two points
have the same x, y, or z-coordinates. By a standard perturbation argument it suffices
to prove Theorem 1.1 for point sets in general position.

Lemma 3.1. For every finite independent set P ⊂ R3 in general position, there
exists a collection N of negative octants such that

(i) |N | = 2|P| + 1,
(ii) the octants in N do not contain any point of P in their interior,
(iii) all points of R3 that do not dominate any point in P are contained in

⋃N .

Proof. Let n = |P|. We prove the lemma by induction on n. For n = 0 we take
the negative octant covering the whole space with apex (∞, ∞, ∞). If P = {p}, then
we take the octants with apices (px, ∞, ∞), (∞, py, ∞), and (∞, ∞, pz). For n � 2
we consider the points of N in order of increasing z-coordinates. Let us denote them
by p1, p2, . . . , pn in this order. Note that since P is independent, we have pi,x < pj,x

or pi,y < pj,y for every i, j ∈ [n] such that j < i.

Suppose, for the sake of induction, that there exists such a collection Nn−1 for
the first n − 1 points of P . We then consider the next point pn and construct a new
collection Nn. We do this in three steps. First, we include in Nn all the octants of
Nn−1 that do not contain pn. Then for each octant Q′ ∈ Nn−1 such that pn ∈ Q′, we
let Q be the octant having the same apex as Q′, but with its z-coordinate changed
to pn,z. We add each such octant Q to Nn. Finally, we add two new octants to
Nn. The first octant, Ln (for left), will have the point (pn,x, y, ∞) as apex, where
y = min({pj,y : 1 � j < i, pj,x < pn,x}∪{∞}). The second, Bn (for bottom), will have
the point (x, pn,y, ∞) as apex, where x = min({pj,x : 1 � j < i, pj,y < pn,y} ∪ {∞}).
See Figure 3 for an illustration.

x

y

pn

Ln

Bn
pj

Fig. 3. Octants Ln and Bn in the proof of Lemma 3.1.
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The first property on the cardinality of Nn holds by construction, as we add
exactly two octants at each iteration. The second property can be checked as follows.
First, by the induction hypothesis, octants in Nn−1 avoid p1, . . . , pn−1. Those octants
from Nn−1 which avoid pn were copied to Nn and others have their z-coordinate
modified in a way to avoid pn. Finally, the two new octants Ln and Bn have their
interiors disjoint from P by definition and the fact that P is independent.

In order to verify the third property, let us consider a point p′ that is not dom-
inating any point of P . First, suppose that p′

z < pn,z. By induction, there exists
an octant in Nn−1 containing p′. This octant is either contained in Nn, or has its
counterpart in Nn with a modified z-coordinate. In both cases, p′ is covered by this
octant in Nn. Now suppose that p′

z � pn,z. We can further suppose that p′ neither
belongs to Ln nor to Bn. Then either p′

x > x, or p′
y > y, where x and y are the

two values used to define Ln and Bn. Let us suppose that p′
x > x, the other case

being symmetric. Let pj , j < n, be the point realizing the minimum in the definition
of x. We must have p′

y < pj,y, as otherwise p′ would dominate pj. Then p′ must be
covered by an octant Q ∈ Nn−1 whose y-coordinate is smaller than pj,y, as otherwise
Q would contain pj. But by definition pj,y < pn,y; hence Q does not contain pn and
therefore also belongs to Nn. In all cases, p′ is contained in an octant of Nn and the
third property holds.

Note that the upper bound on the size of N in Lemma 3.1 is tight. For example,
consider the point sets Pn = {(i, −i, −i) | i = 1, . . . , n}. Indeed, Lemma 3.1 and the
fact that it is tight for all point sets that are in general position and do not lie in a
plane containing the all-ones vector can be deduced from a more general theorem of
Scarf [14].

In order to prove our main theorem, we will use Theorem 2.1, due to Keszegh and
Pálvölgyi [19]. We proceed to describe a coloring algorithm that achieves the bound
of Theorem 1.1. We do this in two steps. First, we consider the case where the points
to color form an independent set.

Lemma 3.2. Let c be a constant satisfying the property in Theorem 2.1. For
any positive integer k, every finite independent set P ⊂ R3 in general position can
be colored with k colors so that every negative octant containing at least cklog2(2c−1)

points of P contains at least one of each color.

Proof. For k = 2, we know there exists a 2-coloring of P satisfying the property
of Theorem 2.1. Suppose now, as an induction hypothesis, that we have a k-coloring
φ of P such that every octant containing at least p(k) points contains at least one of
each color. Label the colors of φ by 1, . . . , k.

We now describe a 2k-coloring φ′. For i ∈ [k], let Pi = φ−1(i) be the set of
points with color i. We know from Theorem 2.1 that there exists a 2-coloring φi :
Pi → {i′, i′′} of Pi such that every octant containing at least c points of Pi contains
at least one of each color i′ and i′′. We now define φ′ as the 2k-coloring obtained by
partitioning each color class in this way. We now claim that the coloring φ′ is such
that any octant containing at least (2c − 1)p(k) points contains at least one of each
of the 2k colors.

For the sake of contradiction, let Q be an octant containing at least (2c − 1)p(k)
points of P , but not any point of color i′ in φ′. Let PQ ⊆ P be the set of points
contained in Q. If Q does not contain any point of color i′, it means that it contains
at most c − 1 points of φ−1(i). Let Pi = φ−1(i) ∩ PQ be the points of color i in φ
contained in Q.

From Lemma 3.1 and the fact that PQ ⊂ P is an independent set, we know that
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there exists a collection N of at most 2(c − 1)+ 1 = 2c − 1 octants whose interiors do
not contain any point of Pi, but that collectively cover all points of PQ \ Pi. Indeed,
we can assume that after intersecting with Q, N covers precisely PQ \Pi and no other
point of P .

Hence from the pigeonhole principle, one of the octants N ∈ N contains at least
	((2c − 1)p(k) − (c − 1))/(2c − 1)
 = p(k) points of PQ in its interior, but no point of
Pi. From the general position assumption, we can find an octant contained in N that
contains exactly p(k) points of PQ, but no point of Pi. But this is a contradiction
with the induction hypothesis, since this octant should have contained a point of color
i in φ.

It remains to solve the following recurrence, with starting value p(2) = c:

p(2k) � (2c − 1)p(k),

p(k) � c(2c − 1)�log2 k�−1

< cklog2(2c−1).

We now describe our algorithm for coloring an arbitrary set of points in general
position. This requires a new definition.

Given a set P of points in general position in R3, the minimal points of P is the
subcollection of points of P that are not dominating any other point of P . In general,
we define the ith layer Li of P as its minimal points for i = 1, and as the minimal
points of P \ ⋃

1�j<i Lj for i > 1. By definition each layer is an independent set of
points.

Lemma 3.3. Let f(k) = cklog2(2c−1) be the function derived in Lemma 3.2, where
c is a constant satisfying the property in Theorem 2.1. For any positive integer k,
every finite set P ⊂ R3 in general position can be colored with k colors so that every
negative octant containing at least (k − 1)f(k) points of P contains at least one of
each color.

Proof. We will color the points of P by considering the successive layers one by
one, starting with the minimal points. For each layer Li, we do the following:

• precolor the points of Li with colors in [k], as is done in Lemma 3.2;
• for each point p ∈ Li:

– consider the set of points Dp = {q ∈ P : q dominated by p};
– if p is precolored with a color that is not used for any point in Dp, then

this color is the final color of p;
– otherwise pick any color not present on points in Dp and color p with

it; if all k colors are used within Dp, leave p uncolored.

The main observation here is that although the recoloring step harms the validity of
the coloring within a single layer, it is globally innocuous, since any octant containing
the point p in the ith layer also contains all the points in Dp, from the previous
layers. Thus, any octant containing p contains a point colored by the same color
as the precolor of p. Note that each point in the ith layer must dominate at least
one point from each i − 1 earlier layers. This forces the invariant that any octant
containing a point of the ith layer contains points with at least i distinct colors. In
particular, any octant containing a point of the kth layer will contain all the colors.

The analysis is now straightforward. Suppose that an octant contains at least
(k − 1)f(k) points. If it contains a point of the kth layer, then it contains all k colors.
Otherwise, it must contain points of at most k − 1 layers, and from the pigeonhole
principle, it contains at least (k−1)f(k)/(k−1) = f(k) points in a single layer. Then
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the precoloring of this single layer guarantees each octant of size at least f(k) to be
colorful.

Now Theorem 1.1 follows by replacing c by 12 in the expression of Lemma 3.3,
yielding a � 5.58.

S(d, n − 1) S(d, n − 1) S(d − 1, k(d − 1))

I

Fig. 4. Defining strategy S(d, n) once S(d− 1, k(d− 1)) and S(d, n− 1) are defined, in the case
where ti = t′i for all i ∈ [k].

4. Proof of Theorem 1.6. We say that a point of the real line is d-covered,
if it is contained in exactly d intervals presented so far. We shall define for every d
and n an adversarial strategy S(d, n) for presenting intervals such that the following
is true:

(i) Every semionline proper k-coloring algorithm of value at most d executed against
S(d, n) yields k points p1, . . . , pk such that for every i ∈ [k], the point pi is
eventually covered by exactly ti intervals, all of which have color i, and

(ii) t1 + · · · + tk � n.

Clearly, if for some semionline k-coloring algorithm A there is a point eventually
covered by at least d intervals, all of which have the same color, then the value of
A is at least d + 1. Thus if S(d, kd) exists and satisfies (i) and (ii), then there is no
semionline k-coloring algorithm of value at most d, which proves the theorem.

We prove the existence of S(d, n) by a double induction on d and n. Strategies
S(d, 0) are vacuous as (i) and (ii) for n = 0 hold for the empty set of intervals and
any set of k distinct points p1, . . . , pk. We define S(d, n), for n > 0, once we have
defined S(d − 1, k(d − 1)) and S(d, n − 1).

Before continuing let us present the following useful claim.
Claim. Consider a set I of intervals already presented, I ∈ I and I ′ /∈ I such

that I ′ ⊂ I and I ′ ∩ J = ∅ for all J ∈ I \ I. If S(d − 1, k(d − 1)) exists, then we can
present the intervals of S(d − 1, k(d − 1)) inside I ′ forcing any semionline algorithm
of value at most d to color I.

Proof. We present the intervals for S(d − 1, k(d − 1)) completely inside I ′. If the
algorithm does not color I, then it can be seen as a k-coloring algorithm of value at
most d− 1 executed against S(d− 1, k(d− 1)). We already know that there is no such
algorithm and therefore every k-coloring algorithm of value at most d has to color
interval I.

Now, we are ready to define S(d, n) for n > 0. First, present two families of
intervals, both realizing strategy S(d, n − 1), disjointly next to each other. By (i)
there exist two sets of k points each, p1, p2, . . . , pk and p′

1, . . . , p
′
k, and nonnegative

integers t1, . . . , tk, t′1, . . . , t
′
k such that pi is ti-covered and all its intervals are colored

with i, and also p′
i is t′i-covered and all its intervals are colored with i, for every i ∈ [k].

Moreover, by (ii) we have t1 + . . . + tk � n and t′1 + . . . + t′k � n.
If there exists some i ∈ {1, . . . , k} with ti = t′i, then the sequence of maxima

mi = max(ti, t
′
i) satisfies m1 + · · · + mk � n + 1. Thus, taking for each i ∈ {1, . . . , k}

the point from {pi, p
′
i} that corresponds to the larger value of ti, t

′
i, we obtain a set of

k points satisfying (i) and (ii).
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Hence we assume without loss of generality that ti = t′i for all i ∈ {1, . . . , k}.
Then we present one additional interval I that contains all the points p′

1, . . . , p
′
k but

none of the points p1, . . . , pk. Moreover, I is chosen big enough so that there exists
some I ′ ⊂ I that is disjoint from all the other intervals presented so far. We present
the intervals realizing strategy S(d− 1, k(d− 1)) inside I ′, forcing I to be colored (see
Figure 4). Let j be the color of I. Then p′

j is now contained in exactly t′j +1 intervals
all of which are colored with j. Thus ({p1, . . . , pk} \ pj) ∪ {p′

j} is a set of k points
satisfying (i) and (ii), which concludes the proof.

Discussion and open problems. A well-studied problem in discrete geometry
is to identify properties of range spaces, or geometric hypergraphs, that allow one
to find small ε-nets. It is known, for instance, that range spaces of bounded VC-
dimension have ε-nets of size O(1

ε log 1
ε ). (See, for instance, Chapter 10 in Matoušek’s

lectures [23].)

The coloring problem that we consider can be cast as the problem of partitioning
a point set into k ε-nets for ε = p(k)/n. In fact, it is one of the negative results for
covering decomposition that formed the basis of a construction of Pach and Tardos
for proving superlinear lower bounds on the size of ε-nets [27]. One can realize that
if p(k) = O(k) for a given range space, then it implies that this range space also
has ε-nets of size O(1/ε). The latter is known to hold for range spaces induced
by octants [13]. Whether p(k) = O(k) for octants is therefore an interesting open
problem. In general, giving improved upper or lower bounds on p(k) for octants is
the major remaining open question.

Another interesting open question concerns the primal problem, in which points
are colored with k colors so that every region containing p(k) points contains a point
of each color. The existence of such a function p(k) is still open for homothetic copies
of a square, for instance.

Acknowledgments. The authors wish to thank Balázs Keszegh, János Pach,
and Dömötör Pálvölgyi for stimulating discussions on this topic.
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The Density of Fan-Planar Graphs

Michael Kaufmann1 and Torsten Ueckerdt2

March 26, 2014

Abstract

A topological drawing of a graph is fan-planar if for each edge e the edges crossing e have
a common endpoint on the same side of e, and a fan-planar graph is a graph admitting such a
drawing. Equivalently, this can be formulated by two forbidden patterns, one of which is the
configuration where e is crossed by two independent edges and the other where e is crossed by
incident edges with the common endpoint on different sides of e. In particular every edge of a
fan-planar graph is crossed only by the edges of a star. A topological drawing is simple if any
two edges have at most one point in common.

The class of fan-planar graphs is a natural variant of other classes defined by forbidden
intersection patterns in a topological drawing of the graph. So every 1-planar graph is also
fan-planar, and every fan-planar graph is also quasiplanar, where both inclusions are strict.
Fan-planar graphs also fit perfectly in a recent series of work on nearly-planar graphs from the
area of graph drawing and combinatorial embeddings.

For topologically defined graph classes, one of the most fundamental questions asks for the
maximum number of edges in any such graph with n vertices. We prove that every n-vertex
graph without loops and parallel edges that admits a simple fan-planar drawig has at most
5n− 10 edges and that this bound is tight for every n ≥ 20.

Furthermore we discuss possible extensions and generalizations of these new concepts.

Keywords: Topological drawing, quasiplanar, 1-planar, intersection pattern, density.

1 Introduction

Planarity of a graph is a well-studied concept in graph theory, computational geometry and graph
drawing. The famous Euler formula characterizes for a certain embedding the relation between
vertices, edges and faces, and many different algorithms [28, 23, 11] following different objectives
have been developed to compute appropriate embeddings in the plane.

Because of the importance of the concepts, a series of generalizations have been developed
in the past. Topological graphs and topological drawings respectively are being considered, i.e.,
the vertices are drawn as points in the plane and the edges drawn as Jordan curves between
corresponding points without any other vertex as an interior point. In [16], the authors state
”Finding the maximum number of edges in a topological graph with a forbidden crossing pattern is
a fundamental problem in extremal topological graph theory” together with 9 citations from a large
group of authors. Most of the existent literature considers topological drawings that are simple,
i.e., where any two edges have at most one point in common. In particular, two edges may not cross
more than once and incident edges may not cross at all. Throughout this paper we shall consider
simple topological graphs only. Indeed, we shall argue in Section 4 that if we drop this assumptions
and allow non-homeomorphic parallel edges, then even 3-vertex fan-planar graphs have arbitrarily
many edges.
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planar

≤ 3n− 6 edges

3-quasiplanar planar

≤ 6.5 · n+O(1) edges

2-fan-crossing free

≤ 4n− 8 edges

fan-planar

≤ 5n− 10 edges

Topological Graphs Defined by Forbidden Intersection Patterns

config. I config. II

Figure 1: Topological graphs defined by forbidden patterns and the corresponding maximum num-
ber of edges in an n-vertex such graph.

Related work. Most notably are the k-planar graphs and the k-quasiplanar graphs [4]. A k-planar
graph admits a topological drawing in which no edge is crossed more than k times by other edges,
while a k-quasiplanar graph admits a drawing in which no k edges pairwise cross each other.

The topic of k-quasiplanar graphs is almost classical [9]. A famous conjecture [9] states that for
constant k the maximal number of edges in k-quasiplanar graphs is linear in the number of vertices.
Note that 2-quasiplanar graphs correspond to planar graphs. A first linear bound for k = 3, i.e.
3-quasiplanar graphs, has been shown in [4] and subsequently improved in [21]. For 4-quasiplanar
graphs the current best bound is 76(n−2) [1]. For the general case, the bounds have been gradually
improved from O(n(log n)O(log k)) [21], and O(n log n · 2α(n)c).

In case of simple topological drawings, where each pair of edges intersects at most once, a bound
of 6.5n+O(1) has been proven for 3-quasiplanar graphs [3] and recently O(n log n) for k-quasiplanar
graphs with any fixed k ≥ 2 [24]. It is still open, if the conjecture holds for general k.

A k-planar graph admits a topological drawing in which each edge has at most k crossings. The
special case of 1-planar graphs have been introduced by Ringel [22], who considered the chromatic
number of these graphs. Important work about the characterization on 1-planar graphs has been
performed by Suzuki [25], Thomassen [27] and Hong et al. [19]. Related questions on testing 1-
planarity have been explored, where NP-completeness has been shown for the general case [17]
while efficient algorithms have been found for testing 1-planarity for a given rotation system [14]
and for the case of outer-planarity [7, 18]. Additionally aspects like straight-line embeddings [5]
and maximality [8] etc. have been explored in the past.

Closely related to 1-planar graphs are RAC-drawable graphs [13, 6], that is graphs that can be
drawn in the plane with straight-line edges and right-angle crossings. For the maximum number of
edges in such a graph with n vertices, a bound of 4n−10 could be proven [15], which is remarkably
close to the 4n − 8 bound for the class of 1-planar graphs [21]. A necessary condition for RAC-
drawable graph is the absence of fan-crossings. An edge has a k-fan-crossing if it crosses k edges
that have a common endpoint, cf. Figure 1. RAC-drawings do not allow 2-fan-crossings. In a
recent paper [10], Cheong et al. considered k-fan-crossing free graphs and gave bounds for their
maximum number of edges. They obtain a tight bound of 4n − 8 for n-vertex 2-fan-crossing free
graphs, and a tight 4n − 9 when edges are required to be straight-line segments. For k > 2, they
prove an upper bound of 3(k − 1)(n − 2) edges, while all known examples of k-fan-crossing free
graphs on n vertices have no more than kn edges.

Our results and more related work. Throughout this paper we consider only simple topological
drawings, i.e., any two edges have at most one point in common, and only simple graphs, i.e., graphs
without loops and parallel edges. We consider here another variant of sparse non-planar graphs,
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somehow halfway between 1-planar graphs and quasiplanar graphs, where we allow more than one
crossing on an edge e, but only if the crossing edges have a common endpoint on the same side of
e. We call this a fan-crossing and the class of topological graphs obtained this way fan-planar
graphs. Note that we do not differentiate on k-fan-crossings as it has been done by Cheong et
al. [10].

The requirement that every edge in G is crossed by a fan-crossing can be stated in terms
of forbidden configurations. We define configuration I to be one edge that is crossed by two
independent edges, and configuration II to be an edge e that is crossed by incident edges, which
however have their common endpoint on different sides of e, see Figure 2. Note that since we
consider only simple topological drawings, configuration II is well-defined. Now a simple topological
graph is fan-planar if and only if neither configuration I nor II occurs. Note that if we forbid only
configuration I, then an edge may be crossed by the three edges of a triangle, which is actually
not a star, nor a fan-crossing. However, if every edge is drawn as a straight-line segment, then
configuration II can not occur and hence in this case it is enough to forbid configuration I.

configuration I configuration II fan-crossing
crossing
triangle

non-simple
configurations

Figure 2: Crossing configurations

Obviously, 1-planar graphs are also fan-planar. Furthermore, fan-planar graphs are 3-quasiplanar
since there are no three independent edges that mutually cross. So, we know already that the max-
imum number of edges in an n-vertex fan-planar graph is approximately between 4n and 6.5n. In
the following, we will explore the exact bound.

Theorem 1. Every simple topological graph G on n ≥ 3 vertices with neither configuration I nor
configuration II has at most 5n− 10 edges. This bound is tight for n ≥ 20.

We remark that fan-planar drawings graphs may have Ω(n2) crossings, e.g., a straight-line
drawing of K2,n with the bipartition classes places on two parallel lines.

Very closely related to our approach is the research on forbidden grids in topological graphs,
where a (k, l) grid denotes a k-subset of the edges pairwise intersected by an l-subset of the edges,
see [20] and [26]. It is known that topological graphs without (k, l) grids have a linear number
of edges if k and l are fixed. Note that configuration I, but also a 2-fan-crossing, are (2, 1) grids.
Subsequently [2], ”natural” (k, l) grids have been considered, which have the additional requirement
that the k edges, as well as the l edges, forming the grid are pairwise disjoint. For natural grids,
the achieved bounds are superlinear. Linear bounds on the number of edges have been found for
the special case of forbidden natural (k, 1) grids where the leading constant heavily depends on
the parameter k. In particular, the authors give a bound of 65n for the case of forbidden natural
(2, 1) grids, which correspond to our forbidden configuration I. Additionally, the case of geometric
graphs, that is, graphs with straight-line edges, has been explored. For details and differences let us
refer to [2]. We remark that many arguments in this field of research are based on the probabilistic
method, while in this paper we use a direct approach aiming on tight upper and lower bounds.
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2 Examples of Fan-Planar Graphs with Many Edges

The following examples have approximately 5n edges. The first one is a K4,n−4, where the n − 4
edges are connected by a path, see Figure 3(a). An easy calculation shown that this graph has
4(n−4)+(n−5) = 5n−21 edges. Indeed, one can add 10 edges to the graph, keeping fan-planarity,
as well as additionally one vertex with 6 more incident edges and obtain a graph on n+ 1 vertices
and 5(n+1)−10 edges. We remark that this graph has parallel edges; however every pair of parallel
edges is non-homeomorphic, that is, it surrounds at least one vertex of G.

(a) (b)

→

(c)

Figure 3: (a) K4,n−4 with n− 4 vertices on a path. (b) The dodecahedral graph with a pentagram
in each face. (c) Adding 2-hops and spokes into a face.

The second example is the (planar) dodecahedral graph where in each 5-face, we draw 5 additional
edges as a pentagram, see Figure 3(b). This graph has n = 20 vertices and 5n − 10 = 90 edges,
and has already served as a tight example for 2-planar graphs [21].

Proposition 1. Every connected planar embedded graph H on n ≥ 3 vertices can be extended to a
fan-planar graph G with 5|V (G)|−10 edges by adding an independent set of vertices and sufficiently
many edges, such that the uncrossed edges of G are precisely the edges of H.

Moreover, if H is 3-connected and each face has length at least 5, then G is a simple topological
graph without loops or parallel edges.

Proof. Let n and m be the number of vertices and edges of H, respectively, and F be the set of all
faces of H. We construct the fan-planar graph G by adding one vertex and two sets of edges into
each face f ∈ F . So let f be any face of H. Since H is connected, f corresponds to a single closed
walk v1, . . . , vs in H around f , where vertices and edges may be repeated. We do the following,
which is illustrated in Figure 3(c).

(1) Add a new vertex vf into f .

(2) For i = 1, . . . , s add a new edge vfvi drawn in the interior of f .

(3) For i = 1, . . . , s add a new edge vi−1vi+1 (with indices modulo s) crossing the edge vfvi.

In (1) we added |F | new vertices. In (2) we added deg(f) many “spoke edges” inside face f , in
total

∑
f deg(f) = 2m new edges. And in (3) we added again deg(f) many “2-hop edges” inside

face f , in total
∑

f deg(f) = 2m new edges. Thus we calculate

|V (G)| = n+ |F |
|E(G)| = m+ 2m+ 2m = 5m,

which together with Euler’s formula m = n + |F | − 2 gives |E(G)| = 5|V (G)| − 10. It remains to
see that no two edges in G are homeomorphic, and that G is fan-planar. The “2-hop edges” form
shortcuts for paths of length 2. Since s ≥ 4 by assumption, none of these s are edges is already
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in the facial walk for f . Each “spoke edge” vfvi crosses only one 2-hop edge, and each 2-hop edge
vi−1vi+1 crosses only three edges vi−2vi, vfvi and vivi+2, which have vi as a common endpoint.
Hence the resulting graph G is fan-planar.

Finally, note that if the planar graph H is 3-connected and each face has length at least 5, then
the fan-planar graph G has no loops, nor parallel edges, nor crossing incident edges. Examples for
such planar graphs are fullerene graphs.

3 The 5n− 10 Upper Bound For the Number of Edges

In this section we prove Theorem 1. We shall fix a fan-planar embedding of G and split the edges
of G into three sets. The first set contains all edges that are uncrossed. We denote by H the
subgraph of G with all vertices in V and all uncrossed edges of G. Sometimes we may refer to H
as the planar subgraph of G. Note that H might be disconnected even if G is connected. In the
second set we consider every crossed edge whose endpoints lie in the same connected component
of H. And the third set contains all remaining edges, i.e., every crossed edge with endpoints in
different components of H. We show how to count the edges in each of the three sets and derive
the upper bound.

To prove Theorem 1 it clearly suffices to consider simple topological graphs G that do not
contain configuration I nor II and additionally satisfy the following properties.

(i) The chosen embedding of G has the maximum number of uncrossed edges.

(ii) The addition of any edge to the given embedding violates the fan-planarity of G, that is, G
is maximal fan-planar with respect to the given embedding.

So for the remainder of this paper let G be a maximal fan-planar graph with a fixed fan-planar
embedding that has the maximum number of uncrossed edges. Recall that the embedding of G is
simple, i.e., any two edges have at most one point in common.

3.1 Notation, Definitions and Preliminaries Results

We call a connected component of the plane after the removal of all vertices and edges of G a cell of
G. Whenever we consider a subgraph of G we consider it together with its fan-planar embedding,
which is inherited from the embedding of G. We will sometimes consider cells of a subgraph G′

of G, even though those might contain vertices and edges of G − G′. The boundary of each cell
c is composed of a number of edge segments and some (possibly none) vertices of G′. With slight
abuse of notation we call the cyclic order of vertices and edge segments along c the boundary of
c, denoted by ∂c. Note that vertices and edges may appear more than once in the boundary of a
single cell. We define the size of a cell c, denoted by ||c||, as the total number of vertices and edge
segments in ∂c counted with multiplicity.

Note that from the additional assumptions (i) and (ii) on G it follows that if two vertices are in
the same cell c of G then they are connected by an uncrossed edge of G. However, this uncrossed
edge does not necessarily bound the cell c.

Lemma 1. If two edges vw and ux cross in a point p, no edge at v crosses ux between p and u,
and no edge at x crosses vw between p and w, then u and w are contained in the same cell of G.

Proof. Let e0 = ux and e1 = vw be two edges that cross in point p = p1 such that no edge at
v crosses e0 between p1 and u, and no edge at x crosses e1 between p1 and w. If no edge of G
crosses e0 nor e1 between p1 and u, respectively w, then clearly u and w are bounding the same
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cell. So assume without loss of generality that some edge of G crosses e1 between p1 and w. By
fan-planarity such edges are incident to u. Let e2 be the edge whose crossings with e1 is closest to
w, and let p2 be the crossing point. See Figure 4(a) for an illustration.

p = p1

u

v

w

p2

e1

e2

e3
p3 p4

e4

x
e0

(a)

v0 v1

e0

e1

e2

e3

c

c′

p

u1

u0

(b)

c
c′

p

v

u1

u2

w1

w2

(c)

Figure 4: Illustration of the proofs of Lemma 1 (a) and Corollary 2 (b),(c).

No edge crosses e1 between w and p2. If e2 is not crossed between u and p2, then u and w are
bounding the same cell and we are done. Otherwise let e3 be the edge whose crossing with e2 is
closest to u, and let p3 be the crossing point. By fan-planarity e3 and e1 have a common endpoint,
and it is not v since e3 does not cross e0 between p1 and u. So e3 endpoints at w and we have that
e2 is not crossed between u and p3. Again, if u and w are not on the same cell then some edge
crosses e3 between p3 and w. By fan-planarity any such edge has a common endpoint with e2, and
if it would not be u then e1 would be crossed by two independent edges – a contradiction to the
fan-planarity of G. So all edges crossing e3 between w and p3 are incident to u. Let e4 be such
edge whose crossing with e3 is closest to w, and let p4 be the crossing point. Let us again refer to
Figure 4(a) for an illustration.

Iterating this procedure until no edge crosses ei nor ei−1 between pi and u,w we see that u and
w lie indeed on the same cell, which concludes the proof.

Lemma 1 has a couple of nice consequences.

Corollary 1. Any two crossing edges in G are connected by an uncrossed edge.

Proof. Let ux and vw be the two crossing edges. By fan-planarity either no other edge at x or
no other edge at u crosses the edge vw, say there is no such edge at x. Similarly, we may assume
without loss of generality, that no edge at v crosses the edge ux. However, this implies that ux
and vw satisfy the requirements of Lemma 1 and we have that u and w are on the same cell. In
particular, we can draw an uncrossed edge between u and w in this cell. Because G is maximally
fan-planar, uw is indeed an edge of G. And since G is embedded with the maximum number of
uncrossed edges, uw is also drawn uncrossed.

Corollary 2. If c is a cell of any subgraph of G, and ||c|| = 4, then c contains no vertex of G in
its interior.

Proof. Let c be a cell of G′ ⊆ G with ||c|| = 4. Then ∂c consists either of four edge segments or
one vertex and three edge segments. Let us assume for the sake of contradiction that c contains a
set S 6= ∅ of vertices in its interior.

Case 1. ∂c consists of four edge segments. Let e0, e1, e2, e3 be the edges bounding c is this cyclic
order. From the fan-planarity of G follows that e0 and e2 have a common endpoint v0. Similarly

6



e1 and e3 have a common endpoint v1. See Figure 4(b) for an illustration. If p denotes the crossing
point of e0 = v0u0 and e1 = v1u1, then by fan-planarity no edge at ui crosses ei+1 between p and
vi+1, where i ∈ {0, 1} and indices are taken modulo 2. Hence by Lemma 1 there exists a cell c′ of
G that contains both v0 and v1.

Now consider the subgraph G[S] of G on the vertices inside c. From the fan-planarity follows
that every edge between G[S] and G[V \ S] has as one endpoint v0 or v1. We now change the
embedding of G by placing the subgraph G[S] (keeping its inherited embedding) into the cell c′

that contains v0 and v1. The resulting embedding of G is still fan-planar and moreover at least one
edge between G[S] and {v0, v1} is now uncrossed – a contradiction to our assumption (i) that the
embedding of G has the maximum number of uncrossed edges.

Case 2. ∂c consists of one vertex and three edge segments. Let v be the vertex and vw1, vw2, u1u2
be the edges bounding c. See Figure 4(c) for an illustration. If p denotes the crossing point of vw1

and u1u2, then by fan-planarity either no edge at u1 crosses vw1 between p and v or no edge at u2
crosses vw1 between p and v. Moreover, for i = 1, 2 the edge vwi is the only edge at wi that crosses
u1u2. Hence by Lemma 1 we have that either v and u1 or v and u2 are contained in the same cell
of G – say cell c′ contains v and u2.

Now, similarly to the previous case, consider the subgraph G[S] of G on the vertices inside c.
From the fan-planarity, it follows that every edge between G[S] and G[V \ S] has as one endpoint
v, u1 or u2. Moreover, every edge between a vertex in G[S] and u1 or u2 is crossed only by edges
incident to v, as otherwise u1u2 would be crossed by two independent edges. We now change the
embedding of G by placing the subgraph G[S] (keeping its inherited embedding) into the cell c′

that contains v and u2. The resulting embedding of G is still fan-planar and moreover at least one
edge between G[S] and u2 is now uncrossed – a contradiction to (i).

Corollary 3. If e0 = u0v0 and e1 = u1v1 are two crossing edges of G such that every edge of G
crossing ei is crossed only by edges incident to ui+1, where i ∈ {0, 1} and indices are taken modulo
2, then v0 and v1 are in the same connected component of H.

Proof. Let p be the point in which e0 and e1 cross. For i = 0, 1 let Si be the set of all edges crossing
ei+1 between p and vi+1. (All indices are taken modulo 2.) By assumption Si is a star centered at
ui. Consider the embedding of the graph S0 ∪S1 inherited from G. By fan-planarity u0 and u1 are
contained in the outer cell of S0 ∪ S1. Moreover, every inner cell c of S0 ∪ S1 has ||c|| = 4 and thus
by Corollary 2 all leaves of S0 and S1 are also contained in the outer cell c∗ of S0 ∪ S1.

We claim that no edge segment in the boundary ∂c∗ of the outer cell is crossed by another edge
in G. Indeed, if e′ is an edge crossing some edge e ∈ S0 ∪ S1 between the crossing of e and e0 or
e1 and the endpoint of e different from u0, u1, then by assumption one endpoint of e′ is u0 or u1 –
say u1. Moreover, since by Corollary 2 no cell c with ||c|| = 4 contains any vertex, we have that e′

crosses e0 between p and v0 and thus e ∈ S1. See Figure 5(b).
We conclude that if we label the vertices of S0 ∪ S1 such that their cyclic order around c∗ is

u0, u1, v0 = w1, w2, . . . , wk = v1, then for each j ∈ {1, . . . , k − 1} the vertices wj and wj+1 are
contained in the same cell of G and hence by maximality of G joint by an uncrossed edge. See
Figure 5(a) for an illustration.

Recall that H denotes the planar subgraph of G. For convenience we refer to the closure of cells
of H as the faces of G. The boundary of a face f is a disjoint set of (not necessarily simple) cycles
of H, which we call facial walks. The length of a facial walk W , denoted by |W |, is the number
of its edges counted with multiplicity. We remark that a facial walk may consist of only a single
vertex, in which case its length is 0. See Figure 6(a) for an example.
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u0 u1

w1 = v0w2

w3
w4

w5

w6

w7

w8

w9

w10
v1 = w11

e0 e1p

(a)

u0 u1

v1

e0 e1

v0
e

e′

p

(b)

Figure 5: (a) The stars S0 and S1 in the proof of Corollary 3 (b) If an edge e′ crosses e ∈ S0
between the crossing of e and e1 and the endpoint of e different from u0, and e′ /∈ S1, then v0 is
contained in a cell c bounded by e, e′ and e1 with ||c|| = 4.

For a face f and a facial walk W of f , we define G(W ) to be the subgraph of G consisting of the
walk W and all edges that are drawn entirely inside f and have both endpoints on W . The set of
cells of G(W ) that lie inside f is denoted by C(W ). Finally, the graph G(W ) is called a sunflower
if |W | ≥ 5 and G(W ) has exactly |W | inner edges each of which connects two vertices at distance 2
on W . See Figure 6(b) for an example of a sunflower. We remark that for convenience we depict
facial walks in our figures as simple cycles, even when there are repeated vertices or edges.

e1

e2

e3

e4

e5

e6

(a) (b)

Figure 6: (a) A cell of H (drawn black) is shown in gray. The boundary of the cell is the cycle
e1, e2, e3, e4, e5, e5, e6. (b) A sunflower on 8 vertices. The facial walk W is drawn thick. A cell
bounded by 8 edge segments and no vertex is highlighted.

3.2 Counting the Number of Edges

We shall count the number of edges of G in three sets:

• Edges in H, that is all uncrossed edges.

• Edges in E(G(W )) \ E(W ) for every facial walk W .

• Edges between different facial walks of the same face f of G.

The edges in H will be counted in the final proof of Theorem 1 below. We start by counting the
crossed edges, first within the same facial walk and afterwards between different facial walks. For
convenience, let us call for a facial walk W the edges in E(G(W )) \E(W ) and their edge segments
inner edges and inner edge segments of G(W ), respectively.
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Lemma 2. Let W be any facial walk. If every inner edge segment of G(W ) bounds a cell of G(W )
of size 4 and no cell of G(W ) contains two vertices on its boundary that are not consecutive in W ,
then G(W ) is a sunflower.

Proof. Let v0, . . . , vk be the clockwise order of vertices around W . (In the following, indices are
considered modulo k+ 1.) For any vertex vi we consider the set of inner edges incident to vi. Since
no two non-consecutive vertices of W lie on the same cell, every vi has at least one such edge.
Moreover, note that for each edge vivi+1 of W the unique cell ci with vivi+1 on its boundary has
size at least 5. This implies that every vi has indeed at least two incident inner edges. Finally, note
that every inner edge is crossed, since otherwise there would be two non-consecutive vertices of W
bounding the same cell of G(W ).

Now let us consider the clockwise first inner edge incident to vi, denoted by e1i . Since an edge
segment of e1i bounds the cell ci on the other side of this segment is a cell of size 4. This means that
e1i and the clockwise next inner edge at vi are crossed by some edge e. By fan-planarity e crosses
only edges incident to vi. Thus each endpoint of v bounds together with vi some cell of G(W ).
Since only consecutive vertices of W bound the same cell of G(W ), this implies that e = vi−1vi+1.
Since this is true for every i ∈ {0, . . . , k}, we conclude that G(W ) is a sunflower.

Recall that C(W ) denotes the set of all bounded cells of G(W ).

Lemma 3. For every facial walk W with |W | ≥ 3 we have

|E(G(W )) \ E(W )| ≤ 2|W | − 5−
∑

c∈C(W )

max{0, ||c|| − 5}.

Proof. Without loss of generality we may assume that W is a simple cycle. We proceed by induction
on |E(G(W ))|. As induction base we consider the case that W is a triangle. Then G(W ) = W and
C(W ) consists of a single cell c with ||c|| = 6. Thus

|E(G(W )) \ E(W )| = 0 = 2|W | − 5− (||c|| − 5).

First, consider any inner edge segment e∗ and the two cells c1, c2 ∈ C(W ) containing e∗ on their
boundary. If c∗ denotes the set c1 ∪ c2 in G(W ) \ e, then

||c∗|| = ||c1||+ ||c2|| − 4

and thus
max{0, ||c∗|| − 5} = max{0, ||c1|| − 5}+ max{0, ||c2|| − 5}+ x, (1)

where x = 1 if ||c1|| ≥ 5 and ||c2|| ≥ 5 and x = 0 otherwise.
Now, we shall distinguish three cases: G(W ) is a sunflower, some inner edge segment is not

bounded by a cell of size 4, and some cell of G(W ) contains two vertices on its boundary that are
not consecutive in W . By Lemma 2 this is a complete case distinction.

Case 1. G(W ) is a sunflower. Then by definition, G(W ) has exactly |W | inner edges. Moreover,
C(W ) contains exactly one cell c of size greater than 4 and for that cell we have ||c|| = |W |.
Thus

|E(G(W )) \ E(W )| = |W | = 2|W | − 5− (|W | − 5).
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Case 2. Some edge segment e∗ of some inner edge e bounds two cells c1, c2 of size at least 5 each.
Then applying induction to the graph G′ = G(W ) \ e we get

|E(G(W )) \ E(W )| = 1 + |E(G′) \ E(W )| ≤ 1 + 2|W | − 5−
∑

c∈C(G′)

max{0, ||c|| − 5}

(1)
= 1 + 2|W | − 5−

∑

c∈C(W )

max{0, ||c|| − 5} − 1.

Case 3. Some cell of G(W ) contains two vertices u,w on its boundary that are not consecutive on
W . Note that uw may or may not be an inner edge of G(W ). In the latter case we denote
by c∗ the unique cell that is bounded by u and w. In any case exactly two cells c1, c2 of
G(W )∪uw are bounded by u and w and we have ||c∗|| = ||c1||+ ||c2|| − 4, provided c∗ exists.

u

w

u

w

u

w

c∗

G(W1) G(W2)G(W )

u

w

G(W )

c1 c2
c1 c2

y=1←−y=0−→

Figure 7: The graph G(W ) is split into two graphs G(W1) and G(W2) along two vertices u,w that
are not consecutive on W but bound the same cell of G(W ).

We consider the two cycles W1,W2 in W ∪ uw that are different from W , such that W1

surrounds c1 and W2 surrounds c2. For i = 1, 2 consider G(Wi), i.e., the subgraph of G(W )∪
uw induced by Wi, see Figure 7. We have

|W | = |W1|+ |W2| − 2,

|E(G(W )) \ E(W )| = |(E(G(W1)) \ E(W1))|+ |(E(G(W2)) \ E(W2))|+ y,
∑

c∈C(W )

max{0, ||c|| − 5} (1)
=

∑

c∈C(W1)

max{0, ||c|| − 5}+
∑

c∈C(W2)

max{0, ||c|| − 5}+ (1− y),

where y = 1 if uw already was an inner edge of G(W ) and y = 0 otherwise. Now, applying
induction to G(W1) and G(W2) gives the claimed bound.

Let us define by C(f) the union of C(W ) for all facial walks W of f . Moreover, we partition
C(f) into C∅(f) and C∗(f), where a cell c ∈ C(f) lies in C∅ if and only if (c \ ∂c)∩ V (G) = ∅. I.e.,
cells in C∅(f) do not have any vertex of G in their open interior, whereas cells in C∗(f) contain
some vertex of G in their interior. Without loss of generality we have that for each C∗(f) is either
empty or contains at least one bounded cell. This can be achieved by picking a cell of G that has
the maximum number of surrounding Jordan curves of the form ∂c for c ∈ ⋃f C∗(f), and defining
it to be in the unbounded cell of G.

Before we bound the number of edges between different facial walks of f we need one more
lemma. Consider a face f of G with at least two facial walks and a cell c ∈ C∗(f) that is inclusion-
minimal. Let W1 be the facial walk with c ∈ C(W1) and W2, . . . ,Wk be the facial walks that are
contained in c. For i = 1, . . . , k let ci be the cell of G(Wi) that contains all walks Wj with j 6= i.
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In particular, we have c1 = c. Moreover, we call an edge between two distinct facial walks Wi and
Wj a WiWj-edge.

Lemma 4. Exactly one of c1, . . . , ck has a vertex on its boundary.

Proof. We proceed by proving a series of claims first.

Claim 1. If a WiWj-edge and a Wi′Wj′-edge cross, then {i, j} = {i′, j′}.
Proof of Claim. Consider a WiWj-edge e0 = u0v0 crossing a Wi′Wj′-edge e1 = u1v1. By Corollary 1
one endpoint of e0, say u0 ∈ Wi, and one endpoint of e1, say u1 ∈ Wi′ , are joint by an uncrossed
edge. In particular, Wi = Wi′ .

If, Case 1, e0 is crossed by a second edge incident to v1, then applying Lemma 1 gives an
uncrossed edge u0v1, which is a contradiction to the fact that Wj′ 6= Wi′ , or an uncrossed edge
v0v1, which implies Wj = Wj′ as desired.

Otherwise, Case 2, e0 is crossed only by edges at u1, and by symmetry e1 is crossed only by
edges at u0. Applying Corollary 3 we get that v0 and v1 are in the same connected component of
H and hence Wj = Wj′ , as desired. 4

u1 u2
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e2

v2 v1

u1 u2

Wi = Wi′

e1

e2

v2 v1

Wi = Wi′
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e
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Wi
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Figure 8: (a) Case 1 in the proof of Claim 1. Illustrations of the proofs of Claim 2 (b), Claim 3 (c)
and Claim 4 (d).

For a facial walk Wi a vertex v ∈ Wi is called open if v lies on ∂ci. Moreover, a vertex v ∈ Wi

is called closed if v is not open but there is at least one edge between v and another facial walk
Wj 6= Wi. So every edge between distinct facial walks has endpoints that are open or closed, and
by fan-planarity at least one endpoint is open.

Claim 2. If two WiWj-edges cross then both have exactly one open end, which moreover are in the
same facial walk.

Proof of Claim. Let e1 = u1v1 and e2 = u2v2 be two crossing WiWj-edges. Assume for the sake
of contradiction that e1 has an open endpoint u1 ∈ Wi and e2 has an open endpoint u2 ∈ Wj .
We consider the edges e3 = u3v1 and e4 = u4v2 that are incident to v1 and v2 respectively, cross
each other and whose crossing point p is furthest away from v1 and v2. See Figure 8(b) for an
illustration. Note that possibly e1 = e3 and/or e4 = e2.

Now u3 is not in Wj because u1 is an open endpoint and u4 is not in Wi because u2 is an open
end. Hence by Claim 1 u3 ∈ Wi and u4 ∈ Wj . Moreover, by Lemma 1 u3u4 is an uncrossed edge
of G – a contradiction to the fact that Wi and Wj are distinct facial walks. 4

11



Claim 2 implies that every edge between different facial walks has exactly one open endpoint
and one closed end, because every such edge with two open endpoints would be crossed by some
other edge between two facial walks.

Claim 3. If a WiWj-edge has a closed endpoint u ∈ Wi and w is the counterclockwise next open
or closed vertex of Wi after u, then there exists a WiWj-edge incident to w with open endpoint in
Wj.

Proof of Claim. Let e = uv be a WiWj-edge that has a closed endpoint u ∈ Wi. By fan-planarity
v is an open vertex of Wj . Consider the crossing of e closest to u and let e1 = u1v1 be the crossing
edge. Clearly, e1 is an edge from G(Wi), where without loss of generality v1 comes counterclockwise
after u in Wi. Further assume without loss of generality that e is the WiWj-edge at u whose crossing
with e1 is closest to v1. If e is not crossed between v and its crossing with e1 then we can draw a
WiWj-edge between v and w that is not crossed by any edge between facial walks and we are done.

Otherwise, if e is crossed by some edge e2 between its crossing with e1 and v, then by fan-
planarity e2 is incident to u1 or v1. Moreover, by Claim 1 and Claim 2 e2 has a closed endpoint
in Wi and an open endpoint in Wj . Thus if e2 is incident to v1, then we have found the desired
WiWj-edge. So assume that e2 = u1v2 for some v2 ∈Wj . Moreover, let e2 be the WiWj-edge whose
crossing with e is closest to u. We refer to Figure 8(c) for an illustration.

Because e2 has a closed endpoint u1 ∈ Wi every edge crossing e1 or e2 endpoints in u. Thus
by the choice of e we conclude that e2 is not crossed between v2 and its crossing with e and that
e1 is not crossed between its crossing with e and the next vertex or edge in G(Wi). Moreover, by
the choice of e2 the edge e is not crossed between its crossings with e2 and e1. Thus we can draw
a WiWj-edge from v2 to w. 4

Claim 3 together with Claim 2 implies that on each facial walk every closed vertex is followed
by another closed vertex. In particular, the facial walks come in two kinds, one with open vertices
only and one with closed vertices only. We remark one can show that, if Wi has only closed vertices,
then G(Wi) is a sunflower.

Claim 4. Every facial walk with only closed vertices has edges to exactly one facial walk with only
open vertices.

Proof of Claim. Assume for the sake of contradiction that facial walk Wi with only closed vertices
has edges to two different facials walks Wj ,Wj′ with only open vertices. Claim 3 implies that if
some closed vertex of Wi has an edge to Wj , then every closed vertex of Wi has an edge to Wj ,
and the same is true for Wj′ . Hence, each of the at least three closed vertices in Wi has edge to Wj

and Wj′ , which implies that some WiWj-edge and some WiWj′-edge must cross, see Figure 8(d).
(Indeed, if any two such edges would not cross, then contracting Wj and Wj′ into a single point
each and placing a new vertex in the middle of Wi with an edge to every closed vertex in Wi would
give a planar drawing of K3,3.) Thus by Claim 1 we have Wj = Wj′ – a contradiction to our
assumption. 4

We are now ready to prove that at most one facial walk has open vertices. Recall that by Claim 3
every facial walk is of one of two kinds: only open vertices or only closed vertices. Moreover, by
fan-planarity and Claim 2 no edge runs between two facial walks of the same kind. We consider a
bipartite graph F whose black and white vertices correspond to facial walks of the first and second
kind, respectively, and whose edges correspond to pairs Wi,Wj of facial walks for which there is
at least one WiWj-edge in G. Since G is connected, F is connected, and by Claim 4 every white
vertex is adjacent to exactly one black vertex. This means that F is a star and has exactly one
black vertex, which concludes the proof.
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Having Lemma 4 we can now bound the number of WiWj-edges. Recall that W1, . . . ,Wk denote
the facial walks for the fixed face f of G, and that for i = 1, . . . , k we denote by ci the cell of G(Wi)
containing all Wj with j 6= i.

Lemma 5. The number of edges between W1, . . . ,Wk is at most

4(k − 2) +
k∑

i=1

||ci||.

Proof. By Lemma 4 exactly one of c1, . . . , ck has vertices on its boundary, say W1. Let U be the
set of vertices on the boundary of c1. For a vertex u ∈ U and an index i ∈ {2, . . . , k} we call an
edge between u and Wi a uWi-edge. We define a bipartite graph J as follows. One bipartition class
is formed by the vertices in U . In the second bipartition class there is one vertex wi for each facial
walk Wi, i = 1, . . . , k. A vertex u ∈ U is connected by an edge to wi if and only if i = 1 or i ≥ 2
and there is a uWi-edge.

Claim 5. The graph J is planar.

Proof of Claim. We consider the following embedding of J . Afterwards we shall argue that this
embedding is indeed a plane embedding. So take the position of every vertex u ∈ U from the
fan-planar embedding of G. For i ≥ 2, we consider the drawing of Wi in the embedding of G, for
each edge between a vertex u ∈ U and the vertex wi in J we take the drawing of one uWi-edge in
G, and then contract the drawing of Wi into a single point – the position for vertex wi. Finally, we
place the last vertex w1 outside the cell c1 and connect w1 to each u ∈ U in such a way that these
edges do not cross any other edge in J . See Figure 9(a) for an illustrating example.

→W2

W3

W4

u1

u2

u3

u4

u5

u1

u2

u3

u4

u5

w1

w2

w3

w4

(a)

u1
u2

Wi

v

W1

(b)

Figure 9: (a) Obtaining the graph J . (b) The contradiction in Claim 6.

Now the resulting drawing of J contains crossing edges only if a uWi-edge crosses a u′Wi′-edge
in G. However, by Lemma 4 the cells c2, . . . , ck have no vertices on their boundary. Consequently,
for each i = 2, . . . , k every uWi-edge crosses an edge of G(Wi). Now if a uWi-edge e would cross a
u′Wi′-edge with u 6= u′ and i 6= i′, then e would be crossed by two independent edges, contradicting
the fan-planarity of G. 4
Since J is a planar bipartite graph with bipartition classes of size |U | and k we have

|E(J)| =
k∑

i=1

degJ(wi) ≤ 2(|U |+ k)− 4.
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Claim 6. For each i = 2, . . . , k the number of uWi-edges is at most

||ci||+ 2 degJ(wi).

Proof of Claim. Consider the vertices on Wi and the set U ′ ⊆ U of vertices on W1 that have a
neighbor on Wi. For each u ∈ U ′ the uWi-edges form a consecutive set in the cyclic ordering of
edges around u. Since not every edge at u is a uWi-edge (at least one edge endpoints in W1) we
obtain a linear order on the uWi-edges going counterclockwise around u.

Now we claim that when we remove for each u ∈ U ′ the last two uWi-edges in the linear order
for u, then every vertex v in Wi is the endpoint of at most one uWi-edge. Indeed, if after the
edges have been removed two vertices u1, u2 ∈ U ′ have a common neighbor v on Wi, then at least
two u1Wi-edges cross the edge u2v (or the other way around). However, not both these edges
can endpoint at the same vertex on Wi, and thus u2v is crossed by two independent edges, one
u1Wi-edge and one edge in G(Wi) – a contradiction to the fan-planarity of G. So the number of
uWi-edges is at most 2|U ′|+ |Wi| = ||ci||+ 2 degJ(wi). 4
We can now bound the total number of uWi-edges with i ≥ 2 as follows.

k∑

i=2

#uWi-edges ≤
k∑

i=2

(||ci||+ 2 degJ(wi))

=

k∑

i=2

||ci||+ 2|E(J)| − 2 degJ(w1)

≤
k∑

i=2

||ci||+ 4(|U |+ k)− 8− 2|U |

=
k∑

i=2

||ci||+ 2|U |+ 4(k − 2) ≤
k∑

i=2

||ci||+ ||c1||+ 4(k − 2)

We continue by bounding the total number of crossed edges of G that are drawn inside a fixed
face f of G. To this end let kf be the number of distinct facial walks of f and |f | be the sum of
lengths of facial walks of f , i.e., |f | = ∑W facial walk of f |W |.

Lemma 6. The number of edges inside f is at most

2|f |+ 5(kf − 2)−
∑

c∈C∅(f)

max{0, ||c|| − 5}.

Proof. We do induction on kf .
First let kf = 1, i.e., the face f is bounded by a unique facial walk W . Then by Lemma 3 there

are at most 2|W |−5−∑c∈C(W ) max{0, ||c||−5} edges inside f . With |W | = |f | and C∅(f) = C(W )
this gives the claimed bound.

Now assume that kf ≥ 2, i.e., the face f has k = kf distinct facial walks W1, . . . ,Wk. Let c1
be an inclusion-minimal cell in (C(W1) ∪ · · · ∪ C(Wk)) \ C∅(f). Without loss of generality let W1

be the facial walk with c1 ∈ C(W1) and W2, . . . ,Wj be the facial walks of f that lie inside c1. In
particular we have 2 ≤ j ≤ k. Let G′ be the graph that is obtained from G after removing all

14



vertices that lie inside c1. We consider G′ with its fan-planar embedding inherited from G. Clearly,
the face f ′ in G′ corresponding to f in G has exactly k − (j − 1) < k facial walks and we have

|f | = |f ′|+ |W2|+ · · ·+ |Wj |.

For i = 2, . . . , j we denote by ci the cell of G(Wi) containing W1. Moreover, let C = C(W2)∪ · · · ∪
C(Wj). Then

C∅(f) = (C∅(f
′) ∪ C) \ {c1, c2, . . . , cj}.

Further we partition the edges inside f into three disjoint sets E1, E2, E3 as follows:

• The edges in E1 are precisely the edges of G′ inside f ′.
• The edges in E2 are precisely the edges of G between W1 and W2 ∪ · · · ∪Wj .

• E3 = (E(G(W2)) \ E(W2)) ∪ · · · ∪ (E(G(Wj)) \ E(Wj)).

Now by induction hypothesis we have

|E1| ≤ 2|f ′|+ 5(k − j − 1)−
∑

c∈C∅(f ′)

max{0, ||c|| − 5}.

By Lemma 5 we have

|E2| ≤
j∑

i=1

||ci||+ 4(j − 2) ≤
j∑

i=1

max{0, ||ci|| − 5}+ 9j − 8.

By Lemma 3 we have

|E3| ≤ 2(|W2|+ · · ·+ |Wj |)− 5(j − 1)−
∑

c∈C
max{0, ||c|| − 5}.

Plugging everything together we conclude that the number of edges of G inside f is at most

|E1∪̇E2∪̇E3| ≤ 2|f ′|+ 5(k − j − 1)−
∑

c∈C∅(f ′)

max{0, ||c|| − 5}

+

j∑

i=1

max{0, ||ci|| − 5}+ 9j − 8

+2(|W2|+ · · ·+ |Wj |)− 5(j − 1)−
∑

c∈C
max{0, ||c|| − 5}

= 2|f |+ 5(k − 2)− (j − 2)−
∑

c∈C∅(f)

max{0, ||c|| − 5}

≤ 2|f |+ 5(kf − 2)−
∑

c∈C∅(f)

max{0, ||c|| − 5},

which concludes the proof.

Note that Lemma 6 implies that inside a face f of H there are at most 2|f |+ 5(kf − 2) edges.
Having this, we are now ready to prove our main theorem. For convenience we restate it here.

Theorem 1. Every simple topological graph G on n ≥ 3 vertices with neither configuration I nor
configuration II has at most 5n− 10 edges. This bound is tight for n ≥ 20.
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Proof. Consider a fan-planar graph G = (V,E) on n vertices with properties (i) and (ii). Let H be
the spanning subgraph of G on all uncrossed edges. In particular

V (H) = V (G).

Let us denote by F (H) the set of all faces of H. Since every edge e ∈ E(H) appears either
exactly once in two distinct facial walks or exactly twice in the same facial walk, we have

∑

f∈F (H)

|f | = 2|E(H)|.

Further we denote by kf the number of facial walks for a given face f , and by CC(H) the
number of connected components of H. Since a face with k facial walks gives rise to k connected
components of H, we have ∑

f∈F (H)

(kf − 1) = CC(H)− 1.

Hence we conclude

|E(G)|
Lemma 6
≤ |E(H)|+

∑

f∈F (H)

(2|f |+ 5(kf − 2))

= |E(H)|+ 2
∑

f∈F (H)

|f |+ 5
∑

f∈F (H)

(kf − 1)− 5|F (H)|

= 5|E(H)|+ 5CC(H)− 5|F (H)| − 5 = 5|V (H)| − 10,

where the last equation is Euler’s formula for the plane embedded graph H. With |V (H)| =
|V (G)| = n this concludes the proof.

4 Discussion

We have shown that every simple n-vertex graph without configurations I and II has at most 5n−10
edges. Of course, if we allow G to have parallel edges or loops, there could be arbirarily many edges,
even if the drawing of G is planar. However, if we allow only non-homeomorphic parallel edges and
only non-trivial loops, then G has a bounded number of edges. Here, two parallel edges are non-
homeomorphic and a loop is non-trivial if the bounded component of the plane after the removal of
both parallel edges, respectively the loop, contains at least one vertex of G. Note for instance that
Euler’s formula still holds for plane graphs with non-homeomorphic parallel edges and non-trivial
loops, and that in this case every face still has length at least 3. Therefore any such plane graph
with n vertices still has at most 3n− 6 edges. We strongly conjecture that our 5n− 10 bound also
holds if non-homeomorphic parallel edges and non-trivial loops are allowed.

Another relaxation would be to allow non-simple topological graphs, i.e., to allow edges to cross
more than once and incident edges to cross. It would be interesting to see whether there is an n-
vertex non-simple fan-planar graph with strictly more than 5n− 10 edges. However, let us remark
that if we allow both, non-simple drawings and non-homeomorphic parallel edges, then there are 3-
vertex topological graph with arbitrarily many edges. Let us simply refer to Figure 10(a) for such an
example. The idea is to start with an edge e1 from u to v, and edge ei starts clockwise next to ei−1
at u goes in parallel with ei−1 until ei−1 endpoints at v, where ei goes a little further surrounding
vertex w once and then ending at v. This way no two such parallel edges are homeomorphic.
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(a) (b) (c)

Figure 10: (a) A topological non-simple fan-planar graph with arbitrarily many edges. (b) The
modified dodecahedral graph without the extensions and (c) fully extended to obtain 5n − 11
straight-line edges.

Also, one can relax fan-planarity to k-fan-planarity for some k ≥ 1, where every edge may only
be crossed by k fan-crossings. We remark that a simple probabilistic argument shows that for fixed
k every n-vertex k-fan-planar graph has only linearly many edges, see Lemma 2.9 in [2]. However,
exact bounds are not known.

It can also be interesting to consider strengthenings of fan-planar graphs, e.g., to consider
straight-line fan-planar embeddings. Note that the dodecahedral graph with pentagrams which
was a tight example of the 5n − 10 bound, can be extended as follows to obtain a straight-line
fan-planar graph with 5n− 11 edges: Replace one vertex of the dodecahedron by a single triangle,
which is used as the outer face. Draw the planar graph with convex faces such that all (additional)
edges can be drawn straightline without producing unnecessary crossings, cf. Figure 10(b). The 3
adjacent pentagons now converted to hexagons are extended by 2-hops and spokes as explained in
Proposition 1, i.e., by one additional vertex and 12 edges each. We do not suspect that an n-vertex
straight-line fan-planar graph can have 5n− 10 edges.

(a) (b)

Figure 11: (a) An edge-maximal fan-planar graph with non-homeomorphic parallel edges on 3n
edges. (b) An edge-maximal simple fan-planar graph on 8

3n edges.

Finally, one is usually also interested in edge-maximal topological graphs with as few edges as
possible. In our case we can construct edge-maximal fan-planar graphs on no more than 3n edges
if parallel edges are allowed (Figure 11(a)) and no more than 8

3n edges if parallel edges are not
allowed (Figure 11(b)). We suspect these examples to be best-possible.

Let us summarize some possible research directions.

Problems. Each of the following is open.
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P1: What is the maximum number of edges in a simple topological graph G with forbidded config-
uration I, but where configuration II is allowed?

P2: Is there an n-vertex simple fan-planar graph with non-homeomorphic parallel edges and/or
non-trivial loops with strictly more than 5n− 10 edges?

P3: Does the 5n− 10 upper bound also hold for non-simple fan-planar graphs?

P4: For k ≥ 2 what is the largest number of edges in an n-vertex k-fan-planar graph?

P5: Prove that the 5n − 11 bound is tight for straight-line fan-planar embeddings similar to the
4n− 9 bound for straight-line embedded 1-planar graphs [12].

P6: How many edges has an n-vertex edge-maximal graph without configurations I and II at least?
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Abstract

A graph is Bk-VPG when it has an intersection representation by paths
in a rectangular grid with at most k bends (turns). It is known that all
planar graphs are B3-VPG and this was conjectured to be tight. We
disprove this conjecture by showing that all planar graphs are B2-VPG.
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1 Introduction

Planar graphs have a long history of being described as geometric intersection
(and contact) graphs; i.e., for a planar graph G, each vertex can be mapped to
a geometric object Ov such that (u, v) is an edge of G if and only if Ov and Ou

intersect.1 Two well-known results of this variety are that: every planar graph
is an intersection graph of curves in the plane [12] (1978), and every planar
graph is a contact graph of discs in the plane [21] (1936).

In this paper we consider representations of planar graphs as the intersection
and contact graphs of restricted families of curves in the plane. The most general
class of intersection graphs of curves in the plane is the class of string graphs.
Formally, a graph G = (V,E) is STRING if and only if each v ∈ V can be
associated with a curve cv in the plane such that for every pair u, v ∈ V ,
(u, v) ∈ E if and only if cu and cv intersect. STRING was first considered
regarding thin film RC-circuits [27].

Perhaps the most significant result describing planar graphs as intersection
graphs of curves is the recent proof of Scheinerman’s conjecture that all planar
graphs are segment graphs (SEG); i.e., the intersection graphs of line segments
in the plane. Scheinerman conjectured this in his Ph.D. thesis (1984) [26], and
it was proven in 2009 by Chalopin and Gonçalves [5]. Leading up to this result
were several partial results. Bipartite planar graphs were the first subclass
shown to be intersection graphs of line segments having two distinct slopes (2-
DIR) [10, 4]. This was followed by triangle-free planar graphs being shown to
be intersection graphs of line segments having three distinct slopes (3-DIR) [8].
It has also been proven that segment graphs include every planar graph that
can be 4-colored so that no separating cycle uses all four colors [9]. Planar
graphs were also shown to be representable by curves in the plane where each
pair of curves intersect in at most one point (i.e., only “simple” intersections are
allowed) [6] – the proof of Scheinerman’s conjecture was a strengthening of this
result. The early work on this topic led West to conjecture that every planar
graph is an intersection graph of line segments in four directions (4-DIR) [31].

Segment graphs have been generalized to k-segment graphs (k-SEG) where
each vertex is represented by a piecewise linear curve consisting of at most
k segments [23]. Interestingly, a very recent result is that all planar graphs
are contact 2-SEG [1]. In this context one may now consider k-SEG where
the segments of the piecewise linear curves have a bounded number of slopes.
Recently, Asinowski et al. [3] introduced the class of vertex intersection graphs
of paths in a rectangular grid (VPG); equivalently, VPG is the set of intersection
graphs of axis-aligned rectilinear curves in the plane (or

⋃
k≥1 k-SEG where each

segment is either vertical or horizontal). They prove that VPG and STRING are
the same graph class (this was known previously as a folklore result). Also, they
focus on the subclasses which are obtained when each path in the representation
has at most k bends (turns) and they refer to such a subclass as Bk-VPG (i.e.,
this is (k + 1)-SEG with two slopes). Several relationships between existing

1In the case of contact representations, objects may only “touch” each other, but not “cross
over” each other.
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graph classes and the Bk-VPG classes were observed. For example, every planar
graph is B3-VPG (this was also conjectured to be tight) and every circle graph
is B1-VPG. In other words, planar graphs are 4-SEG where the segments only
have two distinct slopes. This result follows from the fact that every planar
graph has a representation by a T-contact system [11] and each T-shape can be
simulated by a rectilinear curve with three bends.

In this paper we present the following results. Our main contribution is
that every planar graph is B2-VPG (disproving the conjecture of Asinowski
et al. [3]). This result consists of the following interesting components. We
first demonstrate that every 4-connected planar graph is the intersection graph
of Z-shapes (i.e., a special case of B2-VPG). This result is extended to show
that every planar graph is B2-VPG (this extension involves the additional use
of C-shapes – i.e., it uses the full capability of B2-VPG) and that a B2-VPG
representation of a planar graph can be constructed in O(n3/2) time. The
secondary contribution of this paper is that every triangle-free planar graph
is a contact graph of: L-shapes, Γ-shapes, vertical segments, and horizontal
segments (i.e., it is a specialized contact B1-VPG graph). We show how to
construct such a contact representation in linear time. Moreover, if the input is
bipartite then each path is a horizontal or vertical segment. In particular, we
obtain a new proof that planar bipartite graphs are 2-DIR. Interestingly, the
class of contact segment graphs has recently been shown to be the same as the
class of contact B1-VPG graphs [20].

2 Preliminaries

A grid path (a path in the plane square grid) consists of horizontal and vertical
segments that appear alternatingly along the path. Every horizontal segment
has a left endpoint and a right endpoint, and every vertical segment an upper
endpoint and a lower endpoint in the obvious meaning. A path is a k-bend
path if it has k bends, i.e., k points that are the endpoints of a horizontal and
a vertical segment. Equivalently, k-bend paths are those with precisely k + 1
segments.

A Bk-VPG representation of a graph G is a set of grid paths (one for each
vertex) with at most k bends such that two paths intersect if and only if the
corresponding vertices are adjacent in G. For every vertex v we denote the
corresponding grid path in a given Bk-VPG representation by v. Consequently
a Bk-VPG representation of a graph G is denoted by G. A graph is called
Bk-VPG if it has a Bk-VPG representation.

3 Planar Graphs are B2-VPG

In this section we show that every planar graph G has a B2-VPG representation.
We fix any plane embedding of G and assume without loss of generality that G
is a maximally planar graph, i.e., all faces are triangular. To achieve this we
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may put a dummy vertex into each face of G and triangulate it. In a B2-VPG
representation of this graph the paths corresponding to dummy vertices may be
removed to obtain a B2-VPG representation of G.

Our construction of the B2-VPG representation of the maximally planar
graph G relies on two well-known concepts. Using the separation tree TG of G,
we show in Section 3.1 how to divide G into its 4-connected maximally planar
subgraphs. Each such subgraph, if we remove one outer edge, has a rectangular
dual, i.e., a contact representation with axis-aligned rectangles. In Section 3.2
we show how to construct a B2-VPG representation from a rectangular dual. In
particular we will convert each rectangle to a Z-shaped path by choosing “part”
of the top of it, the complementary “part” of the bottom of it and connecting
them via a vertical segment. In Section 3.3 we put the obtained representations
of all 4-connected maximally planar subgraphs of G together to obtain a B2-
VPG representation of our graph. The same method has been used to prove
that every planar graph is a B4-EPG graph, where EPG stands for emphedge-
intersecting paths in the grid [18].

3.1 Separation Tree

A triangle ∆ in a graph is a triple of pairwise adjacent vertices. We say that
a triangle is separating when its removal disconnects the graph. Also, in a
maximally planar graph G a triangle ∆ is said to be non-empty when at least
one vertex of G lies inside the bounded region inscribed by ∆. Notice that every
separating triangle is non-empty. In fact, each non-empty triangle is either the
outer triangle or separating.

We say that a triangle ∆1 is contained in a triangle ∆2, denoted by ∆1 @ ∆2,
if the bounded region enclosed by ∆1 is strictly contained in the one enclosed by
∆2. For example, the outer triangle contains every triangle in the graph (except
itself), and no triangle in G is contained in an inner facial triangle.

Definition 1 ([28]) The separation tree of G is the rooted tree TG whose ver-
tices are the non-empty triangles in G, with ∆ being a descendant of ∆′ if and
only if ∆ is contained in ∆′.

The separation tree has been introduced by Sun and Sarrafzadeh [28]. The
root of TG is the outer triangle. For every non-empty triangle ∆ we define H∆

to be the unique 4-connected maximally planar subgraph of G that contains ∆
and at least one vertex of G that lies inside ∆. Equivalently, H∆ is the union of
∆ and all triangles contained in ∆ but not contained in any triangle that itself
is contained in ∆; i.e., H∆ = ∆ ∪

(⋃
∆′@∆ and @∆′′:∆′@∆′′@∆ ∆′

)
.

Theorem 1 ([28]) The separation tree of G and all subgraphs H∆ can be com-
puted in O(n3/2).

3.2 Rectangular Duals

Throughout this section let H be a triangulation of the 4-gon, i.e., H is a plane
graph with quadrangular outer face and solely triangular inner faces. Such
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graphs are also known as irreducible triangulations of the 4-gon. We denote the
outer vertices by T,R,B,L in this clockwise order around the outer face.

Definition 2 A rectangular dual of H is a set of |V (H)| non-overlapping axis-
aligned rectangles in the plane (one for each vertex) such that every edge of
H corresponds to a non-trivial overlap of the boundaries of the corresponding
rectangles.

The rectangle corresponding to a vertex v is denoted by R(v). In every
rectangular dual the rectangles R(T ), R(B), R(L) and R(R) that correspond to
the outer vertices of H inscribe a rectangular hole that contains all the remaining
rectangles. We assume without loss of generality that R(T ), R(B), R(L) and
R(R) are laid out as in Fig. 1 a), i.e., the bottom side of R(T ) forms the top
side of the hole, the left side of R(R) forms the right side of the hole, and so on.

T

R

L

B

(a)

T

R

L

B

(b)

Figure 1: (a) A rectangular dual; and (b) its transversal structure.

Rectangular duals have been considered several times independently in the
literature [30, 24, 22, 29, 25]. In particular, the following theorem is well-known.

Theorem 2 A triangulation of a 4-gon admits a rectangular dual if and only
if it is 4-connected, i.e., contains no non-empty triangle.

We define here transversal structures as introduced by Fusy [14], which were
independently considered by He [17] under the name regular edge labelings. For
a nice overview about regular edge labelings and their relations to geometric
structures we refer to the introductory article by D. Eppstein [13].

Definition 3 (Fusy [14]) A transversal structure of a triangulation H with
outer vertices T, L,B,R is a coloring and orientation of the inner edges of H
with colors red and blue such that:

(i) All edges at T are incoming and blue, all edges at B are outgoing and blue,
all edges at R are incoming and red, all edges at L are outgoing and red.

(ii) Around each inner vertex v the edges appear in the following clockwise
cyclic order: One or more incoming red edges, one or more outgoing blue
edges, one or more outgoing red edges, one or more incoming blue edges.



480 Chaplick and Ueckerdt Planar Graphs as VPG-Graphs

We denote a transversal structure by (Er, Eb), where Er and Eb is the set of
red and blue edges, respectively.

We obtain a transversal structure from any rectangular dual of H as follows.
If the right side of a rectangle R(u) has a non-trivial overlap with the left side
of some rectangle R(v), then we color the edge {u, v} in H red and orient it
from u to v. Similarly, if the topside of R(u) overlaps with the bottom side of
R(v) then {u, v} is colored blue and oriented from u to v. Fig. 1(b) depicts
the transversal structure obtained from the rectangular dual in Fig. 1(a). It is
known that every transversal structure of H arises from a rectangular dual of
H in this way.

Theorem 3 (Kant & He [19]) Every transversal structure maps to a rectan-
gular dual.

If we identify combinatorially equivalent rectangular duals, i.e., those in
which any two rectangles touch with the same sides in both duals, then The-
orem 3 actually states that rectangular duals and transversal structures are in
bijection. Transversal structures (and hence combinatorially equivalent rectan-
gular duals) can be endowed with a distributive lattice structure [15]. For our
purposes, we describe the minimal transversal structure of H; i.e., the minimum
element in the distributive lattice of all transversal structures of H.

Lemma 1 (Fusy [15]) Consider four vertices v, w, x, y in the minimal trans-
versal structure (Er, Eb), such that v → w ∈ Eb, x → y ∈ Eb, v → x ∈ Er,
w → y ∈ Er. Then we have neither x→ w ∈ Eb nor v → y ∈ Er.

Moreover, the minimal transversal structure can be computed in linear time.

v

w

x

y

v

w

x

y

Figure 2: Two configurations that do not appear in the minimal transversal
structure.

Fig. 2 shows the two configurations described in Lemma 1 that do not appear
in the minimal transversal structure. The rectangular dual that corresponds to
the minimal transversal structure is also called the minimal rectangular dual.
Fig. 3(a) depicts the graph from Fig. 1 together with its minimal rectangular
dual and the corresponding transversal structure. We remark that if, besides
these two, a third certain configuration is forbidden in the transversal structure,
then this already characterizes the minimal transversal structure [15].
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Let us call a rectangular dual non-degenerate if the top sides of two rectangles
lie on the same horizontal line only if there is a rectangle whose bottom side
overlaps with both of them. It is not difficult to see that there always exists a
non-degenerate minimal rectangular dual.

Given a rectangular dual and any inner vertex v we consider the rightmost
rectangle overlapping the top side of R(v). We denote the corresponding vertex
of H by v•. In other words, (v, v•) is the outgoing blue edge at v whose clockwise
next edge is red (and outgoing). Similarly, R(v•) is the bottommost rectangle
overlapping the right side of R(v), i.e., (v, v•) is the outgoing red edge at v
whose clockwise next edge is blue (and incoming). Moreover, R(•v) (R(•v))
is the leftmost (topmost) rectangle overlapping the bottom side (left side) of
R(v), which means that (•v, v) ((•v, v)) is the incoming blue (red) edge at v
whose clockwise next edge is red (blue). Note that if the transversal structure
is minimal then every inner edge of H can be written as (v, v•), (v, v•), (•v, v)
or (•v, v) for some inner vertex v.

From H and its fixed transversal structure (Er, Eb) we define a new graph
H∗, called the split graph, and its transversal structure (E∗r , E

∗
b ) as follows.

• The outer vertices of H and H∗ are the same.

• For every inner vertex v of H there are two vertices v1 and v2 in H∗.

– There is a red edge v1 → v2 in E∗r .

– There is a red edge v2 → w1 in E∗r for every edge v → w ∈ Er.

– There are blue edges v1 → w1 and v1 → w2 in E∗b for every edge
v → w ∈ Eb.

– There is a blue edge v2 → (v•)2 in E∗b .

See Fig. 3(b) for an example of a split graph and its rectangular dual. It
is straight-forward to check that (E∗r , E

∗
b ) is indeed a transversal structure,

namely that for every v ∈ V (H) incoming and outgoing red and blue edges
appear around v1 and v2 in accordance with Definition 3. We refer to Fig. 3(b)
for an illustration of this fact. Note that defining R(v) := R(v1) ∪ R(v2) for
every vertex v we obtain the transversal structure we started with.

3.3 VPG-representation

We want to construct a B2-VPG representation for every maximally planar
graph G. To this end we split G into its 4-connected maximally planar sub-
graphs. The outer face ∆ of such a subgraph H∆ is either the outer face of G
or an inner face of H∆′ , where ∆′ is the father of ∆ in the separation tree. We
start by representing the outer face of G as depicted in Fig. 4. The highlighted
area in the figure is called the frame for H∆. Formally, the frame for H∆ is
a rectangular area such that either: the paths corresponding to two vertices of
∆ pass through it vertically and the path for the third vertex passes through
it horizontally, or the paths corresponding to two vertices of ∆ pass through it
horizontally and third passes through it vertically. When defining the B2-VPG
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(a)

T

R

L

B

(b)

;v v1

v2

v•

•v

•v

v•

(v•)2

(c)

Figure 3: (a) The minimal rectangular dual of the graph in Fig. 1 with its
transversal structure overlaid on it. (b) A rectangular dual of the split graph
of (a). (c) Splitting a vertex v into v1 and v2 and the corresponding transversal
structure.

representation of any H∆ we assume that we have already constructed the paths
for the vertices in ∆ and that there is a frame for H∆.

We now describe how to obtain a B2-VPG representation of a 4-connected
maximally planar graph H∆ given a frame F for it. Our construction is based
on a non-degenerate minimal rectangular dual and its split graph. Let u and
w be the two vertices of ∆ whose paths do not intersect inside F and denote
the third vertex in ∆ by v. Then we consider the graph H obtained from
H∆ by removing the edge {u,w}. Notice that H is a 4-connected triangula-
tion of a 4-gon and we assume without loss of generality that u = L, v = T ,
and w = R. Consider the minimal transversal structure, a corresponding non-
degenerate minimal rectangular dual of H, and its split graph H∗ together with
the transversal structure (E∗r , E

∗
b ). By rotating and stretching it appropriately

we place the non-degenerate rectangular dual of H∗ inside the frame F , such
that the right side of L, the bottom side of T and the left side of R is contained
in u, v and w, respectively.

We define the 2-bend path B for the vertex B to be a C-shape path that is
contained in F and whose horizontal segments intersect u and v, the upper one
being contained in the top side of R(B). See Fig. 4 for an illustration.

We define a 2-bend path v for every inner vertex v of H as follows. First,
let v be the union of the top side and right side of R(v1) and the bottom side
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Figure 4: Left: The VPG representation of the outer face of G and its frame.
Right: Placing a rectangular dual inside a frame and constructing the path B.

of R(v2). Now consider the vertex •v. We extend the left horizontal end of v
to the right side of R((•v)1). In case •v = L we do not extend the left end of v.
Similarly we extend the right horizontal end of v horizontally to the right side
of R((v•)1), unless v• = R. See Fig. 5(a) for an illustration.

R(v1)
v
R(v2)

(a)

T

R

L

B

(b)

Figure 5: (a) The path v based on the rectangles R(v1) and R(v2) in the rectan-
gular dual of the split graph. Note: the wide edges indicate the border between
split rectangles. (b) The Z-shapes arising from the split graph in Fig. 3(b).

Lemma 2 The above construction gives a B2-representation of H.

Proof: Clearly every path defined above has at most two bends. So it remains
to prove that the paths u and v intersect if and only if {u, v} is an edge in G.
Evidently, all outer edges {T, L}, {L,B}, {B,R}, and {T,R} are realized, i.e.,
the corresponding paths intersect. Moreover, T ∩B = ∅ = L ∩R which means
that no unwanted edge is created.

Now consider a blue edge u→ v ∈ Eb. By definition of the split graph and
its transversal structure (E∗r , E

∗
b ) we have an edge u1 → v2 in E∗b , i.e., the top

side of R(u1) and the bottom side of R(v2) overlap. In particular u ∩ v 6= ∅,
since u and v contains the top side of R(u1) and the bottom side of R(v2),
respectively.

Next consider a red edge of G. Since the underlying rectangular dual is
minimal, it does not contain the configuration in the right of Fig. 2. Thus,
every red edge can be written as (v, v•) or (•v, v) for some inner vertex v. By
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definition the right end of v lies on the right side of R((v•)1) (or R in case
v• = R) and the left end of v lies on the right side of R((•v)1) (or L in case
•v = L). Hence both edges are properly represented by intersecting paths.

Finally we need to argue that no two paths that correspond to non-adjacent
vertices of G intersect. Therefore consider the parts of v that lie outside R(v).
The left extension of v passes through R((•v)2). This could be along the top
side of R((•v)2), which is by definition of the split-graph strictly contained
in the bottom side of some R(w2). Similarly, the right extension of v passes
through R((v•)1) and this could be along the bottom side of this rectangle,
which is strictly contained in some R(w1). In other words all left extensions are
contained in

⋃
v∈V R(v2) and all right extension are contained in

⋃
v∈V R(v1).

Thus a left extension may intersect a right extension only if these pass through
R(v2) and R(v1) corresponding to the same vertex v, respectively. Since the
underlying rectangular dual is non-degenerate the two extensions lie on distinct
y-coordinates and hence are disjoint. �

Slightly changing the paths corresponding to outer vertices we can easily
transform them into Z-shapes and make L and R intersect. Thus we obtain the
following corollary.

Corollary 1 Every 4-connected planar graph has a B2-representation where
every path has a Z-shape and no two paths cross. �

We have shown so far how to define a B2-VPG representation of H∆ given
a frame for H∆. It remains to identify a frame for each ∆′ @ ∆ that is a son of
∆ in the separation tree. We modify the representation for this purpose.

Consider a horizontal line ` that supports horizontal sides of some rectangles
different from R(T ). We partition the paths that have a horizontal segment on
` into two sets: A contains all paths whose vertical segment lies above ` and
B all paths whose vertical segment lies below `. Next we extend the vertical
segments of all paths in B by some small amount, keeping all lower horizontal
segments unchanged. The extension is chosen small enough so that no unwanted
intersections are created. See Fig. 6 for an illustration. Since the underlying
rectangular dual is minimal, it does not contain the configuration in the left
of Fig. 2. It follows that all vertical segments of paths in A lie to the left of
the vertical segments of paths in B. Thus, if v ∈ A and w ∈ B were touching
before, then they are crossing after this operation.

−→

Figure 6: Extending the vertical segments of all paths in B.

Next we identify a frame for every inner face ∆′ of H. In case ∆′ is a
non-empty triangle of G this will be the frame for H∆′ .
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Lemma 3 One can find in H∆ a frame for every inner face of H∆, such that
each frame is contained in F and all frames are pairwise disjoint.

Proof: First consider the triangle {L,B,R}, which is an inner face of H∆ but
not after the removal of the edge {L,R}. We define the frame for {L,B,R} as
illustrated in Fig. 4 to partly contain the lower horizontal segment of B and the
vertical segments of L and R.

Now consider any inner face f of H∆ different from {L,B,R} and let u, v, w
be the vertices of f appearing in this clockwise order. Then f is an inner face of
H corresponding to the three mutually touching rectangles R(u), R(v) and R(w)
in the rectangular dual. Thus there is a point pf where those three rectangles
meet; two rectangles having a corner at pf . Without loss of generality let R(v)
be the rectangle that does not have corner at pf . We distinguish the four cases
according to which side of R(v) contains pf . See Fig. 7 for an illustration.

pf pf
pf

pfp p p p

a) b) c) d)

R(v)

R(u)

R(w)

pfp

R(v)

R(v)

R(v)R(w)

R(u)

R(u)

R(w)R(u) R(w)

Figure 7: Identifying the frame for an inner face of H∆.

If the top side of R(v) contains pf , then consider the point p where R(u1),
R(u2) and R(v1) meet. By definition p is the lower bend of u and the right hor-
izontal end of w. Moreover, the upper horizontal segment of v lies immediately
above p, crossing u. Now, the frame for f is defined around p as illustrated in
Fig. 7 a).

If the bottom side of R(v) contains pf , then consider the point p where
R(u1), R(u2) and R(v2) meet. Now right above p lies the upper bend of u and
the left horizontal end of w, while v goes horizontally through p. The frame for
f is then defined as illustrated in Fig. 7 b).

If the right side of R(v) contains pf , let p be the common point of R(u1),
R(w1) and R(w2), i.e., p is the lower bend of u. The upper horizontal segment
of w lies right above p and ends on the vertical segment of v. The frame for f
is then defined as illustrated in Fig. 7 c).

Finally, if the left side of R(v) contains pf , let p be the common point of
R(u2), R(w1) and R(w2), i.e., right above p lies the upper bend of w. The lower
horizontal segment of u runs through p and ends on the vertical segment of v.
The frame for f is then defined as illustrated in Fig. 7 d).

Clearly, each frame is contained in the frame for H∆. Moreover, each frame
contains one bend or lies very close to one. Given the bend one can find the
corresponding pf to the left if it is a lower bend, and to the bottom-right if it
is an upper bend. It follows that frames and bends are in bijection and hence
that all frames are pairwise disjoint. �
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We end this section with its main theorem. It is not difficult to see that this
theorem follows from Theorem 1, and Lemmas 2 and 3.

Theorem 4 Every planar graph is B2-VPG. Moreover, a B2-VPG represen-
tation can be found in O(n3/2), where n denotes the number of vertices in the
graph.

Proof: Given a maximally planar graph G with a fixed embedding, we find the
separation tree of G in O(n3/2) and all 4-connected maximally planar subgraphs
H∆ of G (Theorem 1). We define a B2-VPG representation of the outer triangle
∆ of G as explained in Section 3.3 and identify the frame for H∆ (Fig. 4). Then
we traverse the separation tree starting with the root and consider for each
non-empty triangle ∆ the frame F for the corresponding graph H∆. If u and
w are the vertices of ∆ whose paths u and w do not intersect within F , we
consider the graph H = H∆ \{u,w}. We find the minimal transversal structure
of H in O(|V (H)|) (Lemma 1) and build the split graph H∗ as described in
Section 3.2. We then construct a B2-VPG representation of H within the frame
F as described in Section 3.3 and identify frames for each non-empty triangle
∆′ that is an inner face of H∆. The construction of the split graph and the
B2-VPG representation can be easily done in O(|V (H)|). Hence the overall
running time is dominated by the time needed to find the separation tree, i.e.,
a B2-VPG representation can be constructed in O(|V (G)|3/2). �

4 Triangle-Free Planar Graphs are B1-VPG

In this section we prove that every triangle-free planar graph is B1-VPG with
a very particular B1-VPG representation. Namely, every vertex is represented
by either a 0-bend path or a 1-bend path whose vertical segment is attached
to the left end of its horizontal segment. This means that we use only two out
of the four possible shapes of a grid path with exactly one bend. Moreover,
whenever two paths intersect, it is at an endpoint of exactly one of these paths;
i.e., no two paths cross. We call a 1-bend path an L if the left endpoint of
the horizontal segment is the lower endpoint of its vertical segment, and a Γ if
the left endpoint of the horizontal segment is the upper endpoint of its vertical
segment. A VPG representation in which each path that has a bend is an L or
a Γ, and in which no two paths cross, is called a contact-L-Γ representation.

We say that two contact-L-Γ representations of the same graph G are equiv-
alent if the underlying combinatorics is the same. That means that paths cor-
responding to the same vertex have the same type (either L, Γ, horizontal or
vertical segment), the inherited embedding ofG is the same, and that the fashion
in which two paths touch is the same, e.g., the right endpoint of u is contained
in the vertical segment of v in both representations. However, it is convenient
in our proofs to deal with actual contact-L-Γ representations instead of equiv-
alence classes of contact-L-Γ representations. Therefore we need the following
lemma.
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Lemma 4 Let G be a plane graph and v be a vertex of G. Let u and w be two
paths in G that touch v at the same segment but from different sides. Then
there exists a contact-L-Γ representation of G that is equivalent to G in which
the touching points of u and w with v come in the reversed order along v.

Proof: We obtain the required representation from G with a simple operation,
called slicing. Assume without loss of generality that the segment sv of v that
is touched by u and w is vertical, i.e., the horizontal segments su of u and
sw of w touch sv. Assume further without loss of generality that su ∩ sv lies
above sw ∩ sv and that su lies to the left and sw to the right of sv, respectively.
Consider any 2-bend grid path P containing su and sw and extend its left and
right endpoints to the left and to the right to infinity, respectively. Then P
divides the plane into two unbounded regions. We denote the lower region by A
and consider su to be contained in A, and the upper region by B and consider
sw to be contained in B. Now we increase the y-coordinates of every point in
B by some amount large enough that sw ∩ sv lies above su ∩ sv. All vertical
segments that cross P , including sv and maybe the vertical segments of u and
w are extended so that the corresponding paths are connected again.

sv

su
sw

P

A

B

sv

su

sw
P

A

B

Figure 8: The slicing operation.

The slicing operation is illustrated in Fig. 8. Figuratively speaking, we cut
the plane along P and pull the two pieces apart until su and sw change the
order along sv, while paths that cross P are stretched instead of cut. �

The main result of this section is the following.

Theorem 5 Every triangle-free planar graph has a contact-L-Γ representation.

Note that if some graph G admits a contact-L-Γ representation then so does
every subgraph H of G. Indeed every edge (u, v) in E(G)\E(H) corresponds to
a contact point of u and v in the representation G. Moreover, this contact point
is an endpoint of one of the two paths. If we shorten this path a little bit, and
do this for every edge that is in G but not in H, then we obtain a contact-L-Γ
representation of H. Thus we assume for the remainder of the section without
loss of generality that G is a maximally triangle-free planar graph, i.e., G is
2-connected and every face of G is a quadrangle or a pentagon. Moreover, we
can assume by adding one vertex (if necessary) that the outer face of G is a
quadrangle.
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Consider a contact-L-Γ representation C of a cycle C on four vertices v1,
v2, v3, v4 and assume without loss of generality that any two paths in C touch
at most once. Then v1 ∪ v2 ∪ v3 ∪ v4 inscribes a simple rectilinear polygon P .
We call the parts of C that do not lie in the interior of P the outside of C. See
Fig. 9 for an example.

Figure 9: A contact-L-Γ representation of a 4-cycle. Its outside is highlighted.

We prove the following stronger version of Theorem 5.

Theorem 6 Let G be a maximally triangle-free planar graph with a fixed plane
embedding and a quadrangular outer face Cout. Let Cout be any contact-L-Γ
representation of Cout. Then there is a contact-L-Γ representation of G with the
same underlying embedding in which the outside of the induced representation
of Cout is equivalent to that in Cout.

Proof: We do induction on the number of vertices in G, distinguishing the
following three cases.

Case 1: G has a separating 4-cycle C. Let VC be the set of vertices interior
to C and G1 be the graph G−VC . Note that G1 is maximally triangle-free and
with outer face Cout. Hence by induction we find a contact-L-Γ representation
G1 of G1 such that Cout is represented with an equivalent outside as in Cout.
Since the representation G1 respects the embedding of G1, the interior of C
is empty. We again apply induction to G2 = G[C ∪ VC ] with respect to the
representation C induced by G1 and obtain a contact-L-Γ representation G2.
Since the outside of the representation of C in G2 is equivalent to that in G1

we can put together G1 and G2 and obtain a contact-L-Γ representation G of
G that satisfies our requirements.

Case 2: G has a facial 4-cycle C = {v1, v2, v3, v4}. Let v1 and v3 be two
opposite vertices on C that have distance (counted by the number of edges) at
least 4 in G − {v2, v4}. Since G is triangle-free and planar, such vertices exist
and we can moreover assume without loss of generality that v1 is not an outer
vertex. Let G̃ be the graph resulting from G by merging v1 and v3, and denoting
the new vertex by ṽ. Note that G̃ is a maximally triangle-free planar graph that
inherits a plane embedding from G. Moreover G̃ has outer cycle Cout where
possibly v3 is replaced by ṽ. By induction we find a contact-L-Γ representation
G̃ of G̃. Next we split the path ṽ in G̃ into two, one for v1 and one for v3, which
will result in a contact-L-Γ representation G of G. See Fig. 10 for an example.
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v2
v4

ṽ v1

v3

v2
v4

v2

v3

v4
v1

ṽ
v4v2

→ → →

G G̃ G̃ G

Figure 10: How to split a face in Case 2.

Consider the circular ordering of contacts when tracing around ṽ in G̃. The
paths v2 and v4 split the circular ordering into two consecutive blocks, that is,
subsets of contacts one corresponding to neighbors of v1 and one corresponding
to neighbors of v3 in G. (There are no common neighbors of v1 and v3 apart
from v2 and v4, because v1 and v3 are at distance at least 4 in G − {v2, v4}.)
Now define v3 to be the sub-path of ṽ defined by the block of neighbors of v3.
Moreover define v1 in the same way w.r.t. the neighbors of v1, except that v1

is translated by some small amount “towards its block”. Finally, every path
u corresponding to a neighbor u of v1 different from v2 and v4 is shortened
or extended so that it touches v1. The procedure for Case 2 is illustrated in
Fig. 10.

It is important to note that, even if an outer edge is involved in the above
construction, the outsides of Cout in G is equivalent to that in G̃.

Case 3: Neither Case 1 nor Case 2 applies and there is an edge (u, v) in G
with interior vertices u and v. We contract the edge (u, v) and denote by ṽ the
new vertex in the resulting graph G̃. Since neither Case 1 nor Case 2 applies,
u and v are at distance 4 in G − (u, v) and thus G̃ is maximally triangle-free.
Moreover G̃ has outer cycle Cout and inherits its plane embedding from G. By
induction we find a contact-L-Γ representation G̃, in which we want to split ṽ
into two paths v and u, such that the result is a contact-L-Γ representation G
of G.

As in the previous case we trace the contour of ṽ and see two disjoint blocks,
each consisting of those contacts that correspond to neighbors of u and v in
G, respectively. We denote the block corresponding to u and v by Bu and
Bv, respectively. Without loss of generality assume that Bu ∪ Bv is the entire
contour of ṽ. We distinguish the following four sub-cases. By symmetry we
assume that ṽ is not a Γ-shape and denote its vertical segment (if existent) by
s.

In Case 3a either s is completely covered by one block, say Bu, or ṽ is
only a horizontal segment and Bu is the block that contains the left endpoint
of it. We define u and v to be the sub-paths of ṽ that are covered by Bu and
Bv, respectively. We shift v a little bit up or down and attach a short vertical
segment to its left endpoint so as to touch u. The construction is illustrated in
Fig. 11.
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v

u
ṽ→ →

G G̃ G̃ G

ṽ
v

u

→

Figure 11: How to split an edge in Case 3a.

In Case 3b the left side of s is completely covered by one block, say Bu. We
define u to be the sub-path of ṽ that is covered by Bu. If Bv is contained in
s, we define v to be a very short horizontal segment touching the right side of
s immediately below the Bv. Otherwise we define v to be the sub-path of the
horizontal segment of ṽ that is covered by Bv and shift v a little bit up. Note
that each path that touches the right side of s is only a horizontal segment.
We shorten the left endpoint of each such path that corresponds to a neighbor
of v a little bit and attach a vertical segment to it that touches v from above.
This can be done so that no two such paths intersect. Moreover, every vertical
segment touching ṽ and corresponding to Bv is shortened or extended a bit so
as to touch v. See the left of Fig. 12 for an illustration.

ṽ

→ v

u ṽ

v

u
→

Case 3b Case 3c

ṽ

→ v

u

ṽ

→
v

u

Case 3d

ṽ
u

v
↓

Figure 12: How to split an edge in Case 3b, Case 3c, and Case 3d.

In Case 3c either the horizontal segment of ṽ is completely covered by one
block, say again Bu, or ṽ is only a vertical segment and Bu is the block that
contains the lower endpoint of it. Note that since Case 3b does not apply, Bv

partially covers the left side of s. By Lemma 4 we can assume that no point of
s is covered on the left by Bu and on the right by Bv. We define u and v to be
the sub-paths of ṽ that are covered by Bu and Bv, respectively, and shift v a
little bit to the left. Again we shorten or extend each path that corresponds to a
neighbor of v so that it touches v. See the middle of Fig. 12 for an illustration.

In the remaining case, Case 3d, both blocks Bu and Bv appear on both sides
of the vertical and horizontal segment of ṽ. Let Bu be the block that contains
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the upper end of ṽ. Consider paths that touch the horizontal segment of ṽ on
the upper side and within the block Bu. By Lemma 4 may can assume that the
horizontal segment of each such path lies above the block Bv. We define u and
v to be the sub-paths of ṽ that are covered by Bu and Bv, respectively. We
shift the horizontal segment of u up to the upper endpoint of v and move u a
little bit to the left so that v touches u from below. Moreover, we shorten or
extend every path corresponding to a neighbor of u so that it touches u. This
completes Case 3.

Finally, if neither of Case 1, Case 2 and Case 3 applies, then G consists
only of the outer cycle Cout, for which a Contact-L-Γ representation Cout is
given by assumption. This concludes the proof. �

Theorem 5 can be easily transferred into a linear-time algorithm to find a
contact-L-Γ representation of a triangle-free planar graph. Note that such an
algorithm should first construct the combinatorics of the representation, since
slicing operation would have to be done in O(1). The computation of the actual
coordinates of each path can be easily carried out afterwards in linear time.
Moreover the constructed representation can be placed into the n × n grid,
since every path requires only one horizontal and one vertical grid line. Here n
denotes the number of vertices in G.

5 Future Work and Open Problems

We have disproved the conjecture of Asinowski et al. [2] that B3-VPG is the
simplest Bk-VPG graph class containing planar graphs. Specifically, we have
demonstrated that every planar graph is B2-VPG and that 4-connected planar
graphs are the intersection graphs of Z-shapes (i.e., a special subclass of B2-
VPG). We have also shown that these representations can be produced from a
planar graph in O(n3/2) time. We have additionally shown that every triangle-
free planar graph is a contact graph of: L-shapes, Γ-shapes, vertical segments,
and horizontal segments (i.e., it is a specialized contact B1-VPG graph). Fur-
thermore, we demonstrated how to construct such a contact representation in
linear time. As an further consequence, we obtain a new proof that planar
bipartite graphs are 2-DIR.

Interestingly, there is no known planar graph which does not have an inter-
section representation of L-shapes; i.e., even this very restricted form of B1-VPG
is still a good candidate to contain all planar graphs. Further to this, a colleague
of ours has observed (via computer search) that all planar graphs on at most ten
vertices are intersection graphs of L-shapes [16]. Similarly, all small triangle-free
planar graphs seem to be contact graphs of L-shapes. These observations lead
to the following two conjectures.

Conjecture 1 Every planar graph is the intersection graph of L-shapes.

Conjecture 2 Every triangle-free planar graph is the contact graph of L-shapes.
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[5] J. Chalopin and D. Gonçalves. Every planar graph is the intersection
graph of segments in the plane: extended abstract. In 41st annual ACM
Symposium on Theory of Computing, STOC ’09, pages 631–638, 2009.
doi:10.1145/1536414.1536500.
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[22] K. Koźmiński and E. Kinnen. Rectangular dual of planar graphs. Networks,
15(2):145–157, 1985.
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Graphs admitting d-realizers:
spanning-tree-decompositions and box-representations

William Evans1,a Stefan Felsner2,b Stephen G. Kobourov3,c Torsten Ueckerdt4

Abstract

A d-realizer is a collection R = {π1, . . . , πd} of d per-
mutations of a set V representing an antichain in Rd.
We use R to define a graph GR on the suspended set
V + = V ∪ {s1, . . . , sd}. It turns out that GR has dn+

(
d
2

)

edges (n = |V |), among them the edges of the outer clique
on {s1, . . . , sd}. The inner edges of GR can be partitioned
into d trees such that Ti spans V + si. In the case d = 3
the graph GR is a planar triangulation and T1, T2, T3 is
a Schnyder wood on GR. The following two results show
that d-realizers resemble Schnyder woods in several as-
pects:

• Complete point-face contact systems of homothetic
simplices in Rd−1 induce a d-realizer.

• Any spanning subgraph of a graph G with a d-realizer
has a d-dimensional proper touching box representa-
tion.

We expect that d-realizers will prove to be valuable gen-
eralization of Schnyder woods to higher dimensions.

1 Introduction

We consider Rd equipped with the dominance order, i.e.,
for x, y ∈ Rd we have x ≤dom y if and only if xi ≤ yi
for i = 1, . . . , d. A set P ⊂ Rd is in general position if
no two points of P share a coordinate. If no two points
of a set P are in the dominance relation ≤dom, then we
call P an antichain. If P is in general position, then the
projection to the ith coordinate yields a permutation πi

of P . In compliance with the previous definition, we call a
family of permutations π1, . . . , πd of V an antichain if for
all x, y ∈ V there are indices i and j such that x precedes
y in πi and y precedes x in πj . We use the notation x ≺i y
to denote that x precedes y in πi.

An antichain V in Rd is suspended if V contains
a suspension vertex for each i, i.e., a vertex si =
(0, . . . , 0,Mi, 0, . . . , 0) and 0 ≤ vi < Mi for all v ∈ V \ si.
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Similarly si is an i-suspension for π1, . . . , πd if si is the
last element of πi and among the first d − 1 elements in
πj for j 6= i. The family π1, . . . , πd is suspended if it has
an i-suspension for each i ∈ [d].

Definition 1 A d-realizer is a suspended antichain
π1, . . . , πd of permutations of V + where V + = V ∪ S and
S = {s1, . . . , sd} is the set of suspensions.

Definition 2 The graph of a d-realizer (π1, . . . , πd) is the
graph GR = (V +, E+) with E+ = ER ∪ ES where ES is
the set of edges of a clique on S and pairs x, y are edges
in ER if they satisfy two properties:

(x, y) is a candidate pair: for all z 6= x, y there is an i
with x ≺i z and y ≺i z.

(x, y) has the 1-of-d -property: there is a unique i ∈
[d] with x ≺i y, i.e., y ≺j x for all j 6= i.

The definition of Schnyder woods was originally motivated
by the study of the order dimension of incidence posets of
graphs. In this line of research the following definition was
proposed in [8]:

The dimension of G = (V,E) is at most k if there are
permutations π1, . . . , πk of V such that each edge (x, y) ∈
E is a candidate pair.

If G is two-connected, then it follows that π1, . . . , πk is
a antichain. The following are known:

• dim(G) ≤ 3 iff G is planar (Schnyder [12]).

• dim(G) ≤ 4 =⇒ G has at most 3/8n2 edges.

• Exact values of dim(Kn) are known for n < 1040.

The 1-of-d -property naturally leads to a coloring and an
orientation of the edges of GR: The orientation is x→ y if
x precedes y only in a single πi. The color of x→ y is the
index i with x ≺i y. Let Ti be the set of edges of color i.

Note that in the case d = 3 the 1-of-3-property is ful-
filled by all candidate edges; this is where Schnyder’s col-
oring and orientation of edges comes from. Schnyder [12]
found that for all i the following two properties hold:

(a) Ti is an in-arborescence with root si.

(b) Ti−1 + Ti+1 + T−1
i is acyclic.

s1

c π1 = a b d c s1
π2 = b c d a s2
π3 = a c d b s3b d

a

s2
s3

Fig. 1: An example of a 3-realizer and its graph.
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In the next section we show that this also holds in the
case of a d-realizer. In Section 3 we continue to show how
d-realizer can be used to construct proper touching box
representations; the d = 3 case of this result was obtained
in [1]. In Section 4 we connect d-realizers to orthogonal
surfaces and show how they arise from touching simplices.
We conclude with examples and some open problems.

2 Spanning-tree-decompositions

Proposition 1 Let a graph be defined by a d-realizer
(π1, . . . , πd). If Ti is the set of edges of color i, then Ti is
an in-arborescence with root si.

Proof. We first show that each v ∈ V has a unique out-
edge in Ti.

Let Hi(x) be the set of all y with x ≺i y and y ≺j x for
all j 6= i, i.e., the set of all y such that the pair (x, y) has
the 1-of-d -property. Since the pair (x, si) has the 1-of-d -
property Hi(x) 6= ∅ for all v ∈ V . Let pi(x) be the first
element of Hi(x) with respect to πi, i.e., pi(x) is the least
element of πi such that (x, pi(x)) has the 1-of-d -property.

Claim 1. (x, pi(x)) is a candidate.

Consider z 6= x, pi(x). Since a d-realizer is an antichain
there is some j with x ≺j z. If j 6= i, then pi(x) ≺j x
and by transitivity pi(x) ≺j z. If the only choice for j is
i, then z ∈ Hi(x) and pi(x) ≺j z follows from the choice
of pi(x). 4

From Claim 1 it follows that (x, pi(x)) ∈ Ti.

Claim 2. If (x, y) is a candidate with y ∈ Hi(x), then
y = pi(x).

Indeed if y 6= pi(x) then there is no πj where x and y
precede pi(x). In πi we have x ≺i pi(x) ≺i y and if j 6= i,
then pi(x) ≺j x. 4

Hence (x, pi(x)) is the only out-edge of x in Ti. There-
fore the number of edges of Ti is |V |. Since Ti is spanning
V + si it only remains to show that Ti is connected. For
x ∈ V define x0 = x and for k ≥ 0 let xk+1 = pi(xk).
This defines a path that moves to the right on πi; hence
it must reach si.

Corollary 1 A graph GR defined by a d-realizer on a
vertex set V + with |V +| = n+ d has dn+

(
d
2

)
edges.

Proposition 2 If GR is defined by a d-realizer , then
T−1
i +

∑
j 6=i Tj is acyclic.

Proof. From the 1-of-d -property it follows that directed
edges from Tj with j 6= i point to the left in the order
of vertices given by πi. The same is true if we revert
the direction of the edges of Ti, i.e, for the directed edges
of T−1

i .

3 Box-representations

We consider axis aligned boxes in d-space. Such a box is
a set B(a, b) = {x ∈ Rd : a ≤dom x ≤dom b} or equivalently
B(a, b) =

∏d
i=1[ai, bi]. The interior of B(a, b) is {x ∈ Rd :

a <dom x <dom b} =
∏d

i=1(ai, bi). Two boxes B and B′

are properly touching iff they have a unique separating
hyperplane H = {x ∈ Rd : nT

H · x = bH}, i.e., nT
H · x ≤ bH

for all x ∈ B and nT
H · x ≥ bH for all x ∈ B′. In other

words, B and B′ are properly touching if their interiors
are disjoint and their intersection is (d− 1)-dimensional.

Definition 3 A proper touching box representation of a
graph G = (V,E) in d dimensions consists of a map v →
Bv from the vertices to d-dimensional boxes with pairwise
disjoint interiors, such that boxes Bu and Bv are properly
touching iff (u, v) ∈ E.

Box representations of graphs have been studied in 2D
with different names, e.g as rectangle contact graphs. Sur-
veys of the state of the art can be found in [3] and [5].

For 3D, Thomassen [13] shows that any planar graph
has a proper touching box representation. Felsner and
Francis [6] prove that any planar graph has a touching
cube representation, if the graph is a subgraph of a 4-
connected triangulation the representation is proper. New
proofs of Thomassen’s result and additional results on
cube representations can be found in [1].

Theorem 1 Any spanning subgraph H of a graph G with
a d-realizer has a d-dimensional proper touching box rep-
resentation.

Proof. Let (π1, . . . , πd) be the d-realizer for G. We assume
that the order of the first d − 1 elements in πi (these are
suspensions) is (s1, . . . , si−1, si+1, . . . , sd). This has the
advantage that for i < j the pair (sj , si) has the 1-of-d -
property. The pair is a candidate so we can treat it as a
regular edge in Ti.

With ranki(x) we denote the position of x in πi, i.e.,
if we think of πi as a bijective map πi : [n + d] → V +,
then ranki(x) = π−1

i (x). For each x and i we define pi(x)
as in Prop 1. For a suspension si and all j with i ≤ j
we assume the value n + d + 1 for the strictly speaking
undefined expression rankj(pj(si)).

We now show how to represent G. The box for vertex x
in G is B(x) =

∏d
i=1[ranki(x), ranki(pi(x))].

π1

π3

π2

1

1
2
3
4
5
6
7
8

8

1

8

d

c

b
a

s1

s2
s3

Fig. 2: The proper touching box representation of the
graph from Fig. 1 obtained with our method. The view is
from below, i.e., the labeled corners are the minima of the
boxes.
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We need to show proper contact between the box B(x)
and the box B(pi(x)) for all i. Let y = pi(x). Since
the projection to B(x) and B(y) to dimension i share
the point ranki(y), it suffices to show that rankj(x) ∈
(rankj(y), rankj(pj(y))) for all j 6= i. By the 1-of-d -
property, rankj(y) < rankj(x) for all j 6= i. So it suffices
to check that rankj(x) < rankj(pj(y)) for all j 6= i.

Let z = pj(y) and suppose z ≺j x. By the 1-of-d -
property, z ≺k y for all k 6= j. Since y ≺k x for all
k 6= i transitivity implies that z ≺k x for all k 6= i, j and
by supposition also for k = j. Since a d-realizer is an
antichain we can conclude that x ≺i z.

It now happens that (x, z) and (x, y) both have the 1-
of-d -property and x ≺i z ≺i y. This however contradicts
the choice of y = pi(x) as the least element of πi such that
(x, y) has the 1-of-d -property. Therefore x ≺j z as needed
for the box contact.

To represent a subgraph of G, remove unneeded boxes
and edges from the box representation. To get rid of an
edge (x, pi(x)) change the extent of B(x) in dimension i
to [ranki(x), ranki(pi(x))− ε].

4 Orthogonal surfaces and simplices

In this section we take a more geometric look at the graphs
of d-realizers.

With a point p ∈ Rd we associate its cone C(p) = {q ∈
Rd : p ≤dom q}. The filter 〈V 〉 generated by V is the union
of all cones C(v) for v ∈ V . The orthogonal surface SV

generated by V is the boundary of 〈V 〉. A point p ∈ Rd

belongs to SV if and only if p shares a coordinate with all
v ≤dom p, v ∈ V . The generating set V is an antichain if
and only if all elements of V appear as minima on SV .

Fig. 3: Two orthogonal surfaces in R3: the left one is
generated by a suspended antichain in general position;
the antichain generating the right one is neither suspended
nor in general position. As usual for orthogonal surfaces
we take a view from above, the generating points are the
minima of the surface.

Miller [10] observed the connection between Schnyder
woods and orthogonal surfaces in R3. He and subse-
quently others [4, 9] used orthogonal surfaces to give new
proofs for the Brightwell-Trotter theorem about the order
dimension of face lattices of 3-polytopes [2]. In fact the
dominance order of critical points (maxima, minima, and
saddle points) of a 3-dimensional orthogonal surface that
is generated by a suspended antichain is the truncated face
lattice of a 3-polytope with one facet removed. The con-
verse also holds: every 3-polytope with a facet, selected
for removal, has a corresponding orthogonal surface.

The Brightwell-Trotter theorem is an important gener-
alization of Schnyder’s dimension theorem. Since orthog-

onal surfaces can be considered in arbitrary dimensions
they provide a direction for generalizing Schnyder struc-
tures to higher dimensions. This approach has been taken
in [7]. The strongest result in the area is a theorem of
Scarf [11] that can be restated as follows: the dominance
order of critical points of a d-dimensional orthogonal sur-
face that is generated by a suspended antichain in gen-
eral position is the truncated face lattice of a simplicial
d-polytope with one facet removed. However, the general
situation is not nearly as nice as in 3 dimensions. There
are simplicial d-polytopes that do not have a correspond-
ing orthogonal surface and if we allow non-general position
the dominance order of critical points need not even be a
truncated lattice [7].

The orthogonal surface view for graphs given by a d-
realizer R is as follows: Embed vertex v at the point pv
whose coordinates are the ranks of v in the realizer. The
out-neighbor of v in color i is the vertex w whose cone
C(pw) is first hit by the ray leaving pv in the ith coordinate
direction.

In the 3-dimensional case we can embed every triangu-
lation (graph with a 3-realizer) on an orthogonal surface
SV with a coplanar V , i.e., all p ∈ V lie in a plane h with
normal 1 = (1, 1, 1). Identifying h with R2 we can find
the three edges of a vertex v by growing homothetic equi-
lateral triangles with a corner in v until they hit another
vertex; Fig. 4 shows an example.

Fig. 4: The graph from Fig. 1 on a coplanar orthogonal
surface and a sketch illustrating how to recover the out-
edges of a vertex from the generating set of points in the
plane.

In the same way we may use a set of points in d-space
and the homothets of a d-simplex to build a graph from
the class defined by (d + 1)-realizers. The details are as
follows: Let ∆ be a fixed d-simplex in Rd and let P be a
set of points such that no hyperplane parallel to a facet of
∆ contains more than one point (this is the appropriate
general position assumption). Let S be the set of corners
of a homothet of the dual of ∆ that contains P , this is the
set of suspensions. Now, for each point p ∈ P and each
corner x of ∆ find the unique point q such that there is a
homothety that maps ∆ to ∆′ such that (1) the corner x
of ∆′ is at p (2) ∆′ has no point of P in the interior and (3)
q is on the boundary of ∆′. This condition characterizes
the edges p→ q of color x in the graph G∆(P ).

Problem 1 Let G be the graph of a d-realizer. Is it al-
ways possible to find a point set P in Rd−1 such that
G = G∆(P )?

There is one class of graphs where we know that the an-
swer to the problem is yes. These are the skeleton graphs



30th European Workshop on Computational Geometry, 2014

of d-dimensional stacked polytopes, also known as sim-
ple d-trees. A d-tree is a graph admitting a stacking se-
quence, i.e., a listing v1, v2, . . . , vn of the vertices such that
v1, . . . , vd+1 is a clique and for each j > d+1 the neighbors
of vj with indices < j induce a clique Cj of size d. A d tree
is simple if Ci 6= Cj whenever i 6= j, i.e., each d-clique can
be used at most once for stacking. If G is a simple d-tree
a corresponding point set P can be constructed along the
stacking sequence.

In fact, besides this class we know only a few examples
of graphs that have a d-realizer with d > 3. We know
that unlike in the d = 3 case we also have non-simple d-
trees in the class: Consider a simple d-tree with realizer
(π1, . . . , πd) and let x be a vertex with deg(x) = d, for
example the last vertex of the construction sequence has
this property. Add a new vertex x′ by placing it imme-
diately before x in π1 and π2 and immediately after x in
all the other πj . It is easily seen that x and x′ have the
same neighbors in the same colors, in particular they are
stacked over the same clique.

Problem 2 Characterize the d-trees that have a d-
realizer.

Problem 3 Find meaningful examples and families of
graphs that have a d-realizer.

Regarding the recognition of graphs that have a d-
realizer, we have the criterion that to qualify, a graph G
must contain a d-clique of suspensions such that there is
an orientation of the edges of G with out-deg(x) = d for
all non-suspensions x.

Problem 4 Identify additional obstructions against hav-
ing a d-realizer.

Another situation where induced subgraphs of graphs
with a (d+ 1)-realizer appear is given by families of inte-
riorly disjoint pairwise homothetic d-simplices in d-space
with vertex-facet incidences. To produce a d-realizer for
a supergraph add a small d-simplex over each vertex that
does not take part in a vertex-facet contact and then use
the directions of inward pointing normals of the facets to
list the simplices. Figure 5 shows an example in 2 dimen-
sions.

a c

b cas1

b

c
ab b

c
a

s3

s2

Fig. 5: A 3-realizer from homothetic triangles.

Problem 5 Is it possible to realize every simple d-tree as
vertex-facet contact graph of homothetic simplices in Rd?
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Abstract. An L-shape is the union of a horizontal and a verti-
cal segment with a common endpoint. These come in four rotations:
L,

L
, Land

L

. A k-bend path is a simple path in the plane, whose di-
rection changes k times from horizontal to vertical. If a graph admits
an intersection representation in which every vertex is represented by an
L, an L or

L
, a k-bend path, or a segment, then this graph is called an

{L}-graph, {L,
L}-graph, Bk-VPG-graph or SEG-graph, respectively. Mo-

tivated by a theorem of Middendorf and Pfeiffer [Discrete Mathematics,
108(1):365–372, 1992], stating that every {L,

L}-graph is a SEG-graph,
we investigate several known subclasses of SEG-graphs and show that
they are {L}-graphs, or Bk-VPG-graphs for some small constant k. We
show that all planar 3-trees, all line graphs of planar graphs, and all full
subdivisions of planar graphs are {L}-graphs. Furthermore we show that
all complements of planar graphs are B19-VPG-graphs and all comple-
ments of full subdivisions are B2-VPG-graphs. Here a full subdivision is
a graph in which each edge is subdivided at least once.

Keywords: Intersection graphs, segment graphs, co-planar graphs,
k-bend VPG-graphs, planar 3-trees.

1 Introduction and Motivation

A segment intersection graph, SEG-graph for short, is a graph that can be
represented as follows. Vertices correspond to straight-line segments in the plane
and two vertices are adjacent if and only if the corresponding segments intersect.
Such representations are called SEG-representations and, for convenience, the
class of all SEG-graphs is denoted by SEG. SEG-graphs are an important subject
of study strongly motivated from an algorithmic point of view. Indeed, having
an intersection representation of a graph (in applications graphs often come
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along with such a given representation) may allow for designing better or faster
algorithms for optimization problems that are hard for general graphs, such as
finding a maximum clique in interval graphs.

More than 20 years ago, Middendorf and Pfeiffer [24], considered intersection
graphs of axis-aligned L-shapes in the plane, where an axis-aligned L-shape is
the union of a horizontal and a vertical segment whose intersection is an endpoint
of both. In particular, L-shapes come in four possible rotations: L,

L
, L, and

L

. For
a subset X of these four rotations, e.g., X = {L} or X = {L,

L}, we call a graph
an X-graph if it admits an X-representation, i.e., vertices can be represented
by L-shapes from X in the plane, each with a rotation from X , such that two
vertices are adjacent if and only if the corresponding L-shapes intersect. Similarly
to SEG, we denote the class of all X-graphs by X . The question if an intersection
representation with polygonal paths or pseudo-segments can be stretched into a
SEG-representation is a classical topic in combinatorial geometry and Oriented
Matroid Theory. Middendorf and Pfeiffer prove the following interesting relation
between intersection graphs of segments and L-shapes.

Theorem 1 (Middendorf and Pfeiffer [24]). Every {L, L}-representation
has a combinatorially equivalent SEG-representation.

This theorem is best-possible in the sense that there are examples of {L,

L}-
graphs which are no SEG-graphs [7, 24], i.e., such {L, L}-representations cannot
be stretched. We feel that Theorem 1, which of course implies that {L,

L} ⊆ SEG,
did not receive a lot of attention in the active field of SEG-graphs. In particular,
one could use Theorem 1 to prove that a certain graph class G is contained
in SEG by showing that G is contained in {L,

L}. For example, very recently
Pawlik et al. [25] discovered a class of triangle-free SEG-graphs with arbitrarily
high chromatic number, disproving a famous conjecture of Erdős [18], and it is
in fact easier to see that these graphs are {L}-graphs than to see that they are
SEG-graphs. To the best of our knowledge, the stronger result G ⊆ {L,

L} has
never been shown for any non-trivial graph class G. In this paper we initiate
this research direction. We consider several graph classes which are known to be
contained in SEG and show that they are actually contained in {L}, which is a
proper subclass of {L,

L} [7].
Whenever a graph is not known (or known not) to be an intersection graph of

segments or axis-aligned L-shapes, one often considers natural generalizations of
these intersection representations. Asinowski et al. [3] introduced intersection
graphs of axis-aligned k-bend paths in the plane, called Bk-VPG-graphs.
An (axis-aligned) k-bend path is a simple path in the plane, whose direction
changes k times from horizontal to vertical. Clearly, B1-VPG-graphs are precisely
intersection graphs of all four L-shapes; the union of Bk-VPG-graphs for all
k ≥ 0 is exactly the class STRING of intersection graphs of simple curves in the
plane [3]. Now if a graph G /∈ SEG is a Bk-VPG-graph for some small k, then
one might say that G is “not far from being a SEG-graph”.
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Our Results and Related Work
Let us denote the class of all planar graphs by PLANAR. A recent celebrated
result of Chalopin and Gonçalves [6] states that PLANAR ⊂ SEG, which was
conjectured by Scheinerman [26] in 1984. However, their proof is rather involved
and there is not much control over the kind of SEG-representations. Here we
give an easy proof for a non-trivial subclass of planar graphs, namely planar
3-trees. A 3-tree is an edge-maximal graph of treewidth 3. Every 3-tree can be
built up starting from the clique K4 and adding new vertices, one at a time,
whose neighborhood in the so-far constructed graph is a triangle.

Theorem 2. Every planar 3-tree is an {L}-graph.

It remains open to generalize Theorem 2 to planar graphs of treewidth 3 (i.e.,
subgraphs of planar 3-trees). On the other hand it is easy to see that graphs
of treewidth at most 2 are {L}-graphs [8]. Chaplick and the last author show
in [9] that planar graphs are B2-VPG-graphs, improving on an earlier result of
Asinowski et al. [3]. In [9] it is also conjectured that PLANAR ⊂ {L}, which
with Theorem 1 would imply the main result of [6], i.e., PLANAR ⊂ SEG.

Considering line graphs of planar graphs, one easily sees that these graphs
are SEG-graphs. Indeed, a straight-line drawing of a planar graph G can be
interpreted as a SEG-representation of the line graph L(G) of G, which has the
edges of G as its vertices and pairs of incident edges as its edges. We prove the
following strengthening result.

Theorem 3. The line graph of every planar graph is an {L}-graph.

Kratochv́ıl and Kuběna [21] consider the class of all complements of pla-
nar graphs (co-planar graphs), CO-PLANAR for short. They show that
CO-PLANAR are intersection graphs of convex sets in the plane, and ask
whether CO-PLANAR ⊂ SEG. As the Independent Set Problem in pla-
nar graphs is known to be NP-complete [15], Max Clique is NP-complete for
any graph class G ⊇ CO-PLANAR , e.g., intersection graphs of convex sets.
Indeed, the longstanding open question whether Max Clique is NP-complete
for SEG [22] has recently been answered affirmatively by Cabello, Cardinal and
Langerman [4] by showing that every planar graph has an even subdivision whose
complement is a SEG-graph. The subdivision is essential in the proof of [4], as
it still remains an open problem whether CO-PLANAR ⊂ SEG [21]. The largest
subclass of CO-PLANAR known to be in SEG is the class of complements of
partial 2-trees [14]. Here we show that all co-planar graphs are “not far from
being SEG-graphs”.

Theorem 4. Every co-planar graph is a B19-VPG graph.

Theorem 4 implies that Max Clique is NP-complete for Bk-VPG-graphs
with k ≥ 19. On the other hand, the Max Clique problem for B0-VPG-graphs
can be solved in polynomial time, while Vertex Colorability remains NP-
complete but allows for a 2-approximation [3]. Middendorf and Pfeiffer [24] show
that the complement of any even subdivision of any graph, i.e., every edge is
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subdivided with a non-zero even number of vertices, is an {L, L}-graph. This
implies that Max Clique is NP-complete even for {L,

L}-graphs.

We consider full subdivisions of graphs, that is, a subdivision H of a graph
G where each edge of G is subdivided at least once. It is not hard to see that
a full subdivision H of G is in STRING if and only if G is planar, and that if
G is planar, then H is actually a SEG-graph. Here we show that this can be
further strengthened, namely that H is in an {L}-graph. Moreover, we consider
the complement of a full subdivision H of an arbitrary graph G, which is in
STRING but not necessarily in SEG. Here, similar to the result of Middendorf
and Pfeiffer [24] on even subdivisions we show that such a graph H is “not far
from being SEG-graph”.

Theorem 5. Let H be a full subdivision of a graph G.

(i) If G is planar, then H is an {L}-graph.
(ii) If G is any graph, then the complement of H is a B2-VPG-graph.

The graph classes considered in this paper are illustrated in Figure 1. We
shall prove Theorems 2, 3, 4 and 5 in Sections 2, 3, 4 and 5, respectively, and
conclude with some open questions in Section 6. Due to lack of space, the full
proof of Theorem 2 is given in the full version [13].

B1 B2 B19· · · · · ·

STRING

SEG

COCOMP

• line graphs of planar graphs
• planar 3-trees
• full subdivisions of planar graphs

• complements of full subdivisions

• complements of planar graphs

• complements of
even subdivisions

• planar graphs

Fig. 1. Graph classes considered in this paper

Related Representations
In the context of contact representations, where distinct segments or k-bend
paths may not share interior points, it is known that every contact SEG-
representation has a combinatorially equivalent contact B1-VPG-representation,
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but not vice versa [20]. Contact SEG-graphs are exactly planar Laman graphs
and their subgraphs [10], which includes for example all triangle-free planar
graphs. Very recently, contact {L}-graphs have been characterized [8]. Necessary
and sufficient conditions for stretchability of a contact system of pseudo-segments
are known [1, 11].

Let us also mention the closely related concept of edge-intersection graphs of
paths in a grid (EPG-graphs) introduced by Golumbic et al. [16]. There are some
notable differences, starting from the fact that every graph is an EPG-graph [16].
Nevertheless, analogous questions to the ones posed about VPG-representations
of STRING-graphs are posed about EPG-representations of general graphs. In
particular, there is a strong interest in finding representations using paths with
few bends, see [19] for a recent account.

2 Proof of Theorem 2

Proof (main idea). Let G be a plane 3-tree with a xed plane embedding. We
construct an {L}-representation of G satisfying the additional property that for
every inner triangular face {a, b, c} of G there exists a subset of the plane, called
the private region of the face, that intersects only the L-paths for a, b and c, and
no other L-path. We remark that this technique has also been used by Chalopin
et al. [5] and refer to Figure 2 for an illustration. ��

a a

b c

v

(a)

a a

b c

v

(b)

Fig. 2. (a) Introducing an L-shape for vertex v into the private region for the trian-
gle {a, b, c}. (b) Identifying a pairwise disjoint private regions for the facial triangles
{a, b, v}, {a, c, v} and {b, c, v}.

3 Proof of Theorem 3

Proof. Without loss of generality let G be a maximally planar graph with a
fixed plane embedding. (Line graphs of subgraphs of G are induced subgraphs
of L(G).) Then G admits a so-called canonical ordering –first defined in [12]–,
namely an ordering v1, . . . , vn of the vertices of G such that

– Vertices v1, v2, vn form the outer triangle of G in clockwise order. (We draw
G such that v1, v2 are the highest vertices.)
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– For i = 3, . . . , n vertex vi lies in the outer face of the induced embedded
subgraph Gi−1 = G[v1, . . . , vi−1]. Moreover, the neighbors of vi in Gi−1

form a path on the outer face of Gi−1 with at least two vertices.

We shall construct an {L}-representation of L(G) along a fixed canonical ordering
v1, . . . , vn of G. For every i = 2, . . . , n we shall construct an {L}-representation
of L(Gi) with the following additional properties.

For every outer vertex v of Gi we maintain an auxiliary bottomless rectangle
R(v), i.e., an axis-aligned rectangle with bottom-edge at −∞, such that:

– R(v) intersects the horizontal segments of precisely those rectilinear paths
for edges in Gi incident to v.

– R(v) does not contain any bends or endpoints of any path for an edge in Gi

and does not intersect any R(w) for w 
= v.

– the left-to-right order of the bottomless rectangles matches the order of ver-
tices on the counterclockwise outer v1, v2-path of Gi.

The bottomless rectangles act as placeholders for the upcoming vertices of L(G).
Indeed, all upcoming intersections of paths will be realized inside the correspond-
ing bottomless rectangles. For i = 2, the graph Gi consist only of the edge v1v2.
Hence an {L}-representation of the one-vertex graph L(G2) consists of only one
L-shape and two disjoint bottomless rectangles R(v1), R(v2) intersecting its hor-
izontal segment.

For i ≥ 3, we shall start with an {L}-representation of L(Gi−1). Let
(w1, . . . , wk) be the counterclockwise outer path of Gi−1 that corresponds
to the neighbors of vi in Gi−1. The corresponding bottomless rectangles
R(w1), . . . , R(wk) appear in this left-to-right order. See Figure 3 for an illus-
tration. For every edge viwj , j = 1, . . . , k we define an L-shape P (viwj) whose
vertical segment is contained in the interior of R(wj) and whose horizontal seg-
ment ends in the interior of R(wk). Moreover, the upper end and lower end
of the vertical segment of P (viwj) lies on the top side of R(wj) and below
all L-shapes for edges in Gi−1, respectively. Finally, the bend and right end of
P (viwj) is placed above the bend of P (viwj+1) and to the right of the right end
of P (viwj+1) for j = 1, . . . , k − 1, see Figure 3.

It is straightforward to check that this way we obtain an {L}-representation
of L(Gi). So it remains to find a set of bottomless rectangles, one for each
outer vertex of Gi, satisfying our additional property. We set R′(v) = R(v)
for every v ∈ V (Gi) \ {vi, w1, . . . , wk} since these are kept unchanged. Since
R(w1) and R(wk) are not valid anymore, we define a new bottomless rectangle
R′(w1) ⊂ R(w1) such that R′(w1) is crossed by all horizontal segments that cross
R(w1) and additionally the horizontal segment of P (viw1). Similarly, we define
R′(wk) ⊂ R(wk). And finally, we define a new bottomless rectangle R′(vi) ⊂
R(wk) in such a way that it is crossed by the horizontal segments of exactly
P (viw1), . . . , P (viwk). Note that for 1 < j < k the outer vertex wj of Gi−1 is
not an outer vertex of Gi. Then {R′(v) | v ∈ v(Gi)} has the desired property.
See again Figure 3. ��
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v1 v2

w2

w1 w4
w3

vi

Gi−1

R(v1) R(v2)

R(w1) R(w2) R(w3) R(w4)

R′(w1) R′(vi) R′(w4)

Fig. 3. Along a canonical ordering a vertex vi is added to Gi−1. For each edge
between vi and a vertex in Gi−1 an L-shape is introduced with its vertical seg-
ment in the corresponding bottomless rectangle. The three new bottomless rectangles
R′(w1), R

′(vi), R
′(wk) are highlighted.

4 Proof of Theorem 4

Proof. Let G = (V, E) be any planar graph. We shall construct a Bk-VPG
representation of the complement Ḡ of G for some constant k that is independent
of G. Indeed, k = 19 is enough. To find the VPG representation we make use
of two crucial properties of G: A) G is 4-colorable and B) G is 5-degenerate.
Indeed, our construction gives a B2d+9-VPG representation for the complement
of any 4-colorable d-degenerate graph. Here a graph is called d-degenerate if it
admits a vertex ordering such that every vertex has at most d neighbors with
smaller index.

Consider any 4-coloring of G with color classes V1, V2, V3, V4. Further let σ =
(v1, . . . , vn) be an order of the vertices of V witnessing the degeneracy of G,
i.e., for each vi there are at most 5 neighbors vj of vi with j < i. We call these
neighbors the back neighbors of vi. Consider any ordered pair of color classes,
say (V1, V2), and denote W = V1 ∪ V2, together with the vertex orders inherited
from the order of vertices in V , i.e., σ|V1 = σ1 = (v1, . . . , v|V1|) and σ|V2 = σ2 =
(w1, . . . , w|V2|). Further consider the axis-aligned rectangle R = [0, A] × [0, A],
where A = 2(|W | + 2). For illustration we divide R into four quarters [0, A/2] ×
[0, A/2], [0, A/2]× [A/2, A], [A/2, A]× [0, A/2] and [A/2, A]× [A/2, A]. We define
a monotone increasing path Q(v) for each v ∈ W as follows. See Figure 4 for an
illustration.

– For v ∈ V1 let {σ2(i1), . . . , σ2(ik)}, i1 < · · · < ik, be the back neighbors of
v in V2 and i∗ = max{0} ∪ {σ−1

2 (w) | w ∈ V2, σ
−1(w) < σ−1(v)} be the

largest index with respect to σ2 of a vertex in V2 that comes before v in σ
or i∗ = 0 if there is no such vertex. Then we define the path Q(v) so that
it starts at (1, 0), uses the horizontal lines at y = 2ij − 1 for j = 1, . . . , k,
y = 2i∗ +1 and y = A−2σ1(v) in that order, uses the vertical lines at x = 1,
x = 2ij + 1 for j = 1, . . . , k and x = A − 2σ1(v) in that order, and finally
ends at (A, A − 2σ1(v)).
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Fig. 4. The induced subgraph G[W ] for two color classes W = V1∪V2 of a planar graph
G and a VPG representation of its complement Ḡ[W ] in the rectangle [0, 2(|W |+2)]×
[0, 2(|W | + 2)]

Note that Q(v) avoids the top-left quarter of R, has exactly one bend at
(A − 2σ1(v), A − 2σ1(v)) in the top-right quarter, and goes above the point
(2i, 2i) in the bottom-left quarter if and only if i 
= i1, . . . , ik and i ≤ i∗.

– For wi ∈ V2 the path P (wi) is defined analogous after rotating the rectangle
R by 180 degrees and swapping the roles of V1 and V2.

It is straightforward to check that {Q(v) | v ∈ W} is a VPG representation
of Ḡ[W ] completely contained in R, where each Q(v) starts and ends at the
boundary of R and has at most 3 + 2k bends, where k is the number of back
neighbors of v in W .

Now we have defined for each pair of color classes Vi ∪ Vj a VPG-
representation of Ḡ[Vi ∪ Vj ]. For every vertex v ∈ V we have defined three Q-
paths, one for each colors class that v is not in. In total the three Q-paths for the
same vertex v have at most 9+2k ≤ 19 bends, where k ≤ 5 is the back degree of
v. It remains to place the six representations of Ḡ[Vi ∪ Vj ] non-overlapping and
to “connect” the three Q-paths for each vertex in such a way that connections
for vertices of different color do not intersect. This can easily be done with two
extra bends per paths, basically because K4 is planar (we refer to Figure 5 for
one way to do this). Finally, note that the first and last segment of every path
in the representation can be omitted, yielding the claimed bound. ��
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V2

V4

V1

V3

Fig. 5. Interconnecting the VPG representations of Ḡ[Vi ∪ Vj ] by adding at most two
bends for each vertex. The set of paths corresponding to color class Vi is indicated by
a single path labeled Vi, i = 1, 2, 3, 4.

5 Proof of Theorem 5

Proof. Let G be any graph and H arise from G by subdividing each edge at
least once. Without loss of generality we may assume that every edge of G is
subdivided exactly once or twice. Indeed, if an edge e of G is subdivided three
times or more, then H can be seen as a full subdivision of the graph G′ that
arises from G by subdividing e once.

(i) Assuming that G is planar, we shall find an {L}-representation of H as
follows. Without loss of generality G is maximally planar. We consider a
bar visibility representation of G, i.e., vertices of G are disjoint horizontal
segments in the plane and edges are disjoint vertical segments in the plane
whose endpoints are contained in the two corresponding vertex segments and
which are disjoint from all other vertex segments. Such a representation for
a planar triangulation exists e.g. by [23]. See Figure 6 for an illustration.
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Fig. 6. A planar graph G on the left, a bar visibility representation of G in the center,
and an {L}-representation of a full division of G on the right. Here, the edges {1, 2},
{1, 3} and {3, 6} are subdivided twice.
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It is now easy to interpret every segment as an L, and replace an segment
corresponding to edge that is subdivided twice by two L-shapes. Let us
simply refer to Figure 6 again.

(ii) Now assume that G = (V, E) is any graph. We shall construct a B2-
VPG representation of the complement H̄ of H = (V ∪ W, E′) with
monotone increasing paths only. First, we represent the clique H̄ [V ]. Let
V = {v1, . . . , vn} and define for i = 1, . . . , n the 2-bend path P (vi) for
vertex vi to start at (i, 0), have bends at (i, i) and (i + n, i), and end at
(i + n, n + 1). See Figure 7 for an illustration. For convenience, let us call
these paths v-paths.

1 i j n

P (wij) P (wj)

P (wi)

1 + n

i + n

j + n

2n

1 i j n

2n

P (vi)

P (vj)

P (vi)

P (vj)

1 + n

i + n

j + n

Fig. 7. Left: Inserting the path P (wij) for a single vertex wij subdividing the edge vivj

in G. Right: Inserting the paths P (wi) and P (wj) for two vertices wi, wj subdividing
the edge vivj in G.

Next, we define for every edge of G the 2-bend paths for the one or two
corresponding subdivision vertices in H̄ . We call these paths w-paths. So let
vivj be any edge of G with i < j. We distinguish two cases.

Case 1. The edge vivj is subdivided by only one vertex wij in H . We define
the w-path P (wij) to start at (j− 1

4 , i+ 1
4 ), have bends at (j− 1

4 , j+ 1
4 )

and (i + n − 1
4 , j + 1

4 ), and end at (i + n − 1
4 , n + 1), see the left of

Figure 7.
Case 2. The edge vivj is subdivided by two vertices wi, wj with viwi, vjwj ∈

E(H). We define the start, bends and end of the w-path P (wi) to be
(j − 1

4 , i + 1
4 ), (j − 1

4 , j − 1
4 ), (i + n − 1

4 , j − 1
4 ) and (i + n − 1

4 , n +
1), respectively. The start, bends and end of the w-path P (wj) are
(j − 1

2 , i − 1
4 ), (j − 1

2 , j + 1
4 ), (i + n − 1

2 , j + 1
4 ) and (i + n − 1

2 , n + 1),
respectively. See the right of Figure 7.

It is easy to see that every w-path P (w) intersects every v-path, except for
the one or two v-paths corresponding to the neighbors of w in H . Moreover,
the two w-paths in Case 2 are disjoint. It remains to check that the w-paths
for distinct edges of G mutually intersect. To this end, note that every w-
path for edge vivj starts near (j, i), bends near (j, j) and (i+n, j) and ends
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near (i+n, n). Consider two w-paths P and P ′ that start at (j, i) and (j′, i′),
respectively, and bend near (j, j) and (j′, j′), respectively. If j = j′ then it
is easy to check that P and P ′ intersect near (j, j). Otherwise, let j′ > j.
Now if j > i′, then P and P ′ intersect near (j′, i), and if j ≤ i′, then P and
P ′ intersect near (i + n, j′).

Hence we have found a B2-VPG-representation of H̄ , as desired. Let
us remark, that in this representation some w-paths intersect non-trivially
along some horizontal or vertical lines, i.e., share more than a finite set of
points. However, this can be omitted by a slight and appropriate perturba-
tion of endpoints and bends of w-paths. ��

6 Conclusions and Open Problems

Motivated by Middendorf and Pfeiffer’s theorem (Theorem 1 in [24]) that ev-
ery {L, L}-representation can be stretched into a SEG-representation, we consid-
ered the question which subclasses of SEG-graphs are actually {L, L}-graphs, or
even {L}-graphs. We proved that this is indeed the case for several graph classes
related to planar graphs. We feel that the question whether PLANAR ⊂ {L, L},
as already conjectured [9], is of particular importance. After all, this, together
with Theorem 1, would give a new proof for the fact that PLANAR ⊂ SEG.

Open Problem 1. Each of the following is open.

(i) When can a B1-VPG-representation be stretched into a combinatorially
equivalent SEG-representation?

(ii) Is {L, L} = SEG ∩B1-VPG?
(iii) Is every planar graph an {L}-graph, or B1-VPG-graph?
(iv) Does every planar graph admit an even subdivision whose complement is

an {L}-graph, or B1-VPG-graph?
(v) Recognizing Bk-VPG graphs is known to be NP-complete for each k ≥ 0 [7].

What is the complexity of recognizing {L}-graphs, or {L, L}-graphs?
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Abstract. We consider arrangements of axis-aligned rectangles in the
plane. A geometric arrangement specifies the coordinates of all rec-
tangles, while a combinatorial arrangement specifies only the respec-
tive intersection type in which each pair of rectangles intersects. First,
we investigate combinatorial contact arrangements, i.e., arrangements
of interior-disjoint rectangles, with a triangle-free intersection graph.
We show that such rectangle arrangements are in bijection with the 4-
orientations of an underlying planar multigraph and prove that there
is a corresponding geometric rectangle contact arrangement. Using this,
we give a new proof that every triangle-free planar graph is the con-
tact graph of such an arrangement. Secondly, we introduce the question
whether a given rectangle arrangement has a combinatorially equiva-
lent square arrangement. In addition to some necessary conditions and
counterexamples, we show that rectangle arrangements pierced by a hor-
izontal line are squarable under certain sufficient conditions.

1 Introduction

We consider arrangements of axis-aligned rectangles and squares in the plane.
Besides geometric rectangle arrangements, in which all rectangles are given with
coordinates, we are also interested in combinatorial rectangle arrangements, i.e.,
equivalence classes of combinatorially equivalent arrangements. Our contribution
is two-fold.

First we consider maximal (with a maximal number of contacts) combinato-
rial rectangle contact arrangements, in which no three rectangles share a point.
For rectangle arrangements this is equivalent to the contact graph being triangle-
free, unlike, e.g., for triangle contact arrangements. We prove a series of analogues
to the well-known maximal combinatorial triangle contact arrangements and to
Schnyder realizers. The contact graph G of a maximal triangle contact arrange-
ment is a maximal planar graph. A 3-orientation is an orientation of the edges

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 231–244, 2015.
DOI: 10.1007/978-3-319-27261-0 20
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Fig. 1. Left to right: maximal combinatorial contact arrangement with axis-aligned
triangles, no three sharing a point. 3-orientation of G′. Schnyder realizer of G′. Local
coloring rules for Schnyder realizer (Color figure online).

Fig. 2. Left to right: maximal combinatorial contact arrangement with axis-aligned
rectangles, no three sharing a point. 4-orientation of underlying graph. Corner-edge-
labeling of underlying graph. Local coloring rules for corner-edge-labeling (Color figure
online).

of a graph G′, obtained from G by adding six edges (two at each outer vertex),
in which every vertex has exactly three outgoing edges. Each outer vertex has
two outgoing edges that end in the outer face without having an endpoint there.
A Schnyder realizer [10,11] is a 3-orientation of G′ together with a coloring of
its edges with colors 0, 1, 2 such that every vertex has exactly one outgoing edge
in each color and incoming edges are colored in the color of the “opposite” out-
going edge. The three outgoing edges represent the three corners of a triangle
and the color specifies the corner, see Fig. 1. De Fraysseix et al. [3] proved that
the maximal combinatorial triangle contact arrangements of G are in bijection
with the 3-orientations of G′ and the Schnyder realizers of G′. Schnyder proved
that for every maximal planar graph G, G′ admits a Schnyder realizer and hence
G is a triangle contact graph.

In this paper we prove an analogous result, which, roughly speaking, is the
following. We consider maximal triangle-free combinatorial rectangle contact
arrangements. The corresponding contact graph G is planar with all faces of
length 4 or 5. We define an underlying plane multigraph Ḡ, whose vertex set
also includes a vertex for each inner face of the contact graph, and define 4-
orientations of Ḡ. Here, every vertex has exactly four outgoing edges, where
each outer vertex has two edges ending in the outer face. For a 4-orientation we
introduce corner-edge-labelings of Ḡ, which are, similar to Schnyder realizers,
colorings of the outgoing edges at vertices of Ḡ corresponding to rectangles with
colors 0, 1, 2, 3 satisfying certain local rules. Each outgoing edge represents a
corner of a rectangle and the color specifies which corner it is, see Fig. 2. We
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then prove that the combinatorial contact arrangements of G are in bijection
with the 4-orientations of Ḡ and the corner-edge-labelings of Ḡ.

Thomassen [12] proved that rectangle contact graphs are precisely the graphs
admitting a planar embedding in which no triangle contains a vertex in its
interior. We also prove here that for every maximal triangle-free planar graph
G, Ḡ admits a 4-orientation, obtaining a new proof that G is a rectangle contact
graph.

Our second result is concerned with the question whether a given geomet-
ric rectangle arrangement can be transformed into a combinatorially equivalent
square arrangement. The similar question whether a pseudocircle arrangement
can be transformed into a combinatorially equivalent circle arrangement has
recently been studied by Kang and Müller [6], who showed that the problem is
NP-hard. We say that a rectangle arrangement can be squared (or is squarable) if
an equivalent square arrangement exists. Obviously, squares are a very restricted
class of rectangles and not every rectangle arrangement can be squared. The nat-
ural open question is to characterize the squarable rectangle arrangements and
to answer the complexity status of the corresponding decision problem. As a first
step towards solving these questions, we show, on the one hand, some general
necessary conditions and, on the other hand, sufficient conditions implying that
certain subclasses of rectangle arrangements are always squarable.

Related Work. Intersection graphs and contact graphs of axis-aligned rectangles
or squares in the plane are a popular, almost classic, topic in discrete mathemat-
ics and theoretical computer science with lots of applications in computational
geometry, graph drawing and VLSI chip design. Most of the research for rectangle
intersection graphs concerns their recognition [14], colorability [1] or the design
of efficient algorithms such as for finding maximum cliques [5]. On the other
hand, rectangle contact graphs are mainly investigated for their combinatorial
and structural properties. Almost all the research here concerns edge-maximal
3-connected rectangle contact graphs, so called rectangular duals. These can be
characterized by the absence of separating triangles [9,13] and the corresponding
representations by touching rectangles can be seen as dissections of a rectangle
into rectangles. Combinatorially equivalent dissections are in bijection with reg-
ular edge labelings [7] and transversal structures [4]. The question whether a
rectangular dual has a rectangle dissection in which all rectangles are squares
has been investigated by Felsner [2].

2 Preliminaries

In this paper a rectangle is an axis-aligned rectangle in the plane, i.e., the cross
product [x1, x2] × [y1, y2] of two bounded closed intervals. A geometric rectangle
arrangement is a finite set R of rectangles; it is a contact arrangement if any
two rectangles have disjoint interiors. In a contact arrangement, any two non-
disjoint rectangles R1, R2 have one of the two contact types side contact and
corner contact, see Fig. 3 (left); we exclude the degenerate case of two rectangles
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side piercing corner
intersection crossing containmentside contact corner

contact

Fig. 3. Contact types (left) and intersection types (right) of rectangles.

sharing only one point. If R is not a contact arrangement, four intersection
types are possible: side piercing, corner intersection, crossing, and containment,
see Fig. 3 (right). Note that side contact and corner contact are degenerate cases
of side piercing and corner intersection, whereas crossing and containment have
no analogues in contact arrangements. If no two rectangles form a crossing, we
say that R is cross-free. Moreover, in each type (except containment) it is further
distinguished which sides of the rectangles touch or intersect.

Two rectangle arrangements R1 and R2 are combinatorially equivalent if R1

can be continuously deformed into R2 such that every intermediate state is a
rectangle arrangement with the same intersection or contact type for every pair
of rectangles. An equivalence class of combinatorially equivalent arrangements is
called a combinatorial rectangle arrangement. So while a geometric arrangement
specifies the coordinates of all rectangles, think of a combinatorial arrangement
as specifying only the way in which any two rectangles touch or intersect. In
particular, a combinatorial rectangle arrangement is defined by (1) for each
rectangle R and each side of R the counterclockwise order of all intersecting
(touching) rectangle edges, labeled by their rectangle R′ and the respective side
of R′ (top, bottom, left, right), (2) for containments the respective component
of the arrangement, in which a rectangle is contained.

In the intersection graph of a rectangle arrangement there is one vertex for
each rectangle and two vertices are adjacent if and only if the corresponding
rectangles intersect. As combinatorially equivalent arrangements have the same
intersection graph, combinatorial arrangements themselves have a well-defined
intersection graph. For rectangle contact arrangements (combinatorial or geo-
metric) the intersection graph is also called the contact graph. Note that such
contact graphs are planar, as we excluded the case of four rectangles meeting in
a corner.

3 Statement of Results

3.1 Maximal Triangle-Free Planar Graphs and Rectangle Contact
Arrangements

We consider so-called MTP-graphs, that is, (M)aximal (T)riangle-free (P)lane
graphs with a quadrangular outer face. Note that each face in such an MTP-
graph is a 4-cycle or 5-cycle, and that every plane triangle-free graph is an
induced subgraph of some MTP-graph. Given an MTP-graph G a rectangle
contact arrangement of G is one whose contact graph is G, where the embedding
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Fig. 4. Local color patterns in corner-edge-labelings of an MTP-graph at a vertex v,
together with the corresponding part in a rectangle contact arrangement (Color figure
online).

inherited from the arrangement is the given embedding of G, and where each
outer rectangle has two corners in the unbounded region1. We define the closure,
4-orientations and corner-edge-labelings:

The closure Ḡ of G is derived from G by replacing each edge of G with a pair
of parallel edges, called an edge pair, and adding into each inner face f of G
a new vertex, also denoted by f , connected by an edge, called a loose edge,
to each vertex incident to that face. At each outer vertex we add two loose
edges pointing into the outer face, although we do not add a vertex for the
outer face. Note that Ḡ inherits a unique plane embedding with each inner
face being a triangle or a 2-gon.

A 4-orientation of Ḡ is an orientation of the edges and half-edges of Ḡ such
that every vertex has outdegree exactly 4. An edge pair is called uni-directed
if it is oriented consistently and bi-directed otherwise.

A corner-edge-labeling of Ḡ is a 4-orientation of Ḡ together with a coloring of
the outgoing edges of Ḡ at each vertex of G with colors 0, 1, 2, 3 (see Fig. 4)
such that
(i) around each vertex v of G we have outgoing edges in color 0, 1, 2, 3 in

this counterclockwise order and
(ii) in the wedge, called incoming wedge, at v counterclockwise between the

outgoing edges of color i and i+1 there are some (possibly none) incoming
edges colored i + 2 or i + 3, i = 0, 1, 2, 3, all indices modulo 4.

In a corner-edge-labeling the four outgoing edges at a vertex of Ḡ corre-
sponding to a face of G are not colored. Further we remark that (i) implies that
uni-directed pairs are colored i and i−1, while (ii) implies that bi-directed pairs
are colored i and i + 2, for some i ∈ {0, 1, 2, 3}, where all indices are considered
modulo 4. The following theorem is proved in Sect. 4.

Theorem 1. Let G be an MTP-graph, then each of the following are in bijection:

– the combinatorial rectangle contact arrangements of G
– the corner-edge-labelings of Ḡ
– the 4-orientations of Ḡ.

1 Other configurations of the outer four rectangles can be easily derived from this.
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Fig. 5. Three cross-free unsquarable rectangle arrangements.

Using the bijection between 4-orientations of Ḡ and combinatorial rectangle
contact arrangements of G given in Theorem1, we can give a new proof that
every MTP-graph G is a rectangle contact graph, which is the statement of the
next theorem; its proof is given in the full paper [8] and sketched in Sect. 5.

Theorem 2. For every MTP-graph G, Ḡ has a 4-orientation and it can be
computed in linear time. In particular, G has a rectangle contact arrangement.

We remark that our technique in the proof of Theorem1 constructs from a
given 4-orientation of Ḡ in linear time a geometric rectangle contact arrangement
of G in the 2n × 2n square grid, where n is the number of vertices in G. Thus
also the rectangle contact arrangement in Theorem 2 can be computed in linear
time and uses only a linear-size grid.

3.2 Squarability and Line-Pierced Rectangle Arrangements

In the squarability problem, we are given a rectangle arrangement R and want to
decide whether R can be squared. The first observation is that there are obvious
obstructions to the squarability of a rectangle arrangement. If any two rectangles
in R are crossing (see Fig. 3) then there are obviously no two combinatorially
equivalent squares.

But even if we restrict ourselves to cross-free rectangle arrangements, we
can find unsquarable configurations. One such arrangement is depicted in
Fig. 5 (left). To get an unsquarable arrangement with a triangle-free intersection
graph, we can use the fact that two side-piercing rectangles translate immedi-
ately into a smaller-than relation for the corresponding squares: the side length
of the square to pierce into the side of another square needs to be strictly smaller.
Hence any rectangle arrangement that contains a cycle of side-piercing rectangles
cannot be squarable, see Fig. 5 (middle). Moreover, we may even create a coun-
terexample of a rectangle arrangement whose intersection graph is a path and
that causes a geometrically infeasible configuration for squares, see Fig. 5 (right).

Proposition 1. Some cross-free rectangle arrangements are unsquarable, even
if the intersection graph is a path.

Therefore we focus on a non-trivial subclass of rectangle arrangements that
we call line-pierced. A rectangle arrangement R is line-pierced if there exists a
horizontal line � such that � ∩ R �= ∅ for all R ∈ R. The line-piercing strongly
restricts the possible vertical positions of the rectangles in R, which lets us prove
two sufficient conditions for squarability in the following theorem.
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Theorem 3. Let R be a cross-free, line-pierced rectangle arrangement.

– If R is triangle-free, then R is squarable.
– If R has only corner intersections, then R is squarable, even using line-pierced

unit squares.

On the other hand, cross-free, line-pierced rectangle arrangements in general
may have forbidden cycles or other geometric obstructions to squarability. We
give two examples in Sect. 6, together with a sketch of the proof of Theorem3.

4 Bijections Between 4-Orientations,
Corner-Edge-Labelings and Rectangle Contact
Arrangements – Proof of Theorem1

Throughout this section let G = (V,E) be a fixed MTP-graph and Ḡ be its
closure. By definition, every corner-edge-labeling of Ḡ induces a 4-orientation of
Ḡ. We prove Theorem 1, i.e., that combinatorial rectangle contact arrangements
of G, 4-orientations of Ḡ and corner-edge-labelings of Ḡ are in bijection, in three
steps:

– Every rectangle contact arrangement of G induces a 4-orientation of Ḡ.
(Lemma 1)

– Every 4-orientation of Ḡ induces a corner-edge-labeling of Ḡ. (Lemma 3)
– Every corner-edge-labeling of Ḡ induces a rectangle contact arrangement of

G. (Lemma 4)

Omitted proofs are provided in the full version of this paper [8].

4.1 From Rectangle Arrangements to 4-Orientations

Lemma 1. Every rectangle contact arrangement of G induces a 4-orientation
of Ḡ.

The proof idea is already given in Fig. 2: For every rectangle draw an outgoing
edge through each of the four corners and for every inner face draw an outgoing
edge through each of the four extremal sides.

We continue with a crucial property of 4-orientations. For a simple cycle C
of G, consider the corresponding cycle C̄ of edge pairs in Ḡ. The interior of C̄ is
the bounded component of R2 incident to all vertices in C after the removal of all
vertices and edges of C̄. In a fixed 4-orientation of Ḡ a directed edge e = (u, v)
points inside C if u ∈ V (C) and e lies in the interior of C̄, i.e., either v lies in
the interior of C, or e is a chord of C̄ in the interior of C̄.

Lemma 2. For every 4-orientation of Ḡ and every simple cycle C of G the
number of edges pointing inside C is exactly |V (C)| − 4.
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on the boundary of f , as well as outgoing edges at f , f1, f2 is omitted. The directed
edge (v, w) and its successor (w, u) are highlighted. Right: Illustration of the proof of
the Claim in the proof of Lemma 3.

4.2 From 4-Orientations to Corner-Edge-Labelings

Next we shall show how a 4-orientation of Ḡ can be augmented (by choosing
colors for the edges) into a corner-edge-labeling. Fix a 4-orientation. If e is a
directed edge in an edge pair, then e is called a left edge, respectively right edge,
when the 2-gon enclosed by the edge pair lies on the right, respectively on the
left, when going along e in its direction. Thus, a uni-directed edge pair consists
of one left edge and one right edge, while a bi-directed edge pair either consists
of two left edges (clockwise oriented 2-gon) or two right edges (counterclockwise
oriented 2-gon).

If e = (u, v) is an edge in an edge pair, let e2 and e3 be the second and third
outgoing edge at v when going counterclockwise around v starting with e. We
define the successor of e as succ(e) = e2 if e is a right edge, and succ(e) = e3

if e is a left edge, see Fig. 6 (b,c). Note that in a corner-edge-labeling succ(e) is
exactly the outgoing edge at v that has the same color as e, see Fig. 4.

Note that e′ = succ(e) may be a loose edge in Ḡ at the concave vertex
for some 5-face in G. For the sake of shorter proofs below, we shall avoid the
treatment of this case. To do so, we augment G to a supergraph G′ such that
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starting with any edge in any edge pair and repeatedly taking the successor, we
never run into a loose edge pointing to an inner face.

The graph G′ is formally obtained from G by stacking a new vertex w into
each 5-face f , with an edge to the incoming neighbor v of f in Ḡ and the vertex u
at f that comes second after v in the clockwise order around f in Ḡ. (Indeed, the
second vertex in counterclockwise order would be equally good for our purposes.)
Let f1 and f2 be the resulting 4-face and 5-face incident to w, respectively. We
obtain a 4-orientation of the closure Ḡ′ of G′ by orienting all edges at f1 as
outgoing, both edges between v and w as right edges (counterclockwise), the
remaining three edges at w as outgoing, and the remaining four edges at f2 as
outgoing. See Fig. 7 (left) for an illustration.

Before we augment the 4-orientation of Ḡ′ into a corner-edge-labeling, we
need one last observation. Let e and succ(e) be two edges in edge pairs of Ḡ′

with common vertex v. Consider the wedges at v between e and succ(e) when
going clockwise (left wedge) and counterclockwise (right wedge) around v. Each
of e, succ(e) can be a left edge or right edge, and in a uni-directed pair or a bi-
directed pair. This gives us four types of edges and 16 possibilities for the types
of e and succ(e). The graph H in Fig. 6(a) shows for each of these 16 possibilities
the number of outgoing edges at v in the left and right wedge at v.

Observation 4. For every directed closed walk on k edges in the graph H in
Fig. 6(a) we have

#edges in left wedges = #edges in right wedges = k.

Proof. It suffices to check each directed cycle on k edges, k = 1, 2, 3, 4. ��

Lemma 3. Every 4-orientation of Ḡ induces a corner-edge-labeling of Ḡ.

A detailed proof of Lemma3 is given in the full version of this paper [8].

Proof (Sketch). Consider the augmented graph G′, its closure Ḡ′ and 4-
orientation as defined above. For any edge e in an edge pair in Ḡ′ (and hence
every edge of Ḡ outgoing at some vertex of G) consider the directed walk We in
Ḡ′ starting with e by repeatedly taking the successor as long as it exists (namely
the current edge is in an edge pair).

First we show that We is a simple path ending at one of the eight loose edges
in the outer face. Indeed, otherwise We would contain a simple cycle C where
every edge on C, except the first, is the successor of its preceding edge on C.
From the graph H of Fig. 6(a) we see that every wedge of C contains at most two
outgoing edges. With Observation 4 the number of edges pointing inside C is at
least |V (C)| − 2 and at most |V (C)| + 2, which is a contradiction to Lemma 2.

Now let v0, v1, v2, v3 be the outer vertices in this counterclockwise order.
Define the color of e to be i if We ends with the right loose edge at vi or the left
loose edge at vi−1, indices modulo 4. By definition every edge has the same color
as its successor in Ḡ′ (if it exists). Thus this coloring is a corner-edge-labeling
of Ḡ′ if at every vertex v of G the four outgoing edges are colored 0, 1, 2, and 3,
in this counterclockwise order around v.
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Claim. Let e1, e2 be two outgoing edges at v for which We1
∩ We2

consists of
more than just v. Then e1 and e2 appear consecutively among the outgoing edges
around v, say e1 clockwise after e2.

Moreover, if u �= v is a vertex in We1
∩ We2

for which the subpaths W1 of
We1

and W2 of We2
between v and u do not share inner vertices, then the last

edge e′
1 of W1 is a right edge and the last edge e′

2 of W2 is a left edge, e′
1 and

e′
2 are part of (possibly the same) uni-directed pairs and these pairs sit in the

same incoming wedge at u.

To prove this claim, we consider the cycle C = W1 ∪ W2, count the edges
pointing inside with the graph H and conclude that neither u nor v may have
edges pointing inside C. See Fig. 7 (right) for an illustration.

The claim implies that the two walks We1
and We2

can neither cross, nor
have an edge in common. Considering the four walks starting in a given vertex,
we can argue (with the second part of the claim) that our coloring is a corner-
edge-labeling of Ḡ′. Finally, we inherit a corner-edge-labeling of Ḡ by reverting
the stacking of artificial vertices in 5-faces. ��

4.3 From Corner-Edge-Labelings to Rectangle Contact
Arrangements

It remains to compute a rectangle arrangement of G based on a given corner-
edge-labeling of Ḡ. That is, we shall prove the following lemma.

Lemma 4. Every corner-edge-labeling of Ḡ induces a rectangle contact arrange-
ment of G.

A detailed proof of Lemma4 is given in the full version of this paper [8].

Proof (Sketch). Fix a corner-edge-labeling of Ḡ. For every vertex v of G we
introduce two pairs of variables x1(v), x2(v) and y1(v), y2(v) and set up a system
of inequalities and equalities such that any solution defines a rectangle contact
arrangement {R(v) | v ∈ V } of G with R(v) = [x1(v), x2(v)] × [y1(v), y2(v)],
which is compatible with the given corner-edge-labeling.

For every edge vw of G the way in which R(v) and R(w) are supposed to
touch is encoded in the given corner-edge-labeling and this can be described by
the inequalities and equalities in Table 1. Here we list the constraint and the
conditions (color and orientation) of a single directed edge between v and w or
a uni-directed edge pair outgoing at v and incoming at w in Ḡ under which we
have this constraint.

Instead of showing that the system in Table 1 has a solution, we define another
set of constraints implying all constraints in Table 1, for which it is easier to prove
feasibility.

It suffices to define a system Ix for x-coordinates and treat the y-coordinates
analogously. In Ix we have x1(v) < x2(v) for every vertex v together with all
equalities in the left of Table 1, but only those inequalities in the left of Table 1
that arise from edges in bi-directed edge pairs. The inequalities arising from uni-
directed edge pairs are implied by the following set of inequalities. For a vertex
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Table 1. Constraints encoding the type of contact between R(v) and R(w), defined
based on the orientation and color(s) of the edge pair between v and w in Ḡ.

v in G let S1(v) = a1, . . . , ak and S2(v) = b1, . . . , b� be the counterclockwise
sequences of neighbors of v in the incoming wedges at v bounded by its outgoing
edges of color 0 and 1, and color 2 and 3, respectively. See the left of Fig. 8. Then
we have in Ix the inequalities

x1(ai) > x2(ai+1) for i = 1, . . . , k − 1 and x2(bi) < x1(bi+1) for i = 1, . . . , � − 1. (1)

If k = 1 we have no constraint for S1(v) and if � = 1 we have no constraint for
S2(v).

We associate the system Ix with a partially oriented graph Ix whose vertex
set is {x1(v), x2(v) | v ∈ V }. For each inequality a > b we have an oriented edge
(a, b) in Ix, while for each equality a = b we have an undirected edge ab in Ix,
see Fig. 8.

We observe that Ix is planar and prove that Ix has no cycle C in which
all directed edges are oriented consistently, which clearly implies that Ix has a
solution. This is done by showing that no inner face is such a cycle, and that for
every inner vertex u, vertex x1(u) has an incident undirected edge or incident
outgoing edge and vertex x2(u) has an incident undirected edge or incident
incoming edge. ��

5 MTP Graphs Are Rectangle Contact Graphs –
Proofsketch of Theorem2

Theorem 2 is formally proven in the full version of this paper [8]. The idea is to
prove by induction on the number of vertices that for an MTP-graph G we find
a 4-orientation of Ḡ. In the inductive step we either have (Case 1) that G has
an inner 4-face, or (Case 2) that one can contract an inner edge e, keeping it an
MTP-graph. Figures 9 and 10 illustrate how to find a 4-orientation in Cases 1
and 2, respectively.
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Ḡ

x

a b a b a b a b a b
f ff

Fig. 9. Collapsing an inner 4-face and inheriting a 4-orientation when uncollapsing.

6 Line-Pierced Rectangle Arrangements
and Squarability – Proofsketch of Theorem3

Recall that a rectangle arrangement R is line-pierced if there is a horizontal line
� that intersects every rectangle in R. Note that by the line-piercing property
of R the intersection graph remains the same if we project each rectangle R =
[a, b] × [c, d] ∈ R onto the interval [a, b] ⊆ R. In particular, the intersection
graph GR of a line-pierced rectangle arrangement R is an interval graph, i.e.,
intersection graph of intervals on the real line.

Line-pierced rectangle arrangements, however, carry more information than
one-dimensional interval graphs since the vertical positions of intersection points
between rectangles do influence the combinatorial properties of the arrangement.
We obtain two squarability results for line-pierced arrangements in Proposi-
tions 2 and 3, which yield Theorem3.

Proposition 2. Every line-pierced, triangle-free, and cross-free rectangle
arrangement R is squarable.

There are instances, however, that satisfy the conditions of Proposition 2 and
thus have a squaring, but not a line-pierced one. An example is given in Fig. 12.

Proposition 3. Every line-pierced rectangle arrangement R restricted to corner
intersections is squarable. There even exists a corresponding squaring with unit
squares that remains line-pierced.
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Fig. 10. Contracting an edge and keeping a 4-orientation when uncontracting.

Fig. 11. Constructing a combinatorially equivalent squaring from a line-pierce,
triangle-free, and cross-free rectangle arrangement.

Fig. 12. Left: A line-pierced, triangle-free rectangle arrangement that has no line-
pierced squaring. Middle: An unsquarable line-pierced rectangle arrangement due to a
forbidden cycle of side-piercing intersections. Right: Squaring the two vertical pairs of
rectangles on the right implies that the central square would need to be wider than tall.

Propositions 2 and 3 are proved in the full version of this paper [8]. The crucial
observation is that the intersection graph of R is a caterpillar in the former
case (Fig. 11) and a unit-interval graph in the latter case. The results can then
be proven by induction on the number of vertices by iteratively removing the
“rightmost” rectangle in the representation.

If we drop the restrictions to corner intersections and triangle-free arrange-
ments, we can immediately find unsquarable instances, either by creating cyclic
“‘smaller than”’ relations or by introducing intersection patterns that become
geometrically infeasible for squares. Two examples are given in Fig. 12.

7 Conclusions

We have introduced corner-edge-labelings, a new combinatorial structure simi-
lar to Schnyder realizers, which captures the combinatorially equivalent maximal
rectangle arrangements with no three rectangles sharing a point. Using this, we
gave a new proof that every triangle-free planar graph is a rectangle contact
graph. We also introduced the squarability problem, which asks for a given rec-
tangle arrangement whether there is a combinatorially equivalent arrangement
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using only squares. We provide some forbidden configuration for the squarability
of an arrangement and show that certain subclasses of line-pierced arrangements
are always squarable. It remains open whether the decision problem for general
arrangements is NP-complete.

Surprisingly, every unsquarable arrangement that we know has a crossing or
a side-piercing. Hence we would like to ask whether every rectangle arrangement
with only corner intersections is squarable. Another natural question is whether
every triangle-free planar graph is a square contact graph.
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1. Asplund, E., Grünbaum, B.: On a coloring problem. Mathematica Scandinavica 8,
181–188 (1960)

2. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J.
(ed.) Thirty Essays in Geometric Graph Theory, pp. 213–248. Springer, New York
(2012)

3. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs.
Comb. Probab. Comput. 3, 233–246 (1994)

4. Fusy, E.: Transversal structures on triangulations: a combinatorial study and
straight-line drawings. Discrete Math. 309(7), 1870–1894 (2009)

5. Imai, H., Asano, T.: Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. J. Algorithms 4(4), 310–323
(1983)

6. Kang, R.J., Müller, T.: Arrangements of pseudocircles and circles. Discrete Com-
put. Geom. 51, 896–925 (2014)

7. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its appli-
cations in graph drawing problems. Theor. Comput. Sci. 172(1–2), 175–193 (1997)
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Abstract

Laman graphs naturally arise in structural mechanics
and rigidity theory. Specifically, they characterize min-
imally rigid planar bar-and-joint systems which are fre-
quently needed in robotics, as well as in molecular chem-
istry and polymer physics. We introduce three new com-
binatorial structures for planar Laman graphs: angular
structures, angle labelings, and edge labelings. The lat-
ter two structures are related to Schnyder realizers for
maximally planar graphs. We prove that planar Laman
graphs are exactly the class of graphs that have an angu-
lar structure that is a tree, called angular tree, and that
every angular tree has a corresponding angle labeling
and edge labeling.

Using a combination of these powerful combina-
torial structures, we show that every planar Laman
graph has an L-contact representation, that is, planar
Laman graphs are contact graphs of axis-aligned L-
shapes. Moreover, we show that planar Laman graphs
and their subgraphs are the only graphs that can be
represented this way.

We present efficient algorithms that compute, for
every planar Laman graph G, an angular tree, angle la-
beling, edge labeling, and finally an L-contact represen-
tation of G. The overall running time is O(n2), where
n is the number of vertices of G, and the L-contact rep-
resentation is realized on the n× n grid.

∗Research supported by NSF grants CCF-0545743 and CCF-

1115971.
†Research supported by GraDR EUROGIGA project No.

GIG/11/E023.
‡Research supported by the Netherlands Organisation for

Scientific Research (NWO) under project no. 639.022.707.

1 Introduction

A contact graph is a graph whose vertices are rep-
resented by geometric objects (like curves, line seg-
ments, or polygons), and edges correspond to two ob-
jects touching in some specified fashion. There is a
large body of work about representing planar graphs
as contact graphs. An early result is Koebe’s 1936 the-
orem [18] that all planar graphs can be represented by
touching disks.

In the late 1990’s Schnyder showed that maximally
planar graphs contain rich combinatorial structure [22].
With an angle labeling and a corresponding edge label-
ing, Schnyder shows that maximally planar graphs can
be decomposed into three edge disjoint spanning trees.
This combinatorial structure can be transformed into a
geometric structure to produce a straight-line crossing-
free planar drawing of the graph with vertex coordi-
nates on the integer grid. Later, de Fraysseix et al. [10]
show how to use the combinatorial structure to produce
a representation of planar graphs as T -contact graphs
(vertices are axis-aligned T ’s and edges correspond to
point contact between T ’s) and triangle contact graphs.

We study the class of planar Laman graphs and
show that we can find similarly powerful combinato-
rial structures. In particular, we show that every pla-
nar Laman graph G contains an angular structure—a
graph on the vertices and faces of G with certain de-
gree restrictions—that is also a tree and hence called
an angular tree. We also show that every angular tree
has a corresponding angle labeling and edge labeling,
which can be thought of as a special Schnyder real-
izer [22]. Using a combination of these combinatorial
structures we show that planar Laman graphs are L-
contact graphs, graphs that can be represented as the
contacts of axis-aligned non-degenerate L’s (where the
vertices correspond to the L’s and the edges correspond
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Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/3

0/
16

 to
 1

29
.1

3.
17

2.
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



vi

x

y

vi+1

x y

z

Figure 1: Two operations of a planar Henneberg construction: an H1-operation followed by an H2-operation.

to non-degenerate point contacts between the corre-
sponding L’s). As a by-product of our approach we
obtain a new characterization of planar Laman graphs:
a planar graph is a Laman graph if and only if it admits
an angular tree. The L-contact representation can be
computed in O(n2) time and realized on the n×n grid,
where n is the number of vertices of G.

Related Work. Koebe’s theorem [18] is an early
example of point-contact representation and shows that
a planar graph can be represented by touching disks.
Any planar graph also has a contact representation
where all the vertices are represented by triangles in
2D [10], or even cubes in 3D [12].

Planar bipartite graphs can be represented by axis-
aligned segment contacts [4, 9, 20]. Triangle-free planar
graphs can be represented via contacts of segments with
only three slopes [6]. Furthermore, every 4-connected
3-colorable planar graph and every 4-colored planar
graph without an induced C4 using four colors can be
represented as the contact graph of segments [8]. More
generally, planar Laman graphs can be represented with
contacts of segments with arbitrary number of slopes
and every contact graph of segments is a subgraph of a
planar Laman graph [1].

The class of planar Laman graphs is of interest due
to the fact that it contains several large classes of planar
graphs (e.g., series-parallel graphs, outer-planar graphs,
planar 2-trees). Laman graphs are also of interest in
structural mechanics, robotics, chemistry and physics,
due to their connection to rigidity theory, which dates
back to the 1970’s [19]. A system of fixed-length bars
and flexible joints connecting them is minimally rigid
if it becomes flexible once any bar is removed; planar
Laman graphs correspond to rigid planar bar-and-joint
systems [15, 16].

While Schnyder realizers were defined for maxi-
mally planar graphs [21, 22], the notion generalizes to 3-
connected planar graphs [11]. Fusy’s transversal struc-
tures [14] for irreducible triangulations of the 4-gon also
provide combinatorial structure that can be used to ob-
tain geometric results. Both concepts are closely related
to certain angle labelings. Angle labelings of quadran-
gulations and plane Laman graphs have been considered

before [13]. However, for planar Laman graphs the la-
beling does not have the desired Schnyder-like proper-
ties. In contrast, the labelings presented in this paper
do have these properties.

Results and Organization. In Section 2 we intro-
duce three combinatorial structures for planar Laman
graphs. We first show that planar Laman graphs admit
an angular tree. Next, we use this angular tree to ob-
tain a corresponding angle labeling and edge labeling.
In Section 3 we use a combination of these combinato-
rial structures to show that planar Laman graphs are L-
contact graphs. We then describe an algorithm to com-
pute the L-contact representation of a planar Laman
graph G in O(n2) time on the n× n grid. The running
time of our algorithm is dominated by the computation
of an angular tree of G. Given an angular tree, the
algorithm runs in O(n) time. Proofs omitted due to
space restrictions can be found in the full version of the
paper [17].

2 Combinatorial Structures for Planar Laman
Graphs

Let G(W ) be the subgraph of G = (V,E) induced by
W ⊆ V and let E(W ) be the set of edges of G(W ).

Definition 2.1. A Laman graph is a connected graph
G = (V,E) with |E| = 2|V | − 3 and |E(W )| ≤ 2|W | − 3
for all W ⊂ V .

Laman graphs admit a Henneberg construction: an
ordering v1 . . . vn of the vertices such that, if Gi is
the graph induced by v1 . . . vi, then G3 is a triangle and
Gi is obtained from Gi−1 by one of these operations:

(H1) Choose two vertices x, y from Gi−1 and add vi
together with the edges (vi, x) and (vi, y).

(H2) Choose an edge (x, y) and a third vertex z from
Gi−1, remove (x, y) and add vi together with the
three edges (vi, x), (vi, y), and (vi, z).

Planar Laman graphs also admit a planar Henneberg
construction [16]. That is, the graph can be constructed
together with a plane straight-line embedding, with each
vertex remaining in the position it is inserted. The
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Figure 2: Two angular structures of the same plane Laman graph. The one on the right is an angular tree.

two operations of a (planar) Henneberg construction are
illustrated in Figure 1.

Let G be a planar Laman graph. Since Laman
graphs have 2|V | − 3 edges, it easily follows that G
contains a facial triangle. We choose an embedding of G
in which such a triangle {v1, v2, v3} is the outer face. We
can assume that the outer face remains intact during a
Henneberg construction, i.e., we never perform an H2-
operation on an edge on the outer face. Let v1, v2, v3
appear in this counterclockwise order around the outer
triangle. We call v1, v2 the special vertices and the outer
edge e∗ = (v1, v2) the special edge of G.

2.1 Angular Structure The angular graph AG of
a plane graph G is a plane bipartite graph defined as
follows. The vertices of AG are the vertices V (G) and
faces F (G) of G and there exists an edge (v, f) between
v ∈ V (G) and f ∈ F (G) if and only if v is incident to
f . If G is 2-connected, then AG is a maximal bipartite
planar graph and every face of AG is a quadrangle.

Definition 2.2. An angular structure of a 2-connected
plane graph G with special edge e∗ = (v1, v2) is a set T
of edges of AG with the following two properties:

Vertex rule: Every vertex v ∈ V (G) \ {v1, v2} has
exactly 2 incident edges in T . Special vertices have
no incident edge in T .

Face rule: Every face f ∈ F (G) has exactly 2 incident
edges not in T .

Let S be the set of edges of AG that are not in T . The
angular structure T can be represented by orienting the
edges of AG as follows. Every edge (v, f) is oriented
from v to f if (v, f) ∈ T , and from f to v if (v, f) ∈ S.
This way every vertex of AG has exactly two outgoing
edges (except for the special vertices). Such orientations
of a maximal bipartite planar graph are called 2-
orientations and were introduced by de Fraysseix and
Ossona de Mendez [7]. From a 2-orientation of AG we
can obtain an angular structure of G.

Lemma 2.1. ([7]) Every maximal bipartite planar
graph has a 2-orientation. Thus every 2-connected
plane graph has an angular structure.

If G is a Laman graph, then |F (G)| = |V (G)| − 1
by Euler’s formula. Thus every angular structure T
consists of 2|V (G)| − 4 edges and spans |V (AG)| − 2 =
2|V (G)| − 3 vertices. Hence, if T is connected, then
T is a spanning tree of V (AG) \ {v1, v2}. An angular
structure that is a tree is called an angular tree. In
Fig. 2 two angular structures of the same plane Laman
graph are shown – one is an angular tree.

Next we show that every plane Laman graph admits
an angular tree. Our proof is constructive and computes
an angular tree along a planar Henneberg sequence of
G. Consider a cycle C in AG such that the edges
of C are alternatingly in S and T . We say that C
is an alternating cycle. We can perform a flip on C
by removing all edges in C ∩ T from T and adding
all edges in C ∩ S to T . The resulting set of edges
satisfies the properties of an angular structure. A flip
corresponds to reversing the edges of a directed cycle in
the corresponding 2-orientation.

Lemma 2.2. Let T consist of two connected components
A and B, where A is a tree and B contains a cycle. If we
perform a flip on an alternating 4-cycle C that contains
an edge of A and an edge of the cycle in B, then the
resulting angular structure is a tree.

Proof. If we remove the edges in C ∩ T from T , then B
becomes a tree, and we split up A into trees A1 and A2.
The edges in C ∩S connect A1 to B and A2 to B. Thus
the resulting angular structure is a tree.

Theorem 2.1. Every plane Laman graph G admits an
angular tree T and it can be computed in O(|V (G)|2)
time.

Proof. We build G and T simultaneously along a pla-
nar Henneberg construction, which can be found in
O(|V (G)|2) time using an algorithm of Bereg [2]. T
remains a tree during the construction. We begin with
the triangle {v1, v2, v3} and T containing the two edges
incident to v3 in AG. Now assume we insert a vertex v
into a face f of G, which is split into two faces f1 and
f2.

3
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Figure 3: Left: updating T (drawn dotted) for (H1). Right: alternating cycles after (H2).

For an H1-operation, let x and y be the original
vertices of the graph. We add an edge (u, f1) to T if
and only if u is incident to f1 and (u, f) ∈ T before
the operation. We do the same for f2. Furthermore, we
add edges (v, f1) and (v, f2) to T . If (x, f) ∈ T before
the operation, then we remove either (x, f1) or (x, f2)
from T . Similarly, if (y, f) ∈ T before the operation,
then we remove either (y, f1) or (y, f2) from T . By
choosing these edges correctly, we can ensure that f1
and f2 satisfy the degree constraints; see Fig. 3(left).
This operation cannot introduce a cycle, so T must
remain a tree.

For an H2-operation, let (x, y) and z be the edge
and vertex of the operation. Furthermore, let f ′ be the
face of G that shares the edge (x, y) with f before the
operation. We add an edge (u, f1) to T if and only if
u is incident to f1 and (u, f) ∈ T before the operation
(same for f2). Furthermore, we add edges (v, f ′) and
either (v, f1) or (v, f2) to T . If (z, f) ∈ T before the
operation, then we remove either (z, f1) or (z, f2) from
T . As above, we can choose the edges to ensure that
f1 and f2 satisfy the degree constraints. However, this
operation can introduce a cycle in T containing the new
vertex v (if not, we are done). Assume w.l.o.g. that
f1 is part of this cycle, and hence (v, f1) ∈ T ; see
Fig. 3(right).

If (z, f2) ∈ T , then (z, f1) /∈ T , and the cycle formed
by (z, f1), (z, f2), (v, f2), and (v, f1) is alternating and
satisfies the requirements of Lemma 2.2. We can flip
this cycle to turn T into a tree. If (z, f2) /∈ T , then
(y, f2) ∈ T by the degree constraints on f2. Also,
(y, f ′) /∈ T , for otherwise T would contain a cycle
before the operation. Thus, the cycle formed by (y, f2),
(y, f ′), (v, f ′), and (v, f2) is alternating and satisfies the
requirements of Lemma 2.2. As before, we can flip this
cycle to turn T into a tree.

At each step in the above procedure one vertex is
added to G. The operations carried out to maintain the
angular tree can be performed in O(1) time for an H1-
operation and in O(|V (G)|) time for an H2-operation.
Indeed, the bottleneck in the latter case is identifying
the unique cycle in the intermediate angular structure.

Thus the total runtime is O(|V (G)|2), which concludes
the proof.

Lemma 2.3. If T is an angular tree and f is a trian-
gular face of G, then T contains a perfect matching be-
tween non-special vertices of G and faces of G different
from f .

Proof. Remove the vertex corresponding to f (leaf in
T ) from T and let v be the non-special vertex with
(v, f) ∈ T . Direct all edges of T towards v. Now every
face f ′ 6= f has exactly one outgoing edge in T and every
non-special vertex has exactly one incoming edge in T .
The desired matching can be obtained by matching each
face different from f to the unique endpoint v ∈ V (G)
of its outgoing edge in T .

2.2 Angle Labeling Next we define a labeling of
the angles of G, using the angular structure above; see
Fig. 4. This labeling for 2-connected plane graphs is
similar to the Schnyder angle labeling for maximally
plane graphs.

Definition 2.3. An angle labeling of a 2-connected
plane graph G with special edge e∗ = (v1, v2) is a labeling
of the angles of G by 1, 2, 3, 4, with the following two
properties:

Vertex rule: Around every vertex v 6= v1, v2, in clock-
wise order, we get the following sequence of angles:
exactly one angle labeled 3, zero or more angles la-
beled 2, exactly one angle labeled 4, zero or more
angles labeled 1. All angles at v1 are labeled 1, all
angles at v2 are labeled 2.

Face rule: Around every face, in clockwise order, we
get the following sequence of angles: exactly one
angle labeled 1, zero or more angles labeled 3,
exactly one angle labeled 2, zero or more angles
labeled 4.

Theorem 2.2. Every 2-connected plane graph admits
an angle labeling.
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Figure 4: Vertex rule (a), face rule (b), and edge rule (c)-(d). Red edges are drawn thick.

Proof. By Lemma 2.1 every 2-connected plane graph G
admits an angular structure, which corresponds to a 2-
orientation of the angular graph AG. The edges of a
2-orientation can be colored in red and blue, such that
the edges around each vertex v are ordered as follows:
one outgoing red edge, zero or more incoming red
edges, one outgoing blue edge, zero or more incoming
blue edges (the order is clockwise for v ∈ V (G) and
counterclockwise for v ∈ F (G)). Such an orientation
and coloring of the edges of a maximal bipartite planar
graph is called a separating decomposition [7].

We now label each angle at a vertex v of G based
on the color and orientation of the corresponding edge
(v, f) in the separating decomposition. If the edge is
incoming at v and colored blue, we label the angle 1. If
the edge is incoming at v and colored red, we label the
angle 2. If the edge is outgoing at v and colored red, we
label the angle 3. If the edge is outgoing at v and colored
blue, we label the angle 4. It is now straightforward to
verify that the vertex rule and face rule are implied by
the order in which incident edges appear around each
vertex in the separating decomposition.

Note that the correspondence derived above be-
tween an angular structure T and an angle labeling of G
is such that (v, f) ∈ T if and only if the corresponding
angle label is 3 or 4. Moreover, from an angle labeling
one can derive the corresponding separating decomposi-
tion of AG and hence the corresponding angular struc-
ture. In particular, there is a bijection between angular
structures of G and angle labelings of G.

2.3 Edge Labeling Finally, we define an orientation
and coloring of the edges of a 2-connected plane graph
G based on an angular tree T of G; see Fig. 4. This
edge labeling for 2-connected plane graphs is similar to
the Schnyder edge labeling for maximally plane graphs.

Definition 2.4. An edge labeling of a 2-connected
plane graph G with special edge e∗ = (v1, v2) is an
orientation and coloring of the non-special edges of G

with colors 1 (red) and 2 (blue), such that each of the
following holds:

Vertex rule: Around every vertex v 6= v1, v2, in clock-
wise order, we get the following sequence of edges:
exactly one outgoing red edge, zero or more incom-
ing blue edges, zero or more incoming red edges, ex-
actly one outgoing blue edge, zero or more incoming
red edges, and zero or more incoming blue edges.
All non-special edges at v1 are incoming and red,
all non-special edges at v2 are incoming and blue.

Face rule: For every inner face f there are two distin-
guished vertices r and b. Every red edge on f is
directed from b towards r, and every blue edge is
directed from r towards b. The vertices r and b are
called the red and blue sink of f , respectively.

We denote the edge labeling by (Er, Eb), where Er and
Eb is the set of all red and blue edges, respectively.

In an edge labeling (Er, Eb) of G every non-special
vertex has two outgoing edges. Together with the
special edge this makes 2|V (G)| − 3 edges in total.
Thus |E(G)| = 2|V (G)| − 3 and |F (G)| = |V (G)| − 1.
Every inner face has exactly two sinks, which makes
2|F (G)| = |E(G)|−1 in total. Indeed, there is a one-to-
one correspondence between the non-special edges of G
and sinks of inner faces in (Er, Eb). We associate every
directed edge e with the inner face f incident to it as
illustrated in Fig. 4(d). This way we have the following
for every edge labeling (Er, Eb) of G.

Edge rule: Every non-special edge e corresponds to
one incident inner face f , such that the endpoint of
e is a sink of f in the color of e.

Theorem 2.3. If a 2-connected plane graph admits an
angular tree, then it admits an edge labeling.

Proof. Let G be a 2-connected plane graph and T be
an angular structure of G. By Theorem 2.2, G admits
an angle labeling that corresponds to T , i.e., the angle

5
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Figure 5: Left: possible L-shapes. Middle: valid contacts. Right: invalid contacts.

of a face f at a vertex v is labeled 3 or 4 if and only
if (v, f) ∈ T . We split every vertex v in G, except for
v1 and v2, into two vertices v1 and v2, in such a way
that for i = 1, 2 all edges incident to an angle labeled
i are incident to vi. We call the resulting graph H.
In other words H arises from G by splitting each non-
special vertex along its two edges in T . Thus, as T is
acyclic, H is connected. Since H consists of 2|V (G)|−2
vertices (v1, v2 plus 2(|V (G)| − 2) split vertices) and
|E(G)| = 2|V (G)| − 3 edges, H is a tree.

We orient every edge e in H towards the special
edge e∗ of G. We color e red if it is outgoing at
some v2 and blue if it is outgoing at some v1. It is
now straightforward to check, using the vertex rule and
face rule of the angle labeling, that this orientation and
coloring of the edges is a valid edge labeling of G.

Not every edge labeling corresponds to an angular
tree. Also, some but not all angular structures that
are not trees correspond to an edge labeling. For
example, the angular structure in Fig. 2 (left) has no
corresponding edge labeling. Hence, edge labelings of G
and angular structures (or angular trees) of G are not
in bijection.

Theorem 2.4. An edge labeling (Er, Eb) of a 2-
connected plane graph G with special edge e∗ = (v1, v2)
has the following two properties:

(i) The graph Er ∪ E−1b (Eb ∪ E−1r ) is acyclic, where
E−1b is Eb with the direction of all edges reversed.

(ii) The graph Er (Eb) is a spanning tree of G \ {v2}
(G \ {v1}) with all edges directed towards v1 (v2).

Proof. Consider the graph Er∪E−1b . Since every vertex
except for v1 and v2 has an outgoing red edge and an
outgoing blue edge, there is only one source (all edges
are outgoing at v2) and one sink (all edges are incoming
at v1) in Er ∪ E−1b . By the face rule, every face has
exactly one source (the blue sink) and one sink (the red
sink). The face rule for the inner face of G containing
the special edge e∗ implies that the outer cycle as well

has exactly one source (v1) and exactly one sink (v2).
Every nesting minimal (the set of faces it circumscribes
is inclusion minimal) directed cycle in a plane graph
is either a facial cycle or has a source or sink in its
interior. This proves (i). Part (ii) follows directly from
part (i) and the fact that every non-special vertex has
one outgoing edge in Er (Eb).

3 L-Contact Graphs

An L-shape L is a path consisting of exactly one hori-
zontal segment and exactly one vertical segment. There
are four different types of L-shapes; see Fig. 5(left). Two
L-shapes L1 and L2 make contact if and only if the end-
point of one of the two L-shapes coincides with an in-
terior point of the other L-shape; see Fig. 5(middle). If
the endpoint belongs to L1, then we say that L1 makes
contact with L2. Note that we do not allow contact
using the bend of an L-shape; see Fig. 5(right).

A graph G = (V,E) is an L-contact graph if
there exist non-crossing L-shapes L(v) for each v ∈
V , such that L(u) and L(v) make contact if and
only if (u, v) ∈ E. We call these L-shapes the L-
contact representation of G. We can match edges of
L-contact graphs to endpoints of L-shapes. However,
an endpoint that is bottommost, topmost, leftmost,
or rightmost cannot correspond to an edge. We call
an L-contact representation maximal if every endpoint
that is neither bottommost, topmost, leftmost, nor
rightmost makes a contact, and there are at most three
endpoints that do not make a contact. We assume
that the bottommost, topmost, leftmost, and rightmost
endpoints are uniquely defined.

In a maximal L-contact representation of a graph G,
each inner face of G is bounded by a simple rectilinear
polygon, which is contained in the union of all L-shapes.
Now each L(v) has a right angle, which is a convex
corner of the polygon corresponding to one incident face
at v and a concave corner corresponding to another
incident face at v, provided the corresponding face is
an inner face.
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Figure 6: Left: K4 is an L-contact graph but not a Laman graph. Right: Illustration of the proof of Lemma 3.1.

Lemma 3.1. If a graph G has a maximal L-contact rep-
resentation in which each inner face contains the right
angle of exactly one L, then G is a plane Laman graph.

Proof. Consider a maximal L-contact representation of
G in which every inner face contains the right angle of
exactly one L. By the definition of maximal L-contact
representations, we get that |E(G)| ≥ 2|V (G)| − 3.
We need to show that |E(W )| ≤ 2|W | − 3 for all
subsets W ⊆ V (G) of at least two vertices. For the
sake of contradiction, let W be a set (|W | ≥ 2) with
|E(W )| ≥ 2|W | − 2. It follows that at most two
endpoints of L-shapes corresponding to vertices in W
do not make contact when restricted to W . Since this
holds for one bottommost endpoint and one topmost
endpoint, we have |E(W )| = 2|W | − 2. Moreover, if we
choose W to be inclusion-minimal among all such sets,
then G(W ) is 2-connected; see thick L-shapes in Fig. 6.

The outer face of G(W ) is bounded by a rectilinear
polygon P with two additional ends sticking out. This
polygon is highlighted in Fig. 6. Consider the vertex
set W ′ ⊇ W of all vertices whose corresponding L-
shapes are contained in P, i.e., G(W ) is a subgraph
of G(W ′) and every inner face of G(W ′) is an inner
face of G. Since the representation is maximal we have
|E(W ′)| = |E(W )| + 2|W ′ \ W | = 2|W ′| − 2. Hence
G(W ′) has too many edges as well. We want to show
that one inner face of G(W ′) has two convex angles,
which would then complete the proof.

Let k be the number of outer vertices of G(W ′).
Since P has only two endpoints sticking out, all but two
of its convex corners are due to a single L, so the number
of convex corners of P is at most k + 2. Each outer
edge of G(W ′), except for two, corresponds to a contact
that is a concave corner of P, so the number of concave
corners of P is at least k−2. In every rectilinear polygon
the number of concave corners is exactly the number
of its convex corners minus four. Thus we conclude
that both inequalities above must hold with equality.
In particular, every concave corner of P corresponds to
a contact of two L-shapes and no concave corner is due
to a single L. Moreover, every L-shape corresponding
to an outer vertex in G(W ′) forms a convex corner of

P. Hence for every w ∈W ′ the right angle of L(w) lies
inside P.

By Euler’s formula G(W ′) has precisely |W ′| − 1
inner faces. Since there are |W ′| right angles among
those inner faces, one inner face must have two right
angles.

Definition 3.1. A maximal L-contact representation
is proper if every inner face contains the right angle of
exactly one L. An L-contact graph is proper if it has a
proper L-contact representation.

Lemma 3.1 states that all proper L-contact graphs
are plane Laman graphs. The main result of the
remainder of this section is the following.

Theorem 3.1. Plane Laman graphs are precisely
proper L-contact graphs.

To obtain an L-contact representation of a plane Laman
graph, we require only the existence of an angular tree
with the corresponding edge labeling. Thus, if a 2-
connected plane graph G admits an angular tree, then
it has a corresponding edge labeling by Theorem 2.3,
and we can compute a proper L-contact representation
of G. We obtain the following characterization of planar
Laman graphs as a by-product of our approach.

Theorem 3.2. A planar 2-connected graph is a Laman
graph if and only if it admits an angular tree.

3.1 Vertex Types Assume we have an angular tree
T with corresponding edge labeling (Er, Eb) for a plane
Laman graph G. Every non-special vertex v in G has
two incident edges in T . The other endpoint of such an
edge corresponds to a face in G. These are the two faces
that contain the bend of L(v). The matching M of T
obtained from Lemma 2.3 (using the outer face of G as
the triangular face) determines for every vertex of G the
incident inner face f containing the right angle of L(v).
The outgoing red (blue) edge of a vertex v determines
the contact made by the horizontal (vertical) leg of L(v).

We derive from M and (Er, Eb) the type of the L-
shape L(v) for every vertex v. The red sign and blue

7
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Figure 7: Left/Right: types around a vertex/face (t(v) = I). Middle: proof Lemma 3.2.

sign of a vertex v, denoted by tr(v) and tb(v), represent
the direction of the horizontal and vertical leg of L(v),
respectively. We write the type of v as t(v) = tr(v)tb(v),
or as its quadrant number; see Fig. 5(left).

First we set tb(v1) = ⊕ and tr(v2) = ⊕ (the red sign
of v1 and the blue sign of v2 are irrelevant). For every
non-special vertex v, let er(v) (eb(v)) be its outgoing
red (blue) edge, and eM (v) its incident edge in M . The
angle between er(v) and eb(v) that contains eM (v) is
called the matched angle. The opposite angle is called
the unmatched angle (v1 and v2 have only an unmatched
angle). We use the following rule.

Type rule: Let e = (u, v) be a directed edge from u to
v of color c. If e lies in the unmatched angle of v,
we set tc(u) = tc(v), otherwise tc(u) 6= tc(v).

We need to check if this type rule, along with
T , M , and (Er, Eb), results in a correct L-contact
representation. Around every vertex v, the neighboring
vertices with incoming edges to v must have the correct
red or blue sign. For example, if t(v) = I and the edge
u → v is blue and lies in the matched angle of v, then
tb(u) = 	. Note that this follows directly from the type
rule; see Fig. 7(left).

Secondly, the convex angle of an L-shape L(v) must
belong to the face that contains eM (v). For example,
if eb(v), eM (v), er(v) appear in clockwise order around
v, then t(v) = I or t(v) = III. We say v is odd if
eb(v), eM (v), er(v) appear in clockwise order around v,
and even otherwise.

Lemma 3.2. A non-special vertex v is odd if and only
if tr(v) = tb(v).

Proof. Consider the directed red path P1 from v to
v1 and the directed blue path P2 from v to v2; see
Fig. 7(middle). Since Er ∪ E−1b is acyclic by Theo-
rem 2.4, P1 ∩ P2 consists only of v. Let C be the cy-
cle formed by P1, P2 and the special edge e∗, and G′

be the maximal subgraph of G whose outer cycle is C.
We define r1, r2, r3, r4 as follows (we define b1, b2, b3, b4
analogously w.r.t. P2):

r1 := #{e = (u, v) ∈ P1 | e in unmatched angle of v
and eM (v) outside G′}

r2 := #{e = (u, v) ∈ P1 | e in unmatched angle of v
and eM (v) inside G′}

r3 := #{e = (u, v) ∈ P1 | e in matched angle of v
and eM (v) outside G′}

r4 := #{e = (u, v) ∈ P1 | e in matched angle of v
and eM (v) inside G′}

Now let k = |C| be the number of vertices on C and
|V (G′)| = k+n′. Then G′ has 2n′+k+r2 +r3 + b2 + b3
edges and thus by Euler’s formula n′+b2+b3+r2+r3+1
inner faces. On the other hand G′ \{v} contains exactly
n′ + b2 + b4 + r2 + r4 matching edges. So if v is
odd, then eM lies inside G′, too. Since the number of
inner faces and matching edges must coincide we have
b3 + r3 = b4 + r4. In particular b3 + b4 and r3 + r4 have
the same parity, which means that the red and blue sign
of v coincide. If v is even, then eM lies outside G′ and
we get b3 + r3 + 1 = b4 + r4, which implies that b3 + b4
and r3+r4 have different parity. Hence the red sign and
blue sign at v are distinct.

Finally we consider the faces in the L-contact represen-
tation. Every inner face f of G has three special ver-
tices: the two sinks u and w, as well as the vertex v that
f is matched to in M . Let u, u1, . . . , ui, v, w1, . . . , wj ,
w,v1, . . . , vk be the clockwise order of the vertices
around f . The type rule implies the following shape of
faces in the L-contact representation; see Fig. 7(right).

Lemma 3.3. Let v be the vertex that is matched to a
face f , and t be the type of v. Then we have the
following:

• Each of u1, . . . , ui has type t− 1.

• Each of v1, . . . , vk has type t.

• Each of w1, . . . , wj has type t+ 1.
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t(v) = ⊕⊕ t(v) = 	⊕ t(v) = 		 t(v) = ⊕	
Dr wj → f ;f → v1, ui vk, w1 → f ;f → u1 v1, ui → f ;f → wj u1 → f ;f → w1, vk
Db u1 → f ;f → w1, vk wj → f ;f → v1, ui vk, w1 → f ;f → u1 v1, ui → f ;f → wj

Table 1: The three inequality edges of a face f of G in Dr and Db for each type of f .

3.2 Inequalities Given the type of every vertex v,
it suffices to find the point (x(v), y(v)) ∈ R2 where the
bend of L(v) is located. Additionally we define for each
inner face f an auxiliary point (x(f), y(f)) ∈ R2, which
in the L-contact representation of G will correspond to
some point in the bounded region corresponding to f .

We use two directed (multi-)graphs Dr and Db on
the vertices and inner faces of G to describe inequalities
for the x- and y-coordinates, respectively. For every
inequality x(u) < x(v) (y(u) < y(v)) there is an edge
u → v in Dr (Db), where u, v ∈ V (G) ∪ F (G). Both
graphs Dr and Db contain all edges of G. The direction
of an edge (u, v) can be determined by t(u), t(v), and
(Er, Eb). An edge u → v is in Dr iff (i) u → v ∈ Er

and tr(u) = ⊕, (ii) v → u ∈ Er and tr(v) = 	, (iii)
u → v ∈ Eb and tr(v) = 	, or (iv) v → u ∈ Eb and
tr(u) = ⊕. Similarly, u → v is in Db iff (i) u → v ∈ Eb

and tb(u) = ⊕, (ii) v → u ∈ Eb and tb(v) = 	, (iii)
u → v ∈ Er and tb(v) = 	, or (iv) v → u ∈ Er and
tb(u) = ⊕.

We need to ensure that the L-contact representation
is non-crossing. The inequalities above are not sufficient
to achieve this. Therefore we add additional inequalities
for each inner face. These inequalities ensure that
each inner face does not cross itself in the L-contact
representation. The inequalities for each type of face
are shown in Table 1; see full version of the paper for
more details [17].

Lemma 3.4. The graphs Dr and Db are acyclic.

The lemma above is straightforward yet tedious to
prove, and hence the proof is in the full version of the
paper [17].

3.3 Construction of L-contact Representation
Given a planar Laman graph G, an L-contact represen-
tation of G is constructed as follows:

(1) Find a planar Henneberg construction for G.

(2) Compute an angular tree T of G (Theorem 2.1).

(3) Compute the angle and edge labeling of G w.r.t. T
(Theorem 2.2 and 2.3).

(4) Compute the type of every vertex of G according to
the type rule in Section 3.1. This can be computed
using a simple traversal of the trees Er and Eb.

(5) Define the directed graphs Dr and Db as described
in Section 3.2

(6) Compute a topological order of Dr and Db (which
is possible as they are acyclic by Lemma 3.4)
and let, for every vertex v in G, x(v) and y(v)
be the number of v in these topological orders,
respectively.

(7) For every non-special vertex v with v → u in
Er and v → w in Eb define an L-shape L(v)
whose horizontal leg spans from x(v) to x(u) on y-
coordinate y(v) and whose vertical leg spans from
y(v) to y(w) on x-coordinate x(v).

Let n be the number of vertices of G. By Theorem 2.1
we can compute an angular tree of G in O(n2) time.
The angle labeling w.r.t. T can be computed in O(n)
time using the linear time algorithm of de Fraysseix and
Ossona de Mendez [7]. Similarly, the edge labeling w.r.t.
T can be computed by a simple traversal of the tree H
described in the proof of Theorem 2.3. It is easy to see
that the remaining steps of our algorithm can also be
computed in O(n) time. Finally note that the vertices
of Dr and Db that correspond to inner faces of G do
not need to be included in the topological order of Dr

and Db. Hence every coordinate used in the L-contact
representation is between 1 and n.

Theorem 3.3. The algorithm above computes an L-
contact representation of G on an n × n grid in O(n2)
time, where n is the number of vertices of G. If
an angular tree is given, then the algorithm runs in
O(n) time.

4 Future Work and Open Problems

Using our newly discovered combinatorial structure,
we showed that planar Laman graphs are L-contact
graphs. A detailed example illustrating the constructive
algorithm is shown in Fig. 8. Thus, we showed that
axis-aligned L’s are as “powerful” as segments with
arbitrary slopes when it comes to contact representation
of planar graphs [1]. The equivalent result is not true
for intersection representation of planar graphs. Indeed
there is no k such that all segment intersection graphs
have an intersection representation with axis-aligned
paths with no more than k bends each [3].

9
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We think that L-contact representations can be
used in various settings. For example, by “fattening“
the L’s we can get proportional side-contact representa-
tions similar to those in [1].

Several natural open problems follow from our
results:

1. There are L-contact graphs that are not Laman
graphs (e.g. K4). All L-contact graphs are planar
and satisfy |E(W )| ≤ 2|W | − 2 for all W ⊆ V . Are
these conditions also sufficient?

2. The L-contact representations resulting from our
algorithm use all four types of L-shapes. If we limit
ourselves to only type-I L’s we can represent planar
graphs of tree-width at most 2, which include
outerplanar graphs. What happens if we limit
ourselves to only type-I L’s and allow degenerate
L’s?

3. Not every edge labeling corresponds to an angular
tree. What are the necessary conditions for an edge
labeling to have a corresponding (not necessarily
proper) L-contact representation?

4. Planar Laman graphs can be characterized by the
existence of an angular tree, which we can compute
in O(n2) time. This is slower than the fastest
known algorithm for recognizing Laman graphs,
which runs in O(n3/2

√
log n) time [5]. Can we

compute angular trees faster, as to obtain a faster
algorithm for recognizing planar Laman graphs?

Acknowledgments. Work on this paper began during
the Bertinoro Workshop on Graph Drawing. The au-
thors gratefully acknowledge the other participants for
useful discussions.
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Figure 8: Left top: angular tree, and the corresponding matching (thick). Right top: edge labeling corresponding
to angular tree. Middle left: vertex types. Middle right: inequality graph Dr plus x-coordinates. Bottom left:
inequality graph Db plus y-coordinates. Bottom right: L-contact representation.
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Abstract

The boxicity box(H) of a graph H is the smallest integer d such that
H is the intersection of d interval graphs, or equivalently, that H is the in-
tersection graph of axis-aligned boxes in Rd. These intersection represen-
tations can be interpreted as covering representations of the complement
Hc of H with co-interval graphs, that is, complements of interval graphs.
We follow the recent framework of global, local and folded covering num-
bers (Knauer and Ueckerdt, Discrete Mathematics 339 (2016)) to define
two new parameters: the local boxicity box`(H) and the union boxicity
box(H) of H. The union boxicity of H is the smallest d such that Hc

can be covered with d vertex-disjoint unions of co-interval graphs, while
the local boxicity of H is the smallest d such that Hc can be covered with
co-interval graphs, at most d at every vertex.

We show that for every graph H we have box`(H) ≤ box(H) ≤ box(H)
and that each of these inequalities can be arbitrarily far apart. Moreover,
we show that local and union boxicity are also characterized by intersec-
tion representations of appropriate axis-aligned boxes in Rd. We demon-
strate with a few striking examples, that in a sense, the local boxicity is a
better indication for the complexity of a graph, than the classical boxicity.

1 Introduction

An interval graph is an intersection graph of intervals on the real line1. Such
a set {I(v) ⊆ R ∣ v ∈ V (H)} of intervals with vw ∈ E(H)⇔ I(v) ∩ I(w) ≠ ∅ is
called an interval representation of H. A box in Rd, also called a d-dimensional
box, is the Cartesian product of d intervals. The boxicity of a graph H, denoted
by box(H), is the least integer d such that H is the intersection graph of d-
dimensional boxes, and a corresponding set {B(v) ⊆ Rd ∣ v ∈ V (H)} is a box
representation of H. The boxicity was introduced by Roberts [17] in 1969 and
has many applications in as diverse areas as ecology and operations research [4].

As two d-dimensional boxes intersect if and only if each of the d corre-
sponding pairs of intervals intersect, we have the following more graph theoretic
interpretation of the boxicity of a graph; also see Figure 1(a).

Theorem 1 (Roberts [17]). For a graph H we have box(H) ≤ d if and only if
H = G1 ∩⋯ ∩Gd for some interval graphs G1, . . . ,Gd.

I.e., the boxicity of a graph H is the least integer d such that H is the
intersection of some d interval graphs. For a graph H = (V,E) we denote its

1Throughout, we shall just say “intervals” and drop the suffix “on the real line”.
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complement by Hc = (V, (V
2
) −E). Then by De Morgan’s law we have

H = G1 ∩⋯ ∩Gd ⇐⇒ Hc = Gc
1 ∪⋯ ∪Gc

d, (1)

i.e., box(H) is the least integer d such that the complement Hc of H is the union
of d co-interval graphs Gc

1, . . . ,G
c
d, where a co-interval graph is the complement

of an interval graph2. In other words, box(H) ≤ d if Hc can be covered with
d co-interval graphs. Strictly speaking, we have to be a little more precise
here. In order to use De Morgan’s law, we should guarantee that G1, . . . ,Gd

in (1) all have the same vertex set. To this end, if G is a subgraph of H, let
Ḡ = (V (H),E(G)) be the graph obtained from G by adding all vertices in
V (H)−V (G) as isolated vertices. (Whenever we use Ḡ it will be clear from the
context which supergraph H of G we consider.) Clearly we have

Hc = Gc
1 ∪⋯ ∪Gc

d ⇒ Hc = Ḡc
1 ∪⋯ ∪ Ḡc

d ⇒ H = Ḡ1 ∩⋯ ∩ Ḡd

for any graph H and any subgraphs G1, . . . ,Gd of H. Now whenever G is a
co-interval graph, then so is Ḡ, implying that box(H) is the least integer d such
that Hc can be covered with d co-interval graphs.

Graph covering parameters. In the general graph covering problem one is
given an input graph H, a so-called covering class G and a notion of how to cover
H with one or more graphs from G. The most classic notion of covering, which
also corresponds to the boxicity as discussed above, is that H shall be the union
of G1, . . . ,Gt ∈ G, i.e., V (H) = ⋃i∈[t] V (Gi) and E(H) = ⋃i∈[t]E(Gi). (Here
and throughout the paper, for a positive integer t we denote [t] = {1, . . . , t}.)
The global covering number, denoted by cGg (H), is then defined to be the mini-
mum t for which such a cover exists. Many important graph parameters can be
interpreted as a global covering number, e.g., the arboricity [15], the track num-
ber [9] (this is not the track-number as defined in [5]) and the thickness [1, 14],
just to name a few.

Most recently, Knauer and Ueckerdt [11] suggested the following unifying
framework for three kinds of covering numbers, differing in the underlying notion
of covering. A graph homomorphism is a map ϕ ∶ V (G) → V (H) with the
property that if uv ∈ E(G) then ϕ(u)ϕ(v) ∈ E(H), i.e., ϕmaps vertices ofG (not
necessarily injectively) to vertices of H such that edges are mapped to edges.
For abbreviation we shall simply write ϕ ∶ G→H instead of ϕ ∶ V (G)→ V (H).
For an input graph H, a covering class G and a positive integer t, a t-globalG-cover of H is an edge-surjective homomorphism ϕ ∶ G1 ⊍ ⋯ ⊍ Gt → H such
that Gi ∈ G for each i ∈ [t]. Here ⊍ denotes the vertex-disjoint union of graphs.
We say that ϕ is injective if its restriction to Gi is injective for each i ∈ [t]. AG-cover is called s-local if ∣ϕ−1(v)∣ ≤ s for every v ∈ V (H).

Hence, if ϕ is a G-cover of H, then

ϕ is t-global if it uses only t graphs from the covering class G,

ϕ is injective if ϕ(Gi) is a copy of Gi in H for each i ∈ [t],
ϕ is s-local if for each v ∈ V (H) at most s vertices are mapped onto v.

2Equivalently, these are the comparability graphs of interval orders.
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Figure 1: (a) The 4-cycle as the intersection of two interval graphs. (b) Example
graph H. (c) An injective covering of H that is 3-global and 2-local. (d) A (non-
injective) 1-global 2-local covering of H.

For a covering class G and an input graph H the global covering number
cGg (H), the local covering number cG̀(H), and the folded covering number cGf (H)
are then defined as follows; see also Figure 1(b)–(d):

cGg (H) = min{t ∶ there exists a t-global injective G-cover of H}
cG̀(H) = min{s ∶ there exists an s-local injective G-cover of H}
cGf (H) = min{s ∶ there exists a 1-global s-local G-cover of H}

Intuitively speaking, for cG̀(H) we want to represent the input graph H as
the union of graphs from the covering class G, where the number of graphs we
use is not important. Rather we want to “use” each vertex of H in only few of
these subgraphs. For cGf (H) it is convenient to think of the “inverse” mapping
for ϕ. If ϕ ∶ G1 →H is a 1-global G-cover of H, then the preimage under ϕ of a
vertex v ∈ V (H) is an independent set Sv in G1. Moreover, for every u, v ∈ V (H)
we have uv ∈ E(H) if and only if there is at least one edge between Su and Sv

in G1. So G1 is obtained from H by a series of vertex splits, where splitting a
vertex v into an independent set Sv is such that for each edge vw incident to v
there is at least one edge between w and Sv after the split. Now cGf (H) is the
smallest s such that each vertex can be split into at most s vertices so that the
resulting graph G1 lies in the covering class G.

It is known, that if the covering class G is closed under certain graph opera-
tions, we can deduce inequalities between the folded, local and global covering
numbers. For a graph class G we define the following.

• G is homomorphism-closed if for any connected G ∈ G and any homomor-
phism ϕ ∶ G→H into some graph H we have that ϕ(G) ∈ G.

• G is hereditary if for any G ∈ G and any induced subgraph G′ of G we have
that G′ ∈ G.

• G is union-closed if for any G1,G2 ∈ G we have that G1 ⊍G2 ∈ G.

Proposition 2 (Knauer-Ueckerdt [11]). For every input graph H and every
covering class G we have

(i) cG̀(H) ≤ cGg (H), and if G is union-closed, then cGf (H) ≤ cG̀(H),

(ii) if G is hereditary and homomorphism-closed, then cGf (H) ≥ cG̀(H).
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Boxicity variants. Let us put the boxicity into the graph covering framework
by Knauer and Ueckerdt [11] as described above. To this end, let C denote the
class of all co-interval graphs. Then we have box(H) = cCg(Hc) and we can
investigate the new parameters

boxf(H) ∶= cCf(Hc) and box`(H) ∶= cC̀(Hc).
Clearly, if H is an interval graph, i.e., Hc ∈ C, then boxf(H) = box`(H) =
box(H) = 1. As it turns out, if H is not an interval graph, then boxf(H) is not
very meaningful.

Theorem 3. For every graph H we have boxf(H) = 1 if Hc ∈ C and boxf(H) =∞ otherwise.

Basically, Theorem 3 says that if Hc is not a co-interval graph, there is
no way to obtain a co-interval graph from Hc by vertex splits. For example,
if H has an induced 4-cycle and hence Hc has two independent edges, then
Hc ∉ C and whatever vertex splits are applied, the result will always have two
independent edges, i.e., not be a co-interval graph. To overcome this issue, it
makes sense to define C to be the class of all vertex-disjoint unions of co-interval
graphs and consider the parameters

box(H) ∶= cCg(Hc), box`(H) ∶= cC̀(Hc), boxf(H) ∶= cCf(Hc).
We have defined in total six boxicity-related graph parameters, one of which

(namely boxf(H)) turned out to be meaningless by Theorem 3. Somehow
luckily, three of the remaining five parameters always coincide.

Theorem 4. For every graph H we have box`(H) = box`(H) = boxf(H).

Proposition 2 gives box`(H) = cC̀(Hc) ≤ cCg(Hc) = box(H) for every input

graph H. As C ⊂ C we have box(H) = cCg(Hc) ≤ cCg(Hc) = box(H) for every
input graph H. Hence with Theorem 4 for every graph H the remaining three
boxicity-related parameters fulfil:

box`(H) ≤ box(H) ≤ box(H). (2)

We refer to box`(H) as the local boxicity of H and to box(H) as the union
boxicity of H. Indeed, the three parameters boxicity, local boxicity and union
boxicity are non-trivial and reflect different aspects of the graph, as will be
investigated in more detail in this paper.

Theorem 5. For every positive integer k there exist graphs Hk,H
′
k,H

′′
k with

(i) box`(Hk) ≥ k,

(ii) box`(H ′
k) = 2 and box(H ′

k) ≥ k,

(iii) box(H ′′
k ) = 1 and box(H ′′

k ) = k.

We also give geometric interpretations of the local and union boxicity of a
graph H in terms of intersecting high-dimensional boxes. For positive integers
k, d with k ≤ d we call a d-dimensional box B = I1 ×⋯× Id k-local if for at most
k indices i ∈ {1, . . . , d} we have Ii ≠ R. Thus a k-local d-dimensional box is the
Cartesian product of d intervals, at least d − k of which are equal to the entire
real line R.

4



Theorem 6. Let H be a graph.

(i) We have box(H) ≤ k if and only if there exist d1, . . . , dk such that H is
the intersection graph of Cartesian products of k boxes, where the ith box
is 1-local di-dimensional, i = 1, . . . , k.

(ii) We have box`(H) ≤ k if and only if there exists some d such that H is the
intersection graph of k-local d-dimensional boxes.

There is a number of results in the literature stating that the boxicity of
certain graphs is low, for which we can easily see that the local boxicity is even
lower. Indeed, often an intersection representation with d-dimensional boxes
is constructed, in order to show that box(H) ≤ d, and in many cases these
representations consist of s-local d-dimensional boxes for some s < d (or can be
turned into such quite easily). Hence, with Theorem 6 we can conclude in such
cases that box`(H) ≤ s.

Let us restrict here to one such case, which is comparably simple. For a
graph H the acyclic chromatic number, denoted by χa(H), is the smallest k
such that there exists a proper vertex coloring of H with k colors in which
any two color classes induce a forest. In other words, an acyclic coloring has
no monochromatic edges and no bicolored cycles. Esperet and Joret [6] have
recently shown that for any graph H with χa(H) = k we have box(H) ≤ k(k−1).
Indeed, their proof (which we include here for completeness) gives an intersection
representation of H with 2(k−1)-local k(k−1)-dimensional boxes, implying the
following theorem.

Theorem 7. For every graph H we have box`(H) ≤ 2(χa(H) − 1).

Proof. Let c be an acyclic coloring of H with k colors. For any pair {i, j} of
colors consider the subgraph Gi,j induced by the vertices of colors i and j. As
Gi,j is a forest, we have box(Gi,j) ≤ 2 (this follows from [18] but can also be
seen fairly easily). Moreover, since H is the union of all Gi,j , the complement
Hc of H is the intersection of the complements of all Ḡi,j (note the use of Ḡi,j

instead of Gi,j here).
Now take an intersection representation of Gi,j with 2-dimensional boxes and

extend it to one for Ḡi,j by putting the box R2 for each vertex colored neither

i nor j. Then the Cartesian product of all these (k
2
) box representations is an

intersection representation of H with 2(k − 1)-local k(k − 1)-dimensional boxes.
This proves that box(H) ≤ k(k − 1) and box`(H) ≤ 2(k − 1), as desired.

Organization of the paper. In Section 2 we prove Theorem 3, i.e., that
boxf(H) is meaningless, and Theorem 4, i.e., that three of the remaining five
boxicity variants coincide. In Section 3 we consider the problem of separation for
boxicity and its local and union variants, that is, we give a proof of Theorem 5.
In Section 4 we describe and prove the geometric interpretations of local and
union boxicity from Theorem 6. Finally, we give some concluding remarks and
open problems in Section 5.

2 Local and Union Boxicity

Recall that a graph class G is homomorphism-closed if for every connected graph
G ∈ G and any homorphism ϕ ∶ G → H into some graph H we have ϕ(G) ∈ G.
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Since ϕ is a homomorphism, ϕ(G) arises from G by a series of “inverse vertex
splits”, i.e., an independent set in G is identified into a single vertex of ϕ(G).
If G is not only homomorphism-closed, but also closed under identifying non-
adjacent vertices in disconnected graphs, then the folded covering number cGf
turns out to be somewhat meaningless.

Lemma 8. If a covering class G is closed under identifying non-adjacent ver-
tices, then for every non-empty input graph H we have

cGf (H) <∞ ⇐⇒ H ∈ G ⇐⇒ cGf (H) = 1.

Proof. The right equivalence follows by definition of cGf (H).
The implication H ∈ G ⇒ cGf (H) < ∞ in the first equivalence is thereby

obvious, and it is left to show that cGf (H) = 1 whenever cGf (H) < ∞. So let

ϕ ∶ G1 → H be any 1-global cover of H. We do induction over ∣V (G1)∣, the
number of vertices in G1.

If ∣V (G1)∣ = ∣V (H)∣, i.e., no vertices are folded, then ϕ is injective and
therefore cGf (H) = 1. So assume that ∣V (G1)∣ > ∣V (H)∣ and let v,w be distinct

vertices in G1 with ϕ(v) = ϕ(w). Consider the graph G′
1 that we obtain by

identifying v and w in G1. Since ϕ(v) = ϕ(w) is only possible if v and w are
non-adjacent, and G is closed under identifying non-adjacent vertices we know
that G′

1 ∈ G. Now the 1-global G-cover ϕ ∶ G1 → H induces a 1-global G-cover
ϕ′ ∶ G′

1 →H by ϕ = ϕ′ ○ψ, where ψ ∶ G1 → G′
1 identifies v and w in G1 and fixes

all other vertices. As ∣V (G′
1)∣ = ∣V (G1)∣ − 1, we can apply induction to ϕ′ to

conclude that cGf (H) = 1.

Lemma 9. Let C be the class of all co-interval graphs and C be the class of all
vertex-disjoint unions of co-interval graphs. Then

(i) C and C are hereditary,

(ii) C is closed under identifying non-adjacent vertices, and

(iii) C is homomorphism-closed.

Proof. (i) Consider any graph G ∈ C. Then G = G1 ⊍ ⋯ ⊍ Gt for some
G1, . . . ,Gt ∈ C. If G ∈ C, then t = 1. For i ∈ [t] consider an intersec-
tion representation {Ii(v) ∣ v ∈ V (Gi)} of Gc

i with intervals. For any
vertex set S ⊆ V (G), consider the induced subgraphs when restricted to
vertices in S, i.e., G′ = G[S] and G′

i = Gi[V (Gi)∩S] for i ∈ [t]. Note that{Ii(v) ∣ v ∈ V (Gi) ∩ S} is an interval representation of (G′
i)c, i.e., G′

i ∈ C.
Hence G′ = G′

1 ⊍ ⋯ ⊍G′
t ∈ C and G′ ∈ C if t = 1. This shows that C and C

are hereditary.

(ii) Let G ∈ C, x, y be two non-adjacent vertices in G and {I(v) ∣ v ∈ V (G)}
be an intersection representation of G with intervals. Let G′ be the graph
obtained from G by identifying x and y into a single vertex z. Since
xy ∈ E(Gc) we have I(x) ∩ I(y) ≠ ∅ and hence I(z) ∶= I(x) ∩ I(y) is a
non-empty interval. As for any interval J we have J ∩I(z) ≠ ∅ if and only
if J ∩ I(x) ≠ ∅ or J ∩ I(y) ≠ ∅ or both, we have that {I(v) ∣ v ∈ V (G), v ≠
x, y} ∪ {I(z)} is an intersection representation of (G′)c and thus G′ ∈ C,
as desired.
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(iii) If G ∈ C then G = G1 ⊍⋯⊍Gt for some G1, . . . ,Gt ∈ C. If x, y are two non-
adjacent vertices in the same connected component, then x, y are in the
same Gi, say G1. By (ii) identifying x and y in G1 gives a graph G′

1 ∈ C.
Moreover, identifying x and y in G gives a graph G′ = G′

1 ⊍G2 ⊍ ⋯ ⊍Gt.
As G′

1 ∈ C we have G′ ∈ C and hence C is homomorphism-closed.

Proof of Theorem 3. This is a direct corollary of Lemma 8 and Lemma 9 (ii).

Proof of Theorem 4. We have that C is hereditary by Lemma 9 (i), homomor-
phism-closed by Lemma 9 (iii) and union-closed by definition. Hence by Propo-

sition 2 we have boxf(H) = cCf(Hc) = cC̀(Hc) = box`(H).
As C ⊂ C we clearly have box`(H) = cC̀(Hc) ≤ cC̀(Hc) = box`(G). Finally,

consider any s-local t-global C-cover ϕ ∶ G1 ⊍ ⋯ ⊍ Gt → Hc. For i = 1, . . . , t
we have Gi ∈ C and hence Gi is the vertex-disjoint union of some graphs in C.
Thus we can interpret ϕ as an s-local t′-global C-cover of Hc for some t′ ≥ t.
This shows that box`(H) = cC̀(Hc) ≤ cC̀(Hc) = box`(H) and thus concludes the
proof.

3 Separating the Variants

Proof of Theorem 5.

(i) For a fixed integer k ≥ 1 we consider any graph Fk that is 2k-regular and
has girth at least 6 (i.e., its shortest cycle has length at least 6). Now
let ϕ be an injective s-local C-cover of Fk, i.e., a cover of E(Fk) with t
co-interval graphs G1, . . . ,Gt ⊆ Fk for some t ∈ N such that every vertex of
Fk is contained in at most s such Gi. We shall show that s ≥ k, proving
that cC̀(Fk) ≥ k and hence box`(Hk) ≥ k, where Hk = F c

k denotes the
complement of Fk.

A co-interval graph G does not contain any induced matching on two
edges. Hence G does not contain any induced cycle of length at least 6.
(Moreover, as G is perfect, it also contains no induced cycles of length 5.)
Since Fk has girth at least 6, this implies that every subgraph of Fk that is
a co-interval graph is a forest. In particular, every Gi has average degree
less than 2, i.e., ∑v∈V (Gi) degGi

(v) < 2∣V (Gi)∣. We conclude that

2k ⋅ ∣V (Fk)∣ = ∑
v∈V (Fk)

degFk
(v) ≤ ∑

v∈V (Fk) ∑
i∈[t]

v∈V (Gi)
degGi

(v)

= t∑
i=1 ∑

v∈V (Gi)
degGi

(v) < t∑
i=12∣V (Gi)∣ ≤ 2s ⋅ ∣V (Fk)∣,

where the first inequality holds since every edge of Fk is covered and the
last inequality holds since every vertex is contained in at most s of the Gi,
i = 1, . . . , t. From the above it follows that s ≥ k, as desired.

(ii) Our proof follows the ideas of Milans et al. [13], who consider L(Kn),
the line graph of Kn, and prove that cIg (L(Kn)) → ∞ for n → ∞, while

cÌ(L(Kn)) = 2 for every n ∈ N, where I denotes the class of all interval
graphs. However, instead of using the ordered Ramsey numbers (which
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is also possible in our case) we shall rather use the following hypergraph
Ramsey numbers: Let K3

n, n ∈ N, denote the complete 3-uniform hyper-

graph on n vertices, i.e., K3
n = ([n], ([n]

3
)). For an integer k ≥ 1, the

Ramsey number Rk(K3
6) is the smallest integer n such that every coloring

of the hyperedges of K3
n with k colors contains a monochromatic copy

of K3
6 . The hypergraph Ramsey theorem implies that Rk(K3

6) exists for
every k [16].

Now for fixed k ≥ 1, choose an integer n = n(k) > Rk(K3
6) and consider

L(Kn), the line graph of Kn. Let ϕ be any injective t-global C-cover of
L(Kn) with co-interval graphs G1, . . . ,Gt ⊆ L(Kn) for some t ∈ N. We

shall show that t > k, proving that cCg(L(Kn)) > k and hence box(H ′
k) > k,

where H ′
k = (L(Kn))c denotes the complement of L(Kn).

Assume for the sake of contradiction that t ≤ k. From the C-cover ϕ of
L(Kn), we define a coloring c of E(K3

n) with t colors. Given x, y, z ∈ [n]
with x < y < z, let c(x, y, z) = min{i ∈ [t] ∣ {xy, yz} ∈ E(Gi)} be the
smallest index of a co-interval graph in {G1, . . . ,Gt} that covers the edge
between xy and yz in L(Kn). Since n > Rk(K3

6) ≥ Rt(K3
6) under c there

is a monochromatic copy of K3
6 , say it is in color i and that its vertices are{x1, . . . , x6}. This means that Gi has a connected component containing

x1, . . . , x6 and in particular the edges {x1x2, x2x3} and {x4x5, x5x6} of
L(Kn). However, these two edges induce a matching in L(Kn) and hence
also in that connected component of Gi. This is a contradiction to that
component being a co-interval graph, and thus implies that t > k, as
desired.

Finally, observe that for any n ∈ N the following is an injective 2-localC-cover of L(Kn): For each i ∈ [n] let Gi be the clique in L(Kn) formed
by all edges incident to vertex i of Kn. Then {G1, . . . ,Gn} is a set of n
co-interval graphs in L(Kn) with the property that every edge of L(Kn)
lies in exactly one Gi and every vertex of L(Kn) lies in exactly two Gi.
This shows that cC̀(L(Kn)) = box`(H ′

k) ≤ 2.

(iii) For fixed k ≥ 1 consider Mk the matching on k edges. We shall show that

cCg(Mk) = 1 and cCg(Mk) = k, proving that box(H ′′
k ) = 1 and box(H ′′

k ) = k,
where H ′′

k = M c
k is the complement of Mk. Indeed, as every co-interval

graph has at most one component containing an edge, any C-cover of Mk

contains at least k co-interval graphs to cover all k components of Mk.
Since K2 is a co-interval graph, there actually is an injective k-globalC-cover of Mk. Thus, we have cCg(Mk) = box(H ′′

k ) = k.

On the other hand, the class C is union-closed and, since K2 is a co-interval
graph, C contains all matchings. In particular Mk ∈ C and therefore we

have cCg(Mk) = box(H ′′
k ) = 1.

4 Geometric Interpretations

Lemma 10. A graph H is the intersection graph of 1-local d-dimensional boxes
if and only if Hc is the vertex-disjoint union of d co-interval graphs.
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Figure 2: (a) The octahedron H. (b) Its complement Hc. (c) Hc as the vertex-
disjoint union of three co-interval graphs (given in their interval representa-
tion). (d) The corresponding intersection representation of H with 1-local 3-
dimensional boxes. The two long sides of each box have actually infinite length.

Proof. For an illustration of the proof, see Figure 2. First, if {B(v) ∣ v ∈ V (H)}
is an intersection representation of H with 1-local boxes in Rd, then for each
v ∈ V (H) let B(v) = I1(v) ×⋯ × Id(v). Without loss of generality assume that
for every v ∈ V (H) there is some coordinate i ∈ [d] for which Ii(v) ≠ R. For each
i ∈ [d] consider the set Vi = {v ∈ V (H) ∣ Ii(v) ≠ R} of those vertices v for which
B(v) is bounded in the ith coordinate. Then V1, . . . , Vd is a partition of V (H)
and for each i ∈ [d] the set {Ii(v) ∣ v ∈ Vi} is an intersection representation with
intervals of some graph Gi with vertex set Vi. Then we have H = Ḡ1 ∩ ⋯ ∩ Ḡd

and hence Hc = Ḡc
1∪⋯∪ Ḡc

d = Gc
1⊍⋯⊍Gc

d. Thus Hc is the vertex-disjoint union
of the d co-interval graphs, as desired.

Now let Hc = Gc
1 ⊍⋯ ⊍Gc

d, where Gc
i ∈ C for i = 1, . . . , d. Consider for each i

an intersection representation {Ii(v) ∣ v ∈ V (Gi)} of the complement Gi of Gc
i

with intervals. For v ∈ V (H) we define

I ′i(v) = ⎧⎪⎪⎨⎪⎪⎩
Ii(v), if v ∈ V (Gi)
R, if v ∉ V (Gi).

Then B(v) = I ′1(v)×⋯×I ′d(v) is a 1-local d-dimensional box. Moreover, {B(v) ∣
v ∈ V (H)} is an intersection representation of H, which concludes the proof.

From Lemma 10 we easily derive Theorem 6, i.e., the geometric intersection
representations characterizing the local and union boxicity, respectively.

Proof of Theorem 6.

(i) This follows easily from Lemma 10. Indeed, if box(H) = cCg(Hc) ≤ k, then

Hc = G1 ∪ ⋯ ∪ Gk where for i = 1, . . . , k the graph Gi ∈ C is the vertex-
disjoint union of some di co-interval graphs. By Lemma 10 Gc

i has an
intersection representation with 1-local di-dimensional boxes. Similarly to
the proof of Lemma 10, extending this 1-local box representation of Gc

i to
all vertices of H by adding a box Rdi for each vertex in H −Gi, and taking
the Cartesian product of these k extended 1-local box representations, we
obtain an intersection representation of H of the desired kind.

Similarly, consider any intersection representation {B1(v)×⋯×Bk(v) ∣ v ∈
V (H)} of H, where for every v ∈ V (H) and every i ∈ [k] the box Bi(v) is
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Figure 3: (a, b) A graph H and its complement Hc. (c) Hc can be covered
using three co-interval graphs. (d) The resulting intersection representation.
Note that the boxes are 3-dimensional as the cover uses three co-interval graphs
and the boxes are 1-local and 2-local if the corresponding vertices are covered
once (1,2,5,6) and twice (3,4), respectively. The long sides of each box have
actually infinite length.

di-dimensional and 1-local. Then by Lemma 10 the set {Bi(v) ∣ v ∈ V (H)}
is an intersection representation of some graph Gi whose complement Gc

i

is in C. Moreover, Hc is the union of these k graph Gc
1, . . . ,G

c
k ∈ C. This

gives box(H) = cCg(Hc) ≤ k, as desired.

(ii) For an example illustrating this case, see Figure 3. If box`(H) = cC̀(Hc) ≤
k, then there is a set {G1, . . . ,Gt} of t co-interval graphs such that Gi ⊆Hc

for i = 1, . . . , t, E(Hc) = E(G1) ∪ ⋯ ∪ E(Gt) and every v ∈ V (Hc) is
contained in at most k such Gi, i = 1, . . . , t. For each i ∈ [t] consider an
interval representation {Ii(v) ∣ v ∈ V (Gi)} of Gc

i . For v ∈ H −Gi we set
Ii(v) = R. Note that {Ii(v) ∣ v ∈ V (H)} is an interval representation of
Ḡc

i .

Now for v ∈ V (G) let B(v) = I1(v) × ⋯ × It(v) be the Cartesian product
of the t intervals associated with vertex v. As v is in Gi for at most k
indices i ∈ [t], Ii(v) ≠ R for at most k indices i ∈ [t]. In other words,
B(v) is a k-local box. Finally, we claim that {B(v) ∣ v ∈ V (H)} is an
intersection representation of H. Indeed, if vw ∉ E(H), then vw ∈ E(Hc)
and hence vw ∈ E(Gi) for at least one i ∈ [t]. Then Ii(v) ∩ Ii(w) = ∅
and thus B(v) ∩ B(w) = ∅. And if vw ∈ E(H), then vw ∉ E(Hc) and
vw ∉ E(G′

i) for every i ∈ [t]. Thus Ii(v) ∩ Ii(w) ≠ ∅ for every i ∈ [t] and
hence B(v) ∩B(w) ≠ ∅.

This shows that if box`(H) ≤ k, then H is the intersection graph of k-local
boxes. On the other hand, if H admits an intersection representation with
k-local t-dimensional boxes, then for each i ∈ [t] projecting the boxes to
coordinate i and considering the bounded intervals in this projection gives
an interval representation of some subgraph Gi of Hc. As before, we can
check that {G1, . . . ,Gt} forms an injective k-local C-cover of Hc, showing
that box`(H) = cC̀(Hc) ≤ k.
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5 Conclusions

In this paper we have introduced the notions of the local boxicity box`(H) and
union boxicity box(H) of a graphH. It holds that box`(H) ≤ box(H) ≤ box(H),
where box(H) denotes the classical boxicity as introduced almost 50 years ago.
Indeed, both new parameters are a better measure of the complexity of H. For
example, if H is the complement of a matching on n edges, then box(H) = n,
simply because the n non-edges each have to be realized in a different dimension.
On the other hand, we have box`(H) = box(H) = 1, and as these non-edges are
vertex-disjoint, they also should be “counted only once”. We have shown this
phenomenon in a few more examples in the course of the paper. In fact, in
many box representations from the literature many (if not all) dimensions are
only used by few vertices. The resulting high boxicity may be misintepreted as
the graph being very complex, which could be avoided by using local or union
boxicity.

In future research, established boxicity results should be revisited to see
whether one can improve the upper bounds using local or union boxicity. For
example, it is known that ifH is a planar graph, then box(H) ≤ 3 [19]. Moreover,
the octahedral graph O is planar and has boxicity 3, because its complement Oc

is the matching on three edges (c.f. the proof of Theorem 5 (iii) and Figure 2).
By (2) we have that box`(H) ≤ box(H) ≤ 3 whenever H is planar. However,
box`(O) = box(O) = 1, because Oc is the vertex-disjoint union of co-interval
graphs, i.e., Oc ∈ C. Hence it is natural to ask the following.

Question 11. Is there a planar graph H with box`(H) = 3?

For general graphs H we proved that the local boxicity box`(H) and the
union boxicity box(H) can be arbitrarily far from the classical boxicity box(H).
But we do not know whether if box(H) is large, then box`(H) and box(H) can
be very close to box(H). We construct graphs in the proof of Theorem 5 (i)
with large local boxicity, but one can show that these have even larger boxicity.

Question 12. Is there for every k ∈ N a graph Hk such that box`(Hk) =
box(Hk) = box(Hk) = k?

Another interesting research direction concerns the computational complex-
ity. It is known that for every k ≥ 2 deciding whether a given graph H satisfies
box(H) ≤ k is NP-complete [3, 12]. For k = 1 we have box(H) ≤ k if and only if
H is an interval graph, and box(H) ≤ k (equivalently box`(H) ≤ k) if and only
if the complement of H is the vertex-disjoint union of co-interval graphs, both
of which can be tested in polynomial time via interval graph recognition [2].

Question 13. For k ≥ 2, is it NP-complete to decide whether box`(H) ≤ k (or
box(H) ≤ k) for a given graph H?

Let us remark that for general covering numbers the computational complex-
ity of computing cGg (H) tends to be harder than that of cG̀(H), which in turn

tends to be harder than for cGf (H). For example, for G being the class of star

forests, computing cGg (H) is NP-complete [8, 10], while computing cG̀(H) and

cGf (H) is polynomial-time solvable [11]. The same holds when G is the class of

all matchings as discussed in [11]. And for G being the class of bipartite graphs,
computing cGg (H) and cG̀(H) is NP-complete [7], while computing cGf (H) is

11



polynomial-time solvable since cGf (H) = 1 if H is bipartite and cGf (H) = 2 oth-
erwise.
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a b s t r a c t

We consider the problem of covering an input graph H with graphs from a fixed covering
class G . The classical covering number of H with respect to G is the minimum number
of graphs from G needed to cover the edges of H without covering non-edges of H .
We introduce a unifying notion of three covering parameters with respect to G , two of
which are novel concepts only considered in special cases before: the local and the folded
covering number. Each parameter measures ‘‘how far’’ H is from G in a different way.
Whereas the folded covering number has been investigated thoroughly for some covering
classes, e.g., interval graphs and planar graphs, the local covering number has received little
attention.

We provide new bounds on each covering number with respect to the following
covering classes: linear forests, star forests, caterpillar forests, and interval graphs. The
classical graph parameters that result this way are interval number, track number, linear
arboricity, star arboricity, and caterpillar arboricity. As input graphs we consider graphs of
bounded degeneracy, bounded degree, bounded tree-width or bounded simple tree-width,
as well as outerplanar, planar bipartite, and planar graphs. For several pairs of an input
class and a covering class we determine exactly the maximum ordinary, local, and folded
covering number of an input graph with respect to that covering class.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graph covering is one of the most classical topics in graph theory. In 1891, in one of the first purely graph-theoretical
papers, Petersen [47] showed that any 2r-regular graph can be covered with r sets of vertex disjoint cycles. A survey on
covering problems by Beineke [11] appeared in 1969. Graph covering is a lively field with deep ramifications — over the last
decades as well as today [29,30,2,3,25,45]. This is supported through the course of this paper by many references to recent
works of different authors.

In every graph covering problem one is given an input graph H , a covering class G , and a notion of how to cover H with
one or several graphs from G . One is then interested in G -coverings of H that are in some sense simple, or well structured;
the most prevalent measure of simplicity being the number of graphs from G needed to cover the edges of H .

The main goal of this paper is to introduce the following three parameters, each of which represents how well H can be
covered with respect to G in a different way:

The global covering number, or simply covering number, is the most classical one. It is the smallest number of graphs from
G needed to cover the edges of H without covering non-edges of H . All kinds of arboricities, e.g. star [4], caterpillar [24],
linear [3], pseudo [48], and ordinary [46] arboricity of a graph are global covering numbers, where the covering class is the

∗ Corresponding author.
E-mail addresses: kolja.knauer@lif.univ-mrs.fr (K. Knauer), torsten.ueckerdt@kit.edu (T. Ueckerdt).

http://dx.doi.org/10.1016/j.disc.2015.10.023
0012-365X/© 2015 Elsevier B.V. All rights reserved.
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Table 1
Overview of results. (See [29,42,52,23,15,17,6,5,24].)

class of star forests, caterpillar forests, linear forests, pseudoforests, and ordinary forests, respectively. Other global covering
numbers are the planar and outerplanar thickness [11,45] and the track number [28] of a graph. Here, the covering classes
are planar, outerplanar, and interval graphs, respectively.

In the local covering number of H with covering class G one also tries to cover the edges of H with graphs from G but
now minimizes the largest number of graphs in the covering containing a common vertex of H . We are aware of only two
local covering numbers in the literature: The bipartite degree introduced by Fishburn and Hammer [21] is the local covering
number where the covering class is the class of complete bipartite graphs. It was rediscovered by Dong and Liu [16] as
the local biclique cover number, and recently it has been studied in comparison with its global variant by Pinto [49]. The
local clique cover number is another local covering number, where the covering class is the class of complete graphs. It was
studied by Skums, Suzdal, and Tyshkevich [55] and by Javadi, Maleki, and Omoomi [36].

Finally, the folded covering number underlies a different, but related, concept of covering. Here, one looks for a graph in
G which has H as homomorphic image and one minimizes the size of the largest preimage of a vertex of H . Equivalently,
one splits every vertex of H into a independent set such that the size of the largest such independent set is minimized,
distributing the incident edges to the new vertices, such that the result is a graph from G . The folded covering number has
been investigated using interval graphs and planar graphs as covering class. In the former case the folded covering number
is known as the interval number [31], in the latter case as the splitting-number [35].

While some covering numbers, like arboricities, are ofmainly theoretical interest, others, like thickness, interval number,
and track number, have wide applications in VLSI design [1], network design [50], scheduling and resource allocation
[10,13], and bioinformatics [39,37]. The three covering numbers presented here not only unify somenotions in the literature,
they as well seem interesting in their own right and may provide new approaches to attack classical open problems.

In this paper we moreover present new lower and upper bounds for several covering numbers. In the new results, the
covering classes are: interval graphs, star forests, linear forests, and caterpillar forests. The input classes are: graphs of
bounded degeneracy, bounded tree-width or bounded simple tree-width, as well as outerplanar, planar bipartite, planar,
and regular graphs. Not all pairs of these input classes with these covering classes are given new bounds. We provide an
overview over some of our new results in Table 1. Each row of the table corresponds to an input class H , each column
to a covering class G . Every cell contains the maximum covering number among all graphs H ∈ H with respect to the
covering class G , where the columns labeled g, ℓ, f stand for the global, local, and folded covering number, respectively.
Gray entries follow by Proposition 4 from other stronger results in the table. Letters T and C stand for Theorem and Corollary
in the present paper, respectively. Indeed all the entries except the ‘?’ in Table 1 are exact, with matching upper and lower
bounds. Note that besides results we prove as new theorems as indicated, many values in the table (written in gray) follow
from the point of view offered by our general approach (Proposition 4).

This paper is structured as follows: In order to give a motivating example before the general definition, we start by
discussing in Section 2 the linear arboricity and its local and folded variants. In Section 3 the three covering numbers are
formally introduced and some general properties are established. In Section 4we introduce the covering classes star forests,
caterpillar forests, and interval graphs, and in Section 5 we present our results claimed in Table 1. In Section 6 we briefly
discuss the computational complexity of some covering numbers, giving a polynomial-time algorithm for the local star
arboricity. Moreover, we discuss by how much global, local and folded covering numbers can differ.

For the entire paperwe assume all graphs to be simplewithout loops normultiple edges. Notions used but not introduced
can be found in any standard graph theory book; such as [57].

2. Global, local, and folded linear arboricity

We give the general definitions of covers and covering numbers in Section 3. In this section we motivate and illustrate
these concepts on the basis of one fixed covering class: the class L of linear forests, which are the disjoint unions of paths.
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We want to cover an input graph H by several linear forests L1, . . . , Lk ∈ L . That is, every edge e ∈ E(H) is contained in at
least1 one Li and no non-edge of H is contained in any Li. When H is covered by L1, . . . , Lk we write H =


i∈[k] Li.

The linear arboricity of H , denotedby la(H), is theminimum k such thatH =


i∈[k] Li and Li ∈ L for i ∈ [k]. One easily sees

that every graph H of maximum degree1(H) has la(H) ≥


1(H)
2


, and every1(H)-regular graph H has la(H) ≥


1(H)+1

2


.

In 1980, Akiyama et al. [3] stated the Linear Arboricity Conjecture (LAC). It says that the linear arboricity of any simple graph
H of maximum degree1(H) is either


1(H)
2


or


1(H)+1

2


. LAC was confirmed for planar graphs byWu andWu [59,60] and

asymptotically for general graphs by Alon and Spencer [7]. The general conjecture remains open. The best-known general
upper bound for la(H) is


31(H)+2

5


, due to Guldan [27].

We define the local linear arboricity of H , denoted by laℓ(H), as the minimum j such that H =


i∈[k] Li for some k and

every vertex v in H is contained in at most j different Li. Again, if H has maximum degree1(H), then laℓ(H) ≥


1(H)
2


, and

if H is 1(H)-regular, then laℓ(H) ≥


1(H)+1

2


. Note that laℓ(H) is at most la(H), and hence the following statement must

necessarily hold for LAC to be true.

Conjecture 1. Local Linear Arboricity Conjecture (LLAC): The local linear arboricity of any simple graph with H maximum degree
1(H) is either


1(H)
2


or


1(H)+1

2


.

Observation 2. To prove LAC or LLAC it suffices to consider regular graphs of odd degree: Regularity is obtained by considering a
1(H)-regular supergraph of H. If 1(H) is even, say1(H) = 2k, one can find a spanning linear forest Lk+1 in H [27], remove it
from the graph, and extend Lk+1 by a cover L1, . . . , Lk in the remaining graph of maximum degree1(H)− 1 = 2k − 1.

If H is regular with odd degree, then LLAC states that H =


i∈[k] Li with every vertex being an endpoint of exactly one

path. LAC additionally requires that the paths can be colored with

1(H)
2


colors such that no two paths that share a vertex

receive the same color. We will see in later sections that sometimes the coloring is the crucial and difficult task.
Next we propose a second way to cover the input graph H with linear forests. A walk in H is a sequence of consecutively

incident edges of H of the form {v1v2, v2v3, . . . , vk−1vk} for v1, . . . vk being vertices of H . As before, a set W1, . . . ,Wk of
walks covers H , denoted by H =


i∈[k] Wi, if the edge-set E of H is the union of the edge-sets of the walks. We are now

interested in how often a vertex v inH appears in thewalksW1, . . . ,Wk in total. The folded linear arboricity of H , denoted by
laf (H), is the minimum j such that H =


i∈[k] Wi and every vertex v in H appears at most j times in the walksW1, . . . ,Wk.

Again if H has maximum degree 1(H) then laf (H) ≥


1(H)
2


, and if H is 1(H)-regular then laf (H) ≥


1(H)+1

2


. Clearly,

laf (H) ≤ laℓ(H). The next theorem follows directly from a short proof ofWest [56] of a result previously published by Griggs
and West [26] (where it is stated in terms of the interval number i(H)). It is a weakening of LLAC above.

Theorem 3. If H has maximum degree1(H) then laf (H) ∈


1(H)
2


,

1(H)+1

2


.

Proof. Add a vertex x to H and connect it to every vertex in H of odd degree. Each component of the resulting graph is
Eulerian. Consider any Eulerian tour in H ∪ x (or H) and split it into shorter walks by removing x from it. �

3. Covers and covering numbers

In this section we formalize the concepts from Section 2 with respect to general covering and input classes and obtain
some general inequalities. The notation we introduce is convenient for making our generalized approach as transparent as
possible. When treating concrete covering classes, for which covering numbers already have an established notation in the
literature later on in the paper, we will use the latter in order to make results more accessible to readers already familiar
with the parameters.

A homomorphism from a graph G to a graphH is a map ϕ : V (G) → V (H) such that vw ∈ E(G) implies ϕ(v)ϕ(w) ∈ E(H).
We call a homomorphism edge-surjective if for all v′w′

∈ E(H) there exists vw ∈ E(G) such that ϕ(v) = v′ and
ϕ(w) = w′. For an input graph H and a covering class G , we define a G -cover of H as an edge-surjective homomorphism
ϕ : G1 ∪· G2 ∪· · · · ∪· Gk → H , where Gi ∈ G for i ∈ [k] and ∪· denotes the vertex disjoint union. The size of a cover is the
number of covering graphs in the disjoint union. A cover ϕ is called injective if ϕ|Gi, that is, ϕ restricted to Gi, is injective for
every i ∈ [k].

Definition 1. For a covering class G and an input graph H define the (global) covering number cG
g (H), the local covering

number cG
ℓ (H), and the folded covering number cG

f (H) as follows:

1 Since linear forests are closed under taking subgraphs, we can indeed assume that e ∈ Li for exactly one i ∈ [k].
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cG
g (H) = min


size of ϕ : ϕ is an injective G -cover of H


cG
ℓ (H) = min


maxv∈V (H) |ϕ

−1(v)| : ϕ is an injective G -cover of H


cG
f (H) = min


maxv∈V (H) |ϕ

−1(v)| : ϕ is a G -cover of H having size 1

.

Let us rephrase cG
g (H), c

G
ℓ (H), and cG

f (H). The covering number is the minimum number of graphs in G needed to cover
H exactly, where covering exactly means identifying subgraphs in H that are covering graphs, such that every edge of H is
contained in some covering graph. In the local covering number the number of covering graphs is not restricted; instead the
number of covering graphs at every vertex should be small. Wewill see later that these two numbers can differ significantly.
The folded covering number is the minimum k such that every vertex v of H can be split into at most k vertices, distributing
the incident edges at v arbitrarily (even repeatedly) among them, such that the resulting graph belongs to G . The splitting
corresponds to representing the vertex by the set of its preimages under the edge-surjective homomorphism ϕ.

One is often interested in the maximum or minimum value of a graph parameter on a class of input graphs. For
i ∈ {g, ℓ, f }, a covering class G , and an input graph class H , we define cG

i (H ) = sup

cG
i (H) : H ∈ H


. We close this

section with a list of inequalities, most of which are elementary applications of Definition 1 and homomorphisms.

Proposition 4. For covering classes G ,G ′, input classes H ,H ′ and any input graph H we have the following:

(i) cG
g (H) ≥ cG

ℓ (H), and if G is closed under disjoint union, then cG
ℓ (H) ≥ cG

f (H).
(ii) If G is closed under merging non-adjacent vertices within connected components (and afterwards deleting multiple edges)

and restriction to maximal connected components, then cG
ℓ (H) ≤ cG

f (H).

(iii) If H ⊆ H ′, then cG
i (H ) ≤ cG

i (H ′) for i ∈ {g, ℓ, f }.
(iv) If HG and HG ′ denote the set of subgraphs of H that are homomorphic images of graphs in G and G ′, respectively, then

HG ⊆ HG ′ implies cG
i (H) ≥ cG ′

i (H) for i ∈ {g, ℓ, f }. This holds in particular when G ⊆ G ′.

(v) If H̄ denotes the set of all subgraphs of H and we have G ∩ H̄ ⊆ G ′
∩ H̄, then cG

i (H) ≥ cG ′

i (H) for i ∈ {g, ℓ}.
Proof. The first inequality in (i) follows from the definition, the second one comes by viewing an injective cover
G1 ∪· G2 ∪· · · · ∪· Gk as a G -cover of size 1.

To see (ii), let ϕ : G → H be a G -cover of H of size 1 witnessing cG
f (H). Now for every v ∈ H and a component G′ of

G merge all ϕ−1(v) ∩ V (G′) into one vertex (and delete multiple edges). Since H has no loops, the merging process creates
no loops. Doing this for all components of G yields a new covering graphG ∈ G with homomorphismϕ being injective on
each component. Clearly, |ϕ−1(v)| ≤ |ϕ−1(v)|.

Claims (iii) and (iv) follow immediately from the definition. To see (v) note that it follows similarly as (iv), because G ∩ H̄
and G ′

∩ H̄ are the subgraphs of H that arise as images of injective covers. �

Remark 5. Within the scope of this paper we only consider covering classes that are closed under disjoint union even
without explicitly saying so. For example, when considering stars or complete graphs as covering graphs, we actually mean
star forests and disjoint unions of complete graphs, respectively. If the covering class G is closed under disjoint union, then

the restriction to covers of size 1 in the definition of cG
f is unnecessary.

It is still interesting to consider covering classes that are not closed under disjoint union. Hajós’ Conjecture [43] states
that the edges of any n-vertex Eulerian graph H may be partitioned into ⌊

n
2⌋ cycles. Hajós’ Conjecture being widely open,

one may consider coverings with cycles. When C ′ denotes the class of all simple cycles and H is an n-vertex Eulerian graph,
Fan [19] proved cC ′

g (H) ≤ ⌊
n−1
2 ⌋.

Example

In order to illustrate the notions introduced above, consider the covering class C of disjoint unions of cycles. As input
graph H we take the Petersen graph. See Fig. 1 where we have from left to right: A global cover with three unions of cycles,
a local cover of size five with at most three cycles at each vertex, and a folded cover with two preimages per vertex. Note
that the local cover does not yield an optimal global cover.

Proposition 6. For the Petersen graph, we have 3 = cC
g (H) = cC

ℓ (H) > cC
f (H) = 2.

Proof. All witnesses for the upper bounds are shown in Fig. 1. Clearly, cC
f (H) ≥ 2 since otherwise H would have to be a

disjoint union of cycles. Now suppose, cC
ℓ (H) = 2. Since H is cubic, at each vertex there is exactly one edge contained in

two cycles of the covering. Thus, these edges form a perfect matchingM of H . Moreover, all cycles involved in the cover are
alternating cycles with respect to M . In particular they are all even and of length 6 or 8 (as this graph is not Hamiltonian
there is no 10-cycle). Since M is covered twice and the remaining edges of H once, the sum of sizes of cycles in the cover is
20, which can be obtained only as 6+ 6+ 8. In particular, a 6-cycle C must be involved. NowM restricted to H\V (C) is still
a perfect matching, but H \ V (C) is a claw. �
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Fig. 1. Coverings of the Petersen graph by disjoint unions of cycles.

4. Covering classes

In this section we introduce the covering classes and covering numbers corresponding to the columns of Table 1.We also
include some known results and general observations.

4.1. Forests and pseudoforests

Nash-Williams [46] showed that the minimum number of forests needed to cover the edges of H is maxS⊆V (H)


|E[S]|
|S|−1


,

where E[S] denotes the set of edges in the subgraph induced by S. This value, denoted by a(H), is now usually called the
arboricity of H , see Beineke [11] for an early appearance of this name. Clearly, a(H) = cG

g (H), where G is the class of forests.
A pseudoforest is a graphwith at most one cycle per component and the pseudoarboricity p(H) is theminimumnumber of

pseudoforests needed to cover the edges of H . Thus, p(H) = cG
g (H), where G is the class of pseudoforests. Results of Picard

and Queyranne [48] and Frank and Gyárfás [22] yield the following lemma.

Lemma 7 ([22,48]). The pseudoarboricity p(H) of a graph H equals the minimum over all orientations of H of the maximum
out-degree of H. Furthermore, p(H) = maxS⊆V (H)


|E[S]|
|S|


.

Using a(H) = maxS⊆V (H)


|E[S]|
|S|−1


, one immediate consequence of Lemma 7 is p(H) ≤ a(H) ≤ p(H)+ 1.

Theorem 8. For every graph, the values of global, local, and folded (pseudo)arboricity coincide.

Proof. Take a folded covering ϕ of H with a (pseudo)forest, such that for every v ∈ H we have |ϕ−1(v)| ≤ c . Since
(pseudo)forests are closed under taking induced subgraphs, this in particular yields a covering for every induced subgraph
H[S] such that every vertex is covered at most c times. Now, focusing on pseudoforests, we know that the subgraph of the
covering graph induced by ϕ−1(S) has at most c|S| edges, and therefore c|S| ≥ |E[S]|, i.e., c ≥


|E[S]|
|S|


. Now by Lemma 7, we

have p(H) = maxS⊆V (H)


|E[S]|
|S|


yielding the result for folded coverings. Now, Proposition 4(i) gives the result for the local

covering number.
Along the same lines one obtains c ≥


|E[S]|+1

|S|


when c is the number of times a vertex is covered in a forest-cover of H .

It is then easy to compute


|E[S]|+1
|S|


=


|E[S]|
|S|−1


, since |E[S]| ≤


|S|
2


. The result follows as in the case of pseudoarboricity. �

4.2. Star forests

The star arboricity sa(H) of a graph H , introduced by Akiyama and Kano [4], is the minimum number of star forests
(forests without paths of length 3) into which the edge-set of H can be partitioned. In particular, if S denotes the class of
star forests, then sa(H) = cS

g (H). The star arboricity has been a frequent subject of research. It is known that outerplanar
and planar graphs have star arboricity at most 3 and 5, respectively; see Hakimi et al. [42]. That this is best possible was
shown by Algor and Alon [5]. Alon et al. [6] showed that sa(H) ≤ 2a(H) is a tight upper bound.

Sincemerging non-adjacent vertices in a star and omitting double edges yields again a star, local and folded star arboricity
coincide, by Proposition 4(ii). Here, we show that in contrast to the global star arboricity, the local star arboricity, denoted
by saℓ(H), fits nicely into the inequalities relating arboricity and pseudoarboricity from Section 4.1.
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Theorem 9. For any graph H, we have p(H) ≤ a(H) ≤ saℓ(H) ≤ p(H) + 1, where any inequality can be strict. Moreover,
saℓ(H) = p(H) if and only if H has an orientation with maximum out-degree p(H) in which this outdegree occurs only at vertices
of degree p(H).

Proof. Every cover of H with respect to stars can be transformed into an orientation of H by orienting every edge towards
the center of the corresponding star. If every vertex is contained in at most saℓ(H) stars, then the orientation has maximum
out-degree at most saℓ(H). Lemma 7 then gives p(H) ≤ saℓ(H).

In the same way, every orientation can be transferred into a cover with respect to stars by taking at every vertex the
star of its incoming edges. If the orientation has maximum out-degree p(H), then each vertex is contained in no more than
p(H)+ 1 stars, i.e., saℓ(H) ≤ p(H)+ 1. Moreover, the maximum out-degree is saℓ(H) if and only if for every vertex v lying
in saℓ(H) stars with centers different from v there is no star with center v. Equivalently, saℓ(H) = p(H) if and only if the
maximum out-degree p(H) is attained only at vertices of degree p(H).

If sal(H) = p(H) + 1, then a(H) ≤ sal(H) follows from a(H) ≤ p(H) − 1. When sal(H) = p(H), there is an orientation
with maximum out-degree p(H) attained only at vertices with degree p(H). Removing these vertices, we obtain a graph H ′

with p(H ′) ≤ p(H)− 1, in particular a(H ′) ≤ p(H). We reinsert the vertices of degree p(H) putting each incident edge into
a different one of the p(H) forests that partition H ′. We obtain a cover of H with p(H) forests, so a(H) ≤ p(H) = saℓ(H).

Finally, we show that each inequality can be strict: First k = p(H) < a(H) holds for every 2k-regular graph H , due to the
number of edges of the covering graphs. Second, we claim that k = p(H) = saℓ(H) holds for the complete bipartite graph
Kk,n with n large enough. Indeed, p(Kk,n) = maxS⊆V (Kk,n)


|E[S]|
|S|


=

 kn
k+n


= k, and taking all maximal stars with centers in

the smaller class of the bipartition yields saℓ(Kk,n) ≤ k.
It remains to present a graph H with k = a(H) < saℓ(H). We take H to be the k-dimensional grid of size m. That is,

V (H) = [m]
k, and there is an edge joining vertices v and w if and only if they differ in exactly one coordinate and differ

there by 1. It is straightforward to compute that H has (m − 1)mk−1k edges. Observing that H itself is a densest induced
subgraph, the formulas for arboricity and pseudoarboricity give a(H) = p(H) = k for large enough m. Also, a(H) = saℓ(H)
implies p(H) = saℓ(H). Hence, as proved above, H has an orientation with maximum out-degree k, which furthermore is
only attained at vertices of degree k. However, H has only 2k vertices of degree k. If all other vertices have outdegree at most
k− 1, then H has at most 2kk+ (mk

− 2k)(k− 1) edges. Choosingm > 2k
+ k yields a contradiction to the number of edges

of H calculated above. �

Wewill derive from Theorem 9 tight upper bounds for the local star arboricity in Section 5, as well as a polynomial-time
algorithm to compute the local star arboricity in Section 6.

4.3. Other covering classes

A graph parameter related to the star arboricity is the caterpillar arboricity ca(H) of H . A caterpillar is a tree in which all
non-leaf vertices form a path, called the spine. The caterpillar arboricity is the minimum number of caterpillar forests into
which the edge-set ofH can be partitioned. It hasmainly been considered for outerplanar graphs (Kostochka andWest [41]),
and for planar graphs (Gonçalves and Ochem [23,24]).

The class I of interval graphs has already been considered in many ways and remains present in today’s literature.
Interval graphs have been generalized to intersection graphs of systems of intervals by several groups of people: Gyárfás
and West [28] proposed the I-covering and introduced the corresponding global covering number called the track number,
denoted by t(H), i.e., t(H) = cI

g (H). It has been shown that outerplanar and planar graphs have track number at most
2 [41] and 4 [24], respectively. Already in 1979, Harary and Trotter [31] introduced the folded I-covering number, called
the interval number, denoted by i(H), i.e., i(H) = cI

f (H). It is known that trees have interval number at most 2 [31]. Also,
outerplanar and planar graphs have interval number at most 2 and 3, respectively, see Scheinerman andWest [52]. All these
bounds are tight.

The local track number tℓ(H) := cI
ℓ (H) is a natural variation of i(H) and t(H), which to our knowledge has not been

considered so far.

5. Results

In this section we present all the new results displayed in Table 1. We proceed input class by input class.

5.1. Bounded degeneracy

The degeneracy dgn(H) of a graph H is the minimum of the maximum out-degree over all acyclic orientations of H . It is
a classical measure for the sparsity of H . By Lemma 7 and the definition we have p(H) ≤ a(H) ≤ dgn(H). Thus, the next
corollary follows directly from Theorem 9.

Corollary 10. For every H we have saℓ(H) ≤ dgn(H)+ 1.
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Let I be the class of interval graphs and Ca be the class of caterpillar forests, i.e., the class of bipartite interval graphs.
Since homomorphisms the image of a homomorphism has chromatic number at least as large as its preimage, the chromatic
number of an interval graphG that has a bipartite homomorphic image is atmost two. Thus,G is a caterpillar forest. Therefore,
when G is bipartite, the set of all homomorphic images of caterpillar forests in G coincides with the set of all homomorphic
images of interval graphs in G. Thus, by Proposition 4(iv) we have cI

i (H) = cCa
i (H) for i ∈ {g, ℓ, f } for every bipartite graph

H . In particular, if H is bipartite then t(H) = ca(H) and i(H) = caf (H). In the remainder of this section we present graphs
with high (folded) caterpillar arboricity. Since all these graphs are bipartite, we obtain lower bounds on the track number
and interval number of those graphs. Indeed in all constructions we define a supergraph H of the complete bipartite graph
Km,n. The track number and interval number of Km,n have already been determined: t(Km,n) = ca(Km,n) =

 mn
m+n−1


[28]

and i(Km,n) = caf (Km,n) =
mn+1

m+n


[31].

In order to formulate the following lemma, we need to introduce one more notion. For a cover ϕ of H by G1∪· . . .∪·Gk
with Gi ∈ G and a subgraph H ′ of H , we define the restriction of ϕ to H ′ as a cover ψ of H ′ by G′

1∪· . . .∪·G
′

k, where G′

i
comes from Gi by deleting {e ∈ E(Gi) : ϕ(e) ∉ H ′

} and then by removing isolated vertices. The resulting mapping ψ is the
restriction of ϕ to G′

1∪· . . .∪·G
′

k. If G is closed under taking subgraphs, thenψ is also a G -cover. Note that while restriction of
a function normally means its specification on a subset of the domain, here we are restricting the image, which turn induces
a restriction of the domain.

To increase readability we refer to the classes of sizem and n in the bipartition of Km,n by A and B, respectively.

Lemma 11. Let H be a graph with an induced Km,n and ϕ be a Ca-cover of H with s = max{|ϕ−1(a)| : a ∈ A}. If ψ is the
restriction of ϕ to the subgraph H ′ of H after removing all edges in Km,n, then there are at least n − 2sm vertices b ∈ B such that
|ψ−1(b)| ≤ |ϕ−1(b)| − m.

Proof. Every a ∈ A is the image of at most s vertices among C1∪· . . .∪· Ck. Denote by s′ the number of vertices in ϕ−1(a) that
are incident to two spine-edges and by s′′ the number of vertices in ϕ−1(a) that are leaves. Clearly, s′ + s′′ ≤ s. Moreover, at
most 2s′ + s′′ edges incident to a are covered by spine-edges or edges whose degree 1 vertex is mapped to a. Therefore, at
least n− 2s edges at a have to be covered under ϕ by a non-spine edge with a vertex b being the image of a leaf. Thus, for at
least n − 2sm vertices b ∈ B this is the case with respect to every a ∈ A.

Now if e = ab is covered by some edge in Ci with b being a leaf, then in the restriction of ϕ to H \ e the number of
preimages of b is one less than in ϕ. This concludes the proof. �

Theorem 12. For k ≥ 1 there is a bipartite graph H such that

2dgn(H) ≤ 2k ≤ ca(H) = t(H).

Proof. To construct H , begin with a copy of Kk,n having |A| = k and |B| = n with n > (k − 1)
2k−1
k−1


+ 2k(2k − 1). For each

k-subset S of B, add (k − 1)2 + 1 new vertices BS with neighborhood S. The resulting graph H is bipartite with every vertex
in A and BS for any S having degree k, so dgn(H) = k.

Now consider an injective Ca-cover ϕ of H and its restriction ψ to the subgraph of H after removing all edges in Kk,n.
Assume for the sake of contradiction that the size s of ϕ is at most 2k−1, i.e., max{|ϕ−1(v)| : v ∈ V (H)} = s ≤ 2k−1. Then
by Lemma 11, there is a setW ⊂ B of at least n− 2(2k− 1)k > (k− 1)

2k−1
k−1


vertices such that |ψ−1(b)| ≤ |ϕ−1(b)| − k ≤

s−k ≤ k−1 for every b ∈ W . In other words, every b ∈ W has a preimage underψ in at most k−1 of the 2k−1 caterpillar
forests. Since |W | > (k−1)

2k−1
k−1


, there is a k-set S inW whose preimages are contained in at most k−1 caterpillar forests.

This implies thatψ restricted toH[S∪BS] is an injective Ca-cover of Kk,(k−1)2+1 of size at most k−1, which is impossible

since ca(Kk,(k−1)2+1) =


k(k−1)2+k
k+(k−1)2


= k, due to [9]. �

5.2. Bounded (simple) tree-width

A k-tree is a graph that can be constructed starting with a (k + 1)-clique and in every step attaching a new vertex to
a k-clique of the already constructed graph. We use the term stacking for this kind of attaching. The tree-width tw(H) of a
graph H is the minimum k such that H is a partial k-tree, i.e., H is a subgraph of some k-tree [51].

We consider a variation of tree-width, called simple tree-width. A simple k-tree is a k-treewith the extra requirement that
there is a construction sequence in which no two vertices are stacked onto the same k-clique. Now, the simple tree-width
stw(H) of H is the minimum k such that H is a partial simple k-tree, i.e., H is a subgraph of some simple k-tree.

For a graph H with stw(H) = k or tw(H) = k we fix any (simple) k-tree that is a supergraph of H and denote it by H̃ .
Clearly, H inherits a construction sequence from H̃ , where some edges are omitted.

Lemma 13. We have tw(H) ≤ stw(H) ≤ tw(H)+ 1 for every graph H.
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Fig. 2. A slug and its extension.

Proof. The first inequality is clear. For the second inequality we show that every k-tree H is a subgraph of a simple (k+ 1)-
tree H . Whenever in the construction sequence of H several vertices {v1, . . . , vn} are stacked onto the same k-clique C we
consider C∪{v1} as a (k+1)-clique in the construction sequence forH . Stacking vi onto C now can be interpreted as stacking
vi onto C ∪ {vi−1} and omitting the edge vi−1vi. In this way we can avoid multiple stackings onto k-cliques by considering
(k + 1)-cliques. �

Simple tree-width endows the notion of tree-width with a more topological flavor. For a graph H we have the following:
stw(H) ≤ 1 if and only if H is a linear forest, stw(H) ≤ 2 if and only if H is outerplanar, stw(H) ≤ 3 if and only if H is planar
and tw(H) ≤ 3 [18].

Simple tree-width also has connections to discrete geometry. In [12] a stacked polytope was defined to be a polytope
that admits a triangulation whose dual graph is a tree. From that paper one easily deduces that a full-dimensional polytope
P ⊂ Rd is stacked if and only if stw(GP) ≤ d. Here GP denotes the 1-skeleton of P . See [40,32,33] for more on simple
tree-width.

We consider both graphs with bounded tree-width and graphs with bounded simple tree-width as input classes, since
(A) most of the results for outerplanar graphs are implied by the corresponding result for stw(H) ≤ 2, (B) lower bound
results for stw(H) ≤ 3 carry over to planar graphs, (C) the extremal results for these two input classes differ when the
covering class is that of interval graphs, and (D) when the maximum covering numbers are the same for both classes, the
lower bounds are slightly stronger when witnessed by graphs of low simple tree-width.

Theorem 14. We have tℓ(H) ≤ stw(H) for every graph H.

Proof. If stw(H) = 1, then H is a linear forest and hence an interval graph. If stw(H) = 2, then H is outerplanar, and it even
has track number at most 2 as shown in [41].

So let stw(H) = s ≥ 3. We build an injective cover ϕ : I1∪· · · · ∪· Ik → H with |ϕ−1(v)| ≤ s for every v ∈ V (H) and
Ii ∈ I for i ∈ [k]. We use as I1, . . . , Ik only certain interval graphs, which we call slugs: A slug is like a caterpillar with a fixed
spine, except that the graph Ivi induced by the leaves at every spine vertex v ∈ Ii is a linear forest. (In a caterpillar Ivi is an
independent set for every spine vertex v.) The end vertices of the spine are called spine-ends and vertices of degree at most 1
in Ivi are called leaf-ends. See the left of Fig. 2 for an example of a slug Ii with the spine drawn thick, spine-ends in white, and
leaf-ends in gray. Note that slugs are indeed interval graphs.

We define the cover ϕ along a construction sequence of H that is inherited from a simple s-tree H̃ ⊇ H . At every step
let H ′ be the subgraph of H that is already constructed and hence already covered by ϕ, and let H̃ ′ be the corresponding
subgraph of H̃ . We call an s-clique C of H̃ ′ stackable if no vertex has been stacked to C so far. We maintain the following
invariants on ϕ, which allow us to stack a new vertex onto every stackable C .
Invariant. At all times the following is satisfied for the current graph H ′.

(1) For every vertex v in H ′ there is a unique slug I(v)with I(v) ≠ I(w) for v ≠ w, and a spine vertex s(v) of I(v) in ϕ−1(v).
(2) For every stackable s-clique C there is a vertex w1 ∈ C , a slug I(C), and a spine-end or leaf-end e(C) of I(C) with

ϕ(e(C)) = w1, such that:
(2a) If e(C) is a spine-end, then I(C) ≠ I(v) for all v ∈ V (H ′).
(2b) If e(C) is a leaf-end, then I(C) = I(w2) for some vertexw2 ∈ C \ {w1}, and the vertices e(C) and s(w2) are adjacent

in I(C).
(2c) Every leaf-end or spine-end v is e(C) for at most two cliques C with equality only if v has degree 0 or 1 in the slug.

It is not difficult to satisfy the above invariants for an initial s-clique of H̃ . Indeed, this clique can be build up in a very
similar way to the stacking procedure that we describe now: In the construction sequence of H we are about to stack a
vertexw onto a stackable clique C of the current graph H ′. Let C = {w1, . . . , ws}. Without loss of generality we assume that
ϕ(e(C)) = w1 and that if e(C) is a leaf-end, then I(C) = I(w2). We never change the preimages of vertices in H under ϕ. In
particular, all vertices we add to the existing or new slugs are mapped by ϕ onto the new vertex w. We will denote these
new vertices by x1, . . . , xs to emphasize that no more than s such vertices are introduced. Note that for every i ∈ [s], the
clique Ci in H̃ defined by Ci = (C \ {wi})∪ {w} is stackable in H ′

∪ {w}, and that all remaining stackable cliques in H ′
∪ {w}

are already stackable cliques in H ′.
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For i ∈ {3, . . . , s}we do the following. Ifwwi ∈ E(H), thenwe introduce a new leaf xi to I(wi) at s(wi), and ifwwi ∉ E(H)
we introduce a new slug consisting only of xi. Either way, we set e(Ci−1) = xi. Additionally we set e(C1) = xs. Note that (2b)
is satisfied sincewi, w ∈ Ci−1 andws, w ∈ C1.

It remains to cover possible edges joining w to {w1, w2}, to find a spine-end or leaf-end e(Cs) for Cs, and to find a slug
I(w) for the new vertex w. In doing so we may still introduce two new vertices x1 and x2 to our slugs. We distinguish two
cases, which are illustrated on the right in Fig. 2.

Case 1: If e(C) is a spine-end of I(C), then we first proceed with w2 similarly as with wi for i ≥ 3 above. That is, we
introduce a new leaf x2 at s(w2) if ww2 ∈ E(H) and a new slug consisting only of x2 if ww2 ∉ E(H), and we set
e(Cs) = x2.
Case 1.1: If ww1 ∈ E(H), then we introduce a new spine vertex x1 to I(C) adjacent to e(C). This covers the edge
ww1, since we assumed that ϕ(e(C)) = w1. We set I(w) = I(C), which satisfies condition (1) of the invariant
since (2a) implies I(C) ≠ I(v) for every vertex v in H ′.

Case 1.2: Ifww1 ∉ E(H), then we introduce a new slug I consisting only of x1 and set I(w) = I .
Case 2: If e(C) is a leaf-end of I(C), then by assumption we have I(C) = I(w2).

Case 2.1: Ifww2 ∈ E(H), thenwe introduce a new leaf x2 to I(C) adjacent to s(w2) and a new slug I consisting just
of a new vertex x1. If additionallyww1 ∈ E(H), thenwe also introduce an edge joining x2 and e(C) in I(C). Again,
since ϕ(e(C)) = w1 and ϕ(x2) = w, this covers the edgeww1. Either way, we set e(Cs) = x2 and I(w) = I .

Case 2.2: If ww2 ∉ E(H), then we introduce a new slug I consisting only of a new vertex x2 and set I(w) = I .
When ww1 ∈ E(H) we add a new leaf x1 to s(w1) in I(w1), and when ww1 ∉ E(H), then we introduce a new
slug consisting only of x1. Either way we set e(Cs) = x1.

It is straightforward to check that we obtain a I-cover of H ′
∪ {w} and that the invariants above are satisfied. Note that

since H̃ is a simple s-tree, the clique C is no longer stackable and hence condition (2) of the invariant need not be satisfied
in H ′

∪ {w}. Finally, every stackable clique in H ′ different from C was not affected by the above procedure, which completes
the proof. �

We can prove three lower bounds for covering numbers.

Theorem 15. For k ≥ 1, there is a bipartite graph H such that
stw(H) ≤ tw(H)+ 1 ≤ k + 1 ≤ caf (H) = i(H).

Proof. Construct H from Kk,n with n = 2k2 + 1 by adding a pendant vertex at each vertex of the larger partite set B. It is
easy to see that tw(H) ≤ k, and then Lemma 13 yields stw(H) ≤ tw(H)+ 1.

Consider any Ca-cover ϕ of H with s = max{|ϕ−1(v)| : v ∈ V (H)} and its restriction ψ to the subgraph H ′ of H
obtained by removing all edges of Kk,n. By Lemma 11 there are at least n − 2sk = 2k(k − s) + 1 vertices b ∈ B such that
|ψ−1(b)| ≤ |ϕ−1(b)| − k. Any such b is incident to an edge in H \ Kk,n, which should be covered by ψ . Thus, |ψ−1(b)| ≥ 1.
Hence, s ≥ |ϕ−1(b)| ≥ k + 1, so caf (H) ≥ k + 1. �

Theorem 16. For k ≥ 3, there is a bipartite graph H such that
stw(H)+ 1 ≤ k + 1 ≤ ca(H) = t(H).

Proof. The construction of the graph H starts with H0 ∼= Kk−1,m1 , where |B| = m1 = 2(2k2 − 2k + 1). Let B = {u1, . . . ,

um1/2} ∪ {v1, . . . , vm1/2}. For i ∈ [m1/2], add a copy Ii of K2,5k−5 with partite sets {ui, vi} and {bi,j1 , . . . , b
i,j
k−1 : j ∈ [5]}, calling

the smaller set Ai and the larger set Bi. Next, let m2 = (k − 2)+1. For (i, j) ∈ [m1/2] × [5], add a set Bi,j of m2 new vertices
and a copy Ji,j of Kk−1,m2 with partite sets bi,j1 , . . . , b

i,j
k−1 and Bi,j. Note that the smaller part Ai,j in Ji,j is contained in Bi. See

Fig. 3 for an illustration.
Assume for the sake of contradiction that ϕ is an injective Ca-cover of H of size at most k. Consider the restriction ψ of

ϕ to the subgraph H ′
= H \ E(H0) of H . By Lemma 11 there are at least m1 − 2k(k − 1) = 2k2 − 2k + 2 > m1

2 vertices in
b ∈ B with |ψ−1(b)| ≤ 1. In particular there is some i′ ∈ [

m1
2 ] such that |ψ−1(u′

i)|, |ψ
−1(v′

i)| ≤ 1. That is, in the covering
u′

i and v
′

i each appear in only one caterpillar forest, which we call Cu′
i
containing ui and Cv′i containing v

′

i . Now consider the
restriction φ of ψ to the subgraph H ′′

= H ′
\ E(Ii′) of H ′. Again by Lemma 11 there are at least 5(k − 1)− 4 vertices b ∈ Bi′

with |φ−1(b)| ≤ k − 2. In particular there is some j′ ∈ [5] such that |φ−1(b)| ≤ k − 2 for all b ∈ Ai′j′ .
In other words, φ restricted to H[Ai′j′ ∪ Bi′j′ ] is an injective Ca-cover of Kk−1,(k−2)2+1 of size at most k − 2, which is

impossible, since ca(Kk−1,(k−2)2+1) =


(k−1)(k−2)2+k−1

k−1+(k−2)2


= k − 1, due to [9].

It remains to show that stw(H) ≤ k. In order to describe the construction sequence for a simple k-tree containing H , we
introduce some further vertex labels. Let A0 = {a1, . . . , ak−1} be the smaller partite set of H0, recall that Bi = Ai1 ∪ · · · ∪ Ai5

where Aij = {bij1, . . . , b
ij
k−1} for all i ∈ [

m1
2 ], j ∈ [5], and let Bij = {c ij1 , . . . , c

ij
m2} for i ∈ [

m1
2 ], j ∈ [5]. We construct a simple

k-tree starting with a (k + 1)-clique on A ∪ {u1, v1} via the following stackings:
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Fig. 3. The graph H and its induced subgraph Ii and Jj .

A Stack ui onto A ∪ {vi−1} and vi onto A ∪ {ui} ∀i ∈ {2, . . . , m1
2 }

B Stack bi1ℓ onto {a1, . . . , ak−ℓ−1, ui, vi, bi11 , . . . , b
i1
ℓ−1} ∀i ∈ [

m1
2 ], ℓ ∈ [k − 1]

C Stack bijℓ onto {ui, vi, b
i(j−1)
1 , . . . , bi(j−1)

k−ℓ−1, b
ij
1, . . . , b

ij
ℓ−1} ∀i ∈ [

m1
2 ], ℓ ∈ [k − 1], j ≥ 2

D Stack c ij1 onto Aij ∪ {ui} and c ijℓ onto Aij ∪ {c ijℓ−1} ∀i ∈ [
m1
2 ], j ∈ [5], ℓ ≥ 2.

One can check that after step A. the entire graph H0 is contained in the so-far constructed k-tree. Step B. deals with the
complete bipartite graphs induced on {ui, vi} ∪ Ai1 for all i ∈ [

m1
2 ], step C. adds the remaining complete bipartite graphs

induced on {ui, vi} ∪ Aij for j ≥ 2, such that afterwards all Ii are contained. In step D. all edges and vertices necessary for the
Jij are created. Since no k-clique appears twice we conclude that stw(H) ≤ k. �

Theorem 17. For k ≥ 2, there is a graph H such that

stw(H)+ 1 ≤ k + 1 ≤ caf (H).

Proof. Fix k ≥ 2. We construct H starting with a star with k − 1 leaves ℓ1, . . . , ℓk−1 and center c1. In the simple partial
k-tree containing H this star is a k-clique. For n = 16k2 − 16k + 4 and 2 ≤ i ≤ n stack a new vertex ci to ℓ1, . . . , ℓk−1, ci−1.
Now stack vertices s2, . . . , sn to ℓ1, . . . , ℓk−2, ci−1, ci. Finally introduce a pendant vertex ai as a neighbor of si, for each i.
In the simple partial k-tree containing H , the vertex ai is stacked to the k-clique on ℓ1, . . . , ℓk−2, ci−1, si. By construction
stw(H) ≤ k. See Fig. 4 for an illustration.

Assume for the sake of contradiction that caf (H) ≤ k. That is, there is a Ca-cover ϕ of H with |ϕ−1(v)| ≤ k for all
v ∈ V (H). We consider three edge-disjoint complete bipartite subgraphs H1,H2,H3 of H with partite sets Ai and Bi for Hi
defined as follows:

• A1 = ℓ1, . . . , ℓk−1 and B1 = {c2i : 1 ≤ i ≤ n/2}
• A2 = ℓ1, . . . , ℓk−1 and B2 = {c2i−1 : 1 ≤ i ≤ n/2}
• A3 = ℓ1, . . . , ℓk−2 and B3 = {si : 2 ≤ i ≤ n}.

Note that Hi and Hj are edge-disjoint for i ≠ j. Denote byψ the restriction of ϕ to H \ (E(H1)∪ E(H2)∪ E(H3)). We apply
Lemma 11 three times, once for each Hi, but the bounds for restrictions of ϕ to H \ E(Hi) clearly also apply to ψ . Thus, we
obtain setsWi ⊂ Bi (for each i ∈ {1, 2, 3}). For i ∈ {1, 2} we get |Wi| ≥ n/2 − 2k(k − 1) and ψ−1(b) ≤ k − (k − 1) = 1 for
b ∈ Wi. Furthermore we have |W3| ≥ n − 1 − 2k(k − 2) and ψ−1(b) ≤ k − (k − 2) = 2 for b ∈ W3. From the choice of n it
follows that there exist ci, ci+1, ci+2, ci+3 ∈ W1 ∪W2 with consecutive indices such that si+1, si+2, si+3 ∈ W3. Together with
the leaves ai+1, ai+2, ai+3 these vertices induce a 10-vertex graphH ′ highlighted in Fig. 4. It is not difficult to check that there
is no Ca-cover ψ of H ′ with |ψ−1(ci+j)| ≤ 1 for j ∈ {0, 1, 2, 3} and |ψ−1(si+j)| ≤ 2 for j ∈ {1, 2, 3}—a contradiction. �

5.3. Planar and outerplanar graphs

Determiningmaximumcovering numbers of (bipartite) planar graphs and outerplanar graphs enjoys a certain popularity,
as demonstrated by the variety of citations in Table 1. We add three easy new results to the list.
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Fig. 4. The graph H and its subgraph H ′ .

Corollary 18. The star arboricity of bipartite planar graphs is at most 4. The local star arboricity of planar graphs and bipartite
planar graphs is at most 4 and at most 3, respectively.

Proof. As mentioned in Section 4.2, the arboricity a(H) of every graph H can be expressed as maxS⊆V (H)


|E[S]|
|S|−1


[46]. By

Euler’s Formula every planar graph has at most 3V (H) − 6 edges and every bipartite planar graph has at most 2V (H) − 4
edges and clearly both classes are closed under taking subgraphs. Together it follows that every planar graph has arboricity
at most 3 and every planar bipartite graph has arboricity at most 2. With this, the statement about global star arboricity
follows since we have sa(H) ≤ 2a(H) by [6]. The statements about local arboricity follow since we have saℓ(H) ≤ a(H)+ 1
by Theorem 9. �

The only question mark in Table 1 concerns the local track number of planar graphs. Scheinerman and West [52] show
that the interval number of planar graphs is at most 3, but this is verified with a cover that is not injective. On the other
hand, there are bipartite planar graphs with track number 4 [24]. However by Corollary 18 and Theorem 14 every bipartite
planar graph and every planar graph of tree-width at most 3 has local track number at most 3. We believe that there are
planar graphs with local track number 4, but the following remains open:

Question 19. What is the maximum local track number of a planar graphs?

6. Separability and complexity

This section is devoted to different types of questions. First, we investigate how much global, local, and folded covering
numbers can differ with respect to the same covering and input class. Second, we look at the complexity of computing these
parameters.

In Table 1 we provide several pairs of an input class H and a covering class G for which the global covering number and

the local covering number differ, i.e., cG
g (H ) > cG

ℓ (H ). Indeed this difference can be arbitrarily large.

Theorem 20. For the covering class Q of collections of cliques and the input class H of line graphs, we have cQ
g (H ) = ∞ and

cQ
ℓ (H ) ≤ 2.

Proof. By a result of Whitney [58] a graph H is a line graph if and only if cQ
ℓ (H) ≤ 2.

To prove cQ
g (H ) = ∞, we claim that cQ

g (L(Kn)) ∈ Ω(log n), i.e., the covering number of the line graph of the complete
graph on n vertices is unbounded as n goes to infinity. Assume that L(Kn) is covered by k collections of cliques C1, . . . , Ck.
Every clique in L(Kn) corresponds to either a triangle or a star in Kn. Now, every Ci in L(Kn) corresponds to a vertex disjoint
collection of triangles and stars in Kn. Together these collections cover the edges of Kn. We will restrict the covering of L(Kn)
to a covering of L(Km) with collections of cliques all of whose cliques correspond to stars in Km. In the first step delete at
most 1

3n vertices of Kn such that in the restricted cover of the smaller line graph no clique in C1 corresponds to a triangle.
Repeating this for every Ci, we end up with a clique cover of L(Km) with m ≥ ( 23 )

kn that corresponds to a cover of Km with
star forests. Since by [4] the star arboricity of Km is

m
2


+ 1, we get k ≥

m+2
2 > ( 23 )

k−1n, and thus k ∈ Ω(log n). �
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Remark 21. Milans, Stolee, and West [44] proved a similar result with interval graphs as covering class, i.e., they showed
that the growth rate of t(L(Kn)) is betweenΩ(log log n/ log log log n) and O(log log n), while i(H) ≤ 2 for every line graph
H .

A case of particular interest to us is the input class of claw-free graphs—a class containing line graphs. It has been shown
that this class has unbounded local clique covering number [36]. We conjecture the following stronger statement:

Conjecture 22. The class of claw-free graphs has unbounded interval number.

What can be said about local and folded covering number? Table 1 suggests that the separation of the local and the folded
covering number ismore difficult. Indeedwe have cG

ℓ (H ) = cG
f (H ) for everyG andH in Table 1, except for the local track

number of planar graphs, (c.f. Question 19). However, proving upper bounds for cG
ℓ (H ) can be significantly more elaborate

than for cG
f (H ), even if we suspect that both values are equal; see for example Conjecture 1 and Theorem 3.

Observing that there is no injective cover of a path by cycles of length at least 3 and that every path is the homomorphic
image of a cycle one gets:

Observation 23. For the covering class C of collections of cycles of length at least 3 and the input class H of paths, we have
cC
ℓ (H ) = ∞ and cC

f (H ) ≤ 2.

Observation 23 may be considered pathological. However, the local and folded covering number may differ also when
cG
ℓ (H) < ∞. We gave one example for this when considering coverings of the Petersen graphwith disjoint unions of cycles,
see Proposition 6. Here is another example: It is known that i(Km,n) =

mn+1
m+n


[31] and t(Km,n) =

 mn
m+n−1


[28]. The lower

bound on t(Km,n) presented in [14] indeed gives tℓ(Km,n) ≥
 mn

m+n−1


and hence we have tℓ(Km,n) > i(Km,n) for appropriate

numbersm and n, such as n = m2
− 2m+ 2. With Proposition 4 this translates into caℓ(Km,n) > caf (Km,n). Apart from these

examples, we have no general answer to the following question.

Question 24. By how much can folded and local covering number differ?

Another interesting aspect of covering numbers concerns the computational complexity of determining them. Very
informally, onemight suspect that the computation of cG

f (H) is easier than of cG
ℓ (H), which in turn is easier than computing

cG
g (H). For example, if M is the class of all matchings, then cM

g (H) = χ ′(H), the edge-chromatic number of H . Hence

deciding cM
g (H) ≤ 3 is NP-complete even for 3-regular graphs [34]. On the other hand cM

ℓ (H) equals the maximum degree
of H and can therefore be determined very efficiently. As a second example, more elaborate, consider the star arboricity
sa(H) and the caterpillar arboricity ca(H). Deciding sa(H) ≤ k [42,24] and deciding ca(H) ≤ k [24,53] are NP-complete for
k = 2, 3. The complexity for k ≥ 4 is unknown in both cases. To the best of our knowledge, the complexity of determining
the local and folded caterpillar arboricity of a graph is also open. On the other hand, from Theorem 9 we can derive the
following.

Theorem 25. The local star arboricity can be computed in polynomial-time.

Proof. In [22] a flow algorithm is used that given a graph H and α : V (H) → N decides if an orientation D of H exists
such that the out-degree of v in D is at most α(v) for all v ∈ V (H). Moreover, if such a D exists the algorithm finds one
minimizing the maximum out-degree. Now by Lemma 7, we may use this algorithm to find p(H) in polynomial-time. Now
let α(v) = p(H) whenever v has degree p(H) and α(v) = p(H) − 1 otherwise. We use the algorithm of [22] to check if an
orientation D of H satisfying the out-degree constraints given by α exists. By Theorem 9 we have saℓ(H) = p(H) if and only
if there exists such an orientation and saℓ(H) = p(H)+ 1 otherwise. �

Finally, consider interval graphs as the covering class. Shmoys andWest [54] and Jiang [38] showed that deciding i(H) ≤ k
and deciding t(H) ≤ k are NP-complete for every k ≥ 2, respectively. We claim that the reduction of Jiang also holds for the
local track number.

Question 26. Are there a covering and an input class for which the computation of the folded or local covering number is NP-
complete while the global covering number can be computed in polynomial-time?

7. Concluding remarks

We have presented new ways to cover a graph and given many example covering classes. Also, we highlighted some
conjectures and questions on the way, such as the question whether the maximum track number of planar graphs is 3 or 4
(Question 19).

One conjecture important to us is LLAC (Conjecture 1), which is a weakening of the linear arboricity conjecture (LAC).
Besides LLAC, there are several more weakenings of LAC that are still open. For example it is open, whether the caterpillar
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arboricity of graph H of maximum degree 1(H) is always at most

1(H)+1

2


. Yet a weaker, but still open, question asks

whether the track number of H is always at most

1(H)+1

2


. As a positive result, by Theorem 9 one obtains that for a regular

graph H of even degree the local star-arboricity is

1(H)+1

2


, which in particular settles the question for local caterpillar

arboricity and local track number for such input graphs. On the other hand, Theorem 9 also tells us that in a regular graph
H of odd degree the local star arboricity is larger than


1(H)+1

2


. To the best of our knowledge, it is open whether the local

caterpillar arboricity or local track number of such a graph H is always at most

1(H)+1

2


.

Apart from the problems already mentioned throughout the paper, it is interesting to consider the local and folded
variants for more graph covering problems from the literature. For example the covering number with respect to planar
and outerplanar graphs is known as the thickness and outerthickness [11], respectively, and the folded covering number with
respect to planar graphs is called the splitting number [35]. The local covering number in these cases seems unexplored.
Further interesting covering classes include linear forests of bounded length [8], forests of stars and triangles [20], and
chordal graphs.

A concept dual to covering is packing. For an input graph H and a class G of packing graphs, we define a G -packing of H
to be an edge-injective homomorphism ϕ to H from the disjoint union G1∪·G2∪· · · · ∪·Gk with Gi ∈ G for i ∈ [k]. The size of
a packing is the number of packing graphs in the disjoint union. A packing ϕ is injective if ϕ|Gi, that is, ϕ restricted to Gi, is
injective for every i ∈ [k].

Definition 2. For a packing class G and an input graph H = (V , E) define the (global) packing number pG
g (H), the local

packing number pG
ℓ (H), and the folded packing number pG

f (H) as follows:

pG
g (H) = max


size of ϕ : ϕ is an injective G -packing of H


pG
ℓ (H) = max


minv∈V |ϕ−1(v)| : ϕ is an injective G -packing of H


pG
f (H) = max


minv∈V |ϕ−1(v)| : ϕ is a G -packing of H having size 1


.

Let us rephrase pG
g (H), p

G
ℓ (H), and pG

f (H): The packing number is the maximum number of packing graphs that can be
packed into the input graph, where packing means identifying edge-disjoint subgraphs in H that lie in G . The local packing
number does not measure the number of packing graphs in a packing; instead the minimum number of graphs packed at
any one vertex is maximized. The folded packing number is the maximum k such that every vertex v of H can be split into k
vertices, distributing the incident edges at v arbitrarily (not repeatedly) among them, such that the resulting graph is in G .
Two classical packing problems are given by G being the class of non-planar graphs or non-outerplanar graphs. In this case
the global packing numbers are called coarseness and outercoarseness [11], respectively.
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