

Integrating ULTRA and Trip-Based Routing

ATMOS · September 7, 2020 Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

www.kit.edu

Multi-Modal Journey Planning

Goals:

- Journey planning for public transit
- Find optimal journeys
- Consider modes of transportation:
 - All timetable-based modes (trains, trams, buses, ...)

Multi-Modal Journey Planning

Goals:

- Journey planning for public transit
- Find optimal journeys
- Consider modes of transportation:
 - All timetable-based modes (trains, trams, buses, ...)

But also:

- Allow secondary transfer mode
- Non-schedule based (walking, bike, e-scooter, ...)

Given:

Public transit network (timetable)

- Public transit network (timetable)
 - Stops (bus stops, stations)

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non schedule-based)

Given:

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non schedule-based)
 - Vertices (crossings, places)

0

Ο

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non schedule-based)
 - Vertices (crossings, places)
 - Edges (roads, paths)

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non schedule-based)
 - Vertices (crossings, places)
 - Edges (roads, paths)

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non schedule-based)
 - Vertices (crossings, places)
 - Edges (roads, paths)

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non schedule-based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
- Source s, target t, and a departure time

Given:

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non schedule-based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
- Source s, target t, and a departure time

Objective:

- Find all Pareto-optimal journeys w.r.t. arrival time and number of trips
- 2 Integrating ULTRA and Trip-Based Routing Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

Given:

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non schedule-based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
- Source s, target t, and a departure time

Objective:

Find all Pareto-optimal journeys w.r.t. arrival time and number of trips

Given:

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non schedule-based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
- Source s, target t, and a departure time

Objective:

Find all Pareto-optimal journeys w.r.t. arrival time and number of trips

Karlsruhe Institute of Technology

ULTRA: (multimodal journey planning)

Complex transfer graph ~> Shortcuts between stops

ULTRA: (multimodal journey planning)

Complex transfer graph ~> Shortcuts between stops

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target
- Use public transit algorithm

3

ULTRA: (multimodal journey planning)

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target
- Use public transit algorithm

ULTRA: (multimodal journey planning)

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target
- Use public transit algorithm

Trip-Based Routing: (public transit journey planning)

Operates on the trips of the network

ULTRA: (multimodal journey planning)

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target
- Use public transit algorithm

Trip-Based Routing: (public transit journey planning)

Operates on the trips of the network

ULTRA: (multimodal journey planning)

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target
- Use public transit algorithm

- Operates on the trips of the network
- Transitive transfer graph ~> Shortcuts between stop events

ULTRA: (multimodal journey planning)

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target
- Use public transit algorithm

- Operates on the trips of the network
- Transitive transfer graph ~> Shortcuts between stop events

ULTRA: (multimodal journey planning)

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target
- Use public transit algorithm

- Operates on the trips of the network
- Transitive transfer graph ~> Shortcuts between stop events
- BFS-like search on the resulting graph

ULTRA: (multimodal journey planning)

- Complex transfer graph ~> Shortcuts between stops
- Add transfers from source / to target
- Use public transit algorithm

- Operates on the trips of the network
- Transitive transfer graph ~>> Shortcuts between stop events
- BFS-like search on the resulting graph

Karlsruhe Institute of Technology

Similarities and Differences:

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts

4 Integrating ULTRA and Trip-Based Routing Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

Karlsruhe Institute of Technology

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop
 - Trip-Based compares journeys with the same first trip

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop
 - Trip-Based compares journeys with the same first trip

- Precomputed shortcuts represent transfers
 - ULTRA uses time-independent shortcuts
 - Trip-Based uses time-dependent shortcuts
- Preprocessing enumerates journeys with up to two trips
 - ULTRA compares journeys with the same first stop
 - Trip-Based compares journeys with the same first trip
- Shortcut is required if no better alternative exists
 - For a suitable definiton of "better"

Query Algorithm Outline:

5 Integrating ULTRA and Trip-Based Routing Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

- 1. Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target

- 1. Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target

Query Algorithm Outline:

- 1. Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target

8:15

Integrated ULTRA-Trip-Based Query 8:31 **Query Algorithm Outline:** 8:26 **1.** Bucket-CH query 8:22 Find arrival time at all stops 8:19 ot 8:17 Find transfer time from all stops to the target 8:12 8:19 8:13 8:08

8:15

8:11

s, 8:00

8:04

8:12

- 1. Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target
- 2. Trip-based query?

8:15 O

Integrated ULTRA-Trip-Based Query

- 1. Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target
- 2. Trip-based query?

8:15 O

Integrated ULTRA-Trip-Based Query

- 1. Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target
- 2. Trip-based query?

Query Algorithm Outline: 8:26 **1.** Bucket-CH query 8:22 Find arrival time at all stops 8:19 8:17 Find transfer time from all stops to the target 8:12 2. Trip-based query? 8:1 8:08 8:04 8:11 8:15 s, 8:00

5 Integrating ULTRA and Trip-Based Routing Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

Integrated ULTRA-Trip-Based Query

8:31

ot

8:19

8:12

Query Algorithm Outline: 8:26 **1.** Bucket-CH query 8:22 Find arrival time at all stops 8:19 8:17 Find transfer time from all stops to the target 8:12 2. Trip-based query? 8:1 8:08 8:04 8:11 8:15 s, 8:00

Integrated ULTRA-Trip-Based Query

Integrating ULTRA and Trip-Based Routing 5 Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

8:31

ot

8:19

8:12

Query Algorithm Outline:

- **1.** Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target
- **2.** RAPTOR collect routes
 - Find the first trip for every stop and route

5 Integrating ULTRA and Trip-Based Routing Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

- **1.** Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target
- **2.** RAPTOR collect routes
 - Find the first trip for every stop and route

Integrated ULTRA-Trip-Based Query

Integrated ULTRA-Trip-Based Query

Integrated ULTRA-Trip-Based Query

Integrating ULTRA and Trip-Based Routing 5 Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

Integrated ULTRA-Trip-Based Query

5 Integrating ULTRA and Trip-Based Routing Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

5

Integrating ULTRA and Trip-Based Routing Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

Integrated ULTRA-Trip-Based Query

- **1.** Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target
- **2.** RAPTOR collect routes
 - Find the first trip for every stop and route

Query Algorithm Outline:

- 1. Bucket-CH query
 - Find arrival time at all stops
 - Find transfer time from all stops to the target
- 2. RAPTOR collect routes
 - Find the first trip for every stop and route

8:1

early

- 3. Trip-Based trip scanning
 - Find all Pareto optimal journeys

8:19

8:12

8:08

8:26

8:17

8:11

s, 8:00

8:31

ot

8:19

8:12

5 Integrating ULTRA and Trip-Based Routing Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

Instances:

- London, Stuttgart, Switzerland, and Germany
- Timetables comprising two days from TfL, GTFS-CH, and DB

Network	Stops	Routes	Trips	Vertices	Edges
London	20 595	2107	125 436	183 k	579 k
Stuttgart	13 583	12350	91 298	1166 k	3680 k
Switzerland	25 426	13934	369 006	604 k	1 847 k
Germany	244 055	231 089	2387292	6872 k	21 372 k

6 Integrating ULTRA and Trip-Based Routing Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

Experimental Evaluation – Preprocessing

Comparing Sequential and Integrated Preprocessing:

- Using ULTRA shortcuts as input for Trip-Based Routing is a bit faster
- The Integrated approach yields significantly fewer shortcuts

	Stuttgart	London	Switzerland	Germany
Time (sequential)	4:40	19:15	9:16	7:54:13
Time (integrated)	5:11	22:24	10:04	9:16:15
Shortcuts (sequential)	25 865 892	58 301 120	58 807 528	1 072 750 574
Shortcuts (integrated)	3 900 258	19856062	11 646 572	121 676 520

Experimental Evaluation – Preprocessing

Comparing Sequential and Integrated Preprocessing:

- Using ULTRA shortcuts as input for Trip-Based Routing is a bit faster
- The Integrated approach yields significantly fewer shortcuts

	Stuttgart	London	Switzerland	Germany
Time (sequential)	4:40	19:15	9:16	7:54:13
Time (integrated)	5:11	22:24	10:04	9:16:15
Increase	1.11	1.16	1.09	1.17
Shortcuts (sequential)	25 865 892	58 301 120	58 807 528	1 072 750 574
Shortcuts (integrated)	3 900 258	19856062	11 646 572	121 676 520

Experimental Evaluation – Preprocessing

Comparing Sequential and Integrated Preprocessing:

- Using ULTRA shortcuts as input for Trip-Based Routing is a bit faster
- The Integrated approach yields significantly fewer shortcuts

	Stuttgart	London	Switzerland	Germany
Time (sequential)	4:40	19:15	9:16	7:54:13
Time (integrated)	5:11	22:24	10:04	9:16:15
Increase	1.11	1.16	1.09	1.17
Shortcuts (sequential)	25 865 892	58 301 120	58 807 528	1 072 750 574
Shortcuts (integrated)	3900258	19856062	11646572	121 676 520
Reduction	6.63	2.94	5.05	8.82

Network	Algorithm	Full	Scans [k]		Time [ms]			
	7	graph	Trips	Shortcuts	B-CH	R Collect	TB Scan	Total
	Trip-Based*	0	22.75	1 376.26	0.01	0.05	6.10	6.16
	ULTRA-TB (seq.)	•	34.09	1 545.15	0.91	0.80	7.47	9.19
London	ULTRA-TB (int.)	•	24.69	450.50	0.90	0.70	4.05	5.66
	ULTRA-RAPTOR	•	_	-	0.93	-	-	7.55
	Trip-Based*	0	337.49	16116.64	0.01	0.05	116.14	116.21
Germany	ULTRA-TB (seq.)	•	439.35	38 092.34	25.34	18.96	151.35	195.67
	ULTRA-TB (int.)	•	204.23	3149.87	26.12	19.13	46.38	91.65
	ULTRA-RAPTOR	•	_	_	25.68	_	_	415.17

Network	Algorithm	Full	Full Scans [k]		Time [ms]				
	, agonann	graph	Trips	Shortcuts	B-CH	R Collect	TB Scan	Total	
London	Trip-Based*	0	22.75	1 376.26	0.01	0.05	6.10	6.16	
	ULTRA-TB (seq.)	•	34.09	1 545.15	0.91	0.80	7.47	9.19	
	ULTRA-TB (int.)	•	24.69	450.50	0.90	0.70	4.05	5.66	
	ULTRA-RAPTOR	•	_	_	0.93	-	-	7.55	
	Trip-Based*	0	337.49	16116.64	0.01	0.05	116.14	116.21	
Germany	ULTRA-TB (seq.)	•	439.35	38 092.34	25.34	18.96	151.35	195.67	
	ULTRA-TB (int.)	•	204.23	3149.87	26.12	19.13	46.38	91.65	
	ULTRA-RAPTOR	•	_	_	25.68	_	_	415.17	

Network	Algorithm	Full	Full Scans [k]		Time [ms]				
	7	graph	Trips	Shortcuts	B-CH	R Collect	TB Scan	Total	
London	Trip-Based*	0	22.75	1 376.26	0.01	0.05	6.10	6.16	
	ULTRA-TB (seq.)	•	34.09	1 545.15	0.91	0.80	7.47	9.19	
	ULTRA-TB (int.)	•	24.69	450.50	0.90	0.70	4.05	5.66	
	ULTRA-RAPTOR	•	_	-	0.93	_	_	7.55	
	Trip-Based*	0	337.49	16116.64	0.01	0.05	116.14	116.21	
Germany	ULTRA-TB (seq.)	•	439.35	38 092.34	25.34	18.96	151.35	195.67	
	ULTRA-TB (int.)	•	204.23	3149.87	26.12	19.13	46.38	91.65	
	ULTRA-RAPTOR	•	_	_	25.68	_	_	415.17	

Network	Algorithm	Full	Scans [k]		Time [ms]			
	7 g er	graph	Trips	Shortcuts	B-CH	R Collect	TB Scan	Total
London	Trip-Based*	0	22.75	1 376.26	0.01	0.05	6.10	6.16
	ULTRA-TB (seq.)	•	34.09	1 545.15	0.91	0.80	7.47	9.19
	ULTRA-TB (int.)	•	24.69	450.50	0.90	0.70	4.05	5.66
	ULTRA-RAPTOR	•	_	-	0.93	_	_	7.55
	Trip-Based*	0	337.49	16116.64	0.01	0.05	116.14	116.21
Germany	ULTRA-TB (seq.)	•	439.35	38 092.34	25.34	18.96	151.35	195.67
	ULTRA-TB (int.)	•	204.23	3149.87	26.12	19.13	46.38	91.65
	ULTRA-RAPTOR	•	_	_	25.68	_	_	415.17

Network	Algorithm	Full	Scans [k]		Time [ms]			
	,	graph	Trips	Shortcuts	B-CH	R Collect	TB Scan	Total
	Trip-Based*	0	22.75	1 376.26	0.01	0.05	6.10	6.16
	ULTRA-TB (seq.)	•	34.09	1 545.15	0.91	0.80	7.47	9.19
London	ULTRA-TB (int.)	•	24.69	450.50	0.90	0.70	4.05	5.66
	ULTRA-RAPTOR	•	-	_	0.93	-	_	7.55
	Trip-Based*	0	337.49	16116.64	0.01	0.05	116.14	116.21
Cormony	ULTRA-TB (seq.)	•	439.35	38 092.34	25.34	18.96	151.35	195.67
Germany	ULTRA-TB (int.)	•	204.23	3149.87	26.12	19.13	46.38	91.65
	ULTRA-RAPTOR	•	_	_	25.68	_	_	415.17

Conclusion

Our Contribution:

- We proposed the ULTRA-Trip-Based algorithm
 - About 4 times faster than best previous algorithm
 - Trip-Based shortcuts

s, 8:00

Conclusion

Our Contribution:

We proposed the ULTRA-Trip-Based algorithm

- About 4 times faster than best previous algorithm
- Trip-Based shortcuts

Future Work:

- Optimize more criteria
- Handle delays

