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ABSTRACT
We study the problem of computing public transit traffic assign-
ments in a multi-modal setting: Given a public transit timetable, an
additional unrestricted transfer mode (e.g., walking), and a set of
origin-destination pairs, we aim to compute the utilization of all
vehicles. While it has been shown that unrestricted walking can sig-
nificantly improve journeys, computing such journeys efficiently re-
mains algorithmically challenging. Since traffic assignments require
the computation of millions of shortest paths, using a multi-modal
network has previously not been feasible. In this work we combine
the novel ULTRA [2] approach, which enables UnLimited TRAns-
fers at the cost of a short preprocessing phase, with a state-of-the-art
assignment algorithm, making multi-modal assignments practical.
Careful algorithm engineering results in an efficient assignment al-
gorithm, which even outperforms the algorithm it is based on, while
enabling unlimited walking for the first time. Finally, we evaluate
our algorithm on real worl data, where it computes over 15 million
journeys in less than 17 seconds, showing its efficiency.
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1 INTRODUCTION
Traffic assignments are an important tool for planning and analyz-
ing transportation networks. Efficient assignment algorithms allow
to predict how new infrastructure could improve traffic flows, or to
test the limits of existing networks, based on historic, empiric, or
expected passenger demand data. For this, the demand is given as a
list of origin-destination pairs, where each pair is associated with a
desired departure time. A basic variant of the assignment problem
then asks for the expected utilization of each vehicle (i.e., the num-
ber of passengers using the vehicle) in the public transit network
at each point in time. A more intricate second variant additionally
asks for a mapping from the origin-destination pairs onto actual
journeys through the network that constitute the overall utilization
of the vehicles. Solving either of these problems efficiently requires
both a fast route planning algorithm (computing journeys for every
origin-destination pair) and sophisticated decision models (reflect-
ing which journeys passengers would choose).

1.1 Related Work
In general, traffic assignment problems can be subdivided into two
sub-problems. First, computing traffic assignments requires solving
a classical route planning problem: Given the origin, destination,
and desired departure time of a passenger, find a set of all journeys
that the passenger could use. Second, a discrete choice model is
required, which reflects the behavior of passengers in the real world
and predicts the likelihood of each journey being used.

Many route planning algorithms specialized for timetable net-
works have been developed in recent years [1]. Especially notable is
CSA [4], which is simple yet efficient. Considering unlimited walk-
ing reduces travel times significantly but cannot be done efficiently
by most algorithms [9, 13]. However, the novel ULTRA approach
efficiently enables unlimited walking for many algorithms [2].

An overview of public transit traffic assignment models, algo-
rithms, and decision models can be found in [8, 12]. One approach
are sequential route choice models [6], which fit well with CSA [3].

1.2 Our Contribution
In this work we present a novel public transit traffic assignment
algorithm that considers not only the timetable network but also
unlimited walking. For our new algorithm we combine the ULTRA
preprocessing with the CSA-based assignment algorithm presented
in [3]. For this, we show how ULTRA can be extended to one-to-
many queries, which are required in the context of assignments.
Furthermore we present a new grouping technique that increases
the accuracy of the result and reduces computation time.
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2 PRELIMINARIES
In this section we introduce the notation used throughout the paper
and the algorithms upon which we build.

2.1 Public Transit Routing
We model a public transit network as a 4-tuple (S, C,T ,G) con-
sisting of a set of stops S, a set of connections C, a set of trips T,
and a directed, weighted walking graph G = (V, E). Each connec-
tion c ∈ C is a 5-tuple (vdep(c),varr(c), τdep(c), τarr(c), trip(c)). It
represents a vehicle driving from a departure stop vdep(c) ∈ S to
an arrival stop varr(c) ∈ S without halting in-between, departing
at the departure time τdep(c) and arriving at the arrival time τarr(c).
A trip tr = (c1, . . . , ck ) ∈ T is a sequence of connections served
consecutively by a vehicle. Every connection is part of exactly one
trip, which is indicated by trip(c). Each stop v ∈ S is associated
with a departure buffer time τbuf(v). When arriving at v , passengers
must observe the departure buffer time τbuf(v) before they can enter
a connection departing at v , unless they arrived via the same trip.

The walking graph G = (V, E) consists of a set of vertices V
withS ⊆ V and a set of edges E ⊆ V×V . Each edge (v,w) ∈ E has
awalking time τwalk(v,w) ∈ N0 which is the time needed to traverse
the edge. The walking time of a path in G is defined accordingly.
We denote the walking time of the shortest path in G from v tow
by dist(v,w). Unlike in restricted walking scenarios, G does not
have to be transitively closed or fulfill the triangle inequality.

We call the movement of a passenger from an origin vertex to
a destination vertex through the public transit network a journey.
Formally a journey is an alternating sequence of the vehicles used
by the passenger and paths in the walking graph that allow for
transferring between these vehicles. By τarr(J ) we denote the ar-
rival time of the journey J at its destination d . The perceived arrival
time (PAT) τparr(J ) of a journey J is the sum of the actual arrival
time τarr(J ) and several penalties for inconveniences during the
journey: A transfer penalty λtrans ∈ R+0 is added for each trans-
fer between two vehicles. Time spent walking or waiting for a
vehicle is multiplied by the walking penalty λwalk ∈ R+0 or waiting
penalty λwait ∈ R+0 , respectively. Additionally, the PAT accounts for
delays by incorporating alternative choices for delayed connections.
The precise formal definition of the PAT is given in [3].

A v-w-profile f v ,w (τ ) between two vertices v,w ∈ V is a func-
tion that maps each departure time τ to the minimal PAT among all
v-w-journeys that depart at v no earlier than τ . If no feasible jour-
ney exists, we define f v ,w (τ ) as∞. The profile can be represented
as a piecewise linear function where each segment represents one
journey, as well as an additional value τpwalk for the shortest pure
walking journey. Evaluating a profile at a time τ is done by returning
the minimum of τpwalk and the value of the function at τ .

2.2 Problem Statement
A traffic assignment problem takes as input a public transit network
and a demand D, which is a set of origin-destination pairs. Each
origin-destination pair p = (o,d) ∈ D represents a passenger who
wants to travel from the origin vertex o ∈ V to the destination
vertex d ∈ V , starting at a desired departure time τdep(p). The
objective is to assign each origin-destination pair p = (o,d) ∈ D to
a probability space consisting of journeys that depart at o no earlier

than τdep(p) and end atd . The probability of a journey should reflect
the likelihood of a real passenger using the journey. Summing the
probabilities of all journeys containing a connection c yields the
utilizationu(c), which is the expected number of passengers using c .

2.3 CSA-Based Assignment
The CSA-based assignment algorithm from [3] computes a traffic
assignment by simulating the movement of individual passengers
through the public transit network. All origin-destination pairs
with the same destination vertex d are processed simultaneously.
Pairs with different destinations can be processed in parallel. The
assignment for all pairs belonging to one destination is done in three
phases: (1) the PAT profile computation, (2) the actual assignment
phase, and (3) an optional cycle removal phase.

The first phase computes a partial PAT profile f v ,dwait for each
vertex v ∈ V , where f v ,dwait(τ ) is the minimum PAT for a passenger
waiting at v for the best vehicle departing directly at v after τ .
Additionally, it computes three PATs for every connection, which
are later used to decide if passengers use the connection on their
journey to the destination. These values are computed with a single
scan of the connection array in decreasing order of departure time.

The second phase uses these PATs to compute journeys for the
origin-destination pairs. This is done by simulating the movement
of individual passengers through the network and recording the
journey they take. The passenger multiplier λmul ∈ N controls
how many passengers are generated for each origin-destination
pair p = (o,d) at o. The passengers are routed through the net-
work by processing the connections in increasing order of depar-
ture time. For each connection c , the algorithm makes three deci-
sions: (1) whether passengers waiting atvdep(c) enter c , (2) whether
passengers using c disembark atvarr(c), and (3) whether disembark-
ing passengers walk to another stop or keep waiting at varr(c). In
all three cases, the PATs of all available options were computed in
the first phase. Given a choice set of k options and their respective
PATs, the gain of the i-th option is defined as the PAT difference
to the best other option, plus a delay tolerance λ∆max ∈ R

+
0 . If the

PAT difference is more than λ∆max, the gain is set to 0 and the op-
tion is eliminated from the choice set. A decision is then made for
each passenger by choosing an option randomly, with a probability
proportional to its gain. Doing this for each connection results in
the passengers gradually moving towards the destination.

2.4 ULTRA
The ULTRA approach [2] is based on the observation that long
walking paths between vehicles are only rarely required, while
long walking paths as the first or last leg of a journey occur quite
frequently. ULTRA exploits this fact by precomputing a shortcut
graph G ′ = (S, E ′) containing all necessary inter-vehicle transfers.
Public transit algorithms can then find transfers between trips by
scanning these shortcuts instead of the (much larger) unrestricted
transfer graph. Initial and final walking paths of a journey can be
computed efficiently with a specialized one-to-many shortest path
algorithm called Bucket-CH [5, 7]. This approach is only viable for
solving one-to-one queries in the public transit network. However,
as the CSA-based assignment algorithm is based on an all-to-one
CSA , integrating ULTRA is not straightforward.
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3 ULTRA-ASSIGNMENT ALGORITHM
In this section we give an overview of our ULTRA-Assignment
algorithm, focusing on the differences to the original assignment
algorithm introduced in [3]. Pseudocode is given in Algorithm 1.

Handling Departure Buffer Times. In the original assignment algo-
rithm, the departure buffer time was considered part of the waiting
time and therefore the waiting penalty λwait was applied to it. How-
ever, since the departure buffer time must always be observed, it
may not be desirable to penalize it to the same degree as waiting, or
at all. Therefore we introduce a new buffer time penalty λbuf ∈ R+0
that may be different from the waiting penalty λwait.

Unrestricted Walking Using ULTRA. The original assignment al-
gorithm used CSA variants with restricted walking in both the
PAT computation phase and the assignment phase. We extend the
algorithm to unrestricted walking by replacing CSA with ULTRA-
CSA in both phases. This is straightforward for the intermediate
and final transfers, but not for the initial transfers because each
origin that occurs in the demand is a potential source vertex. To
handle initial transfers, we perform a Bucket-CH from each origin
vertex (line 4) and store the distances to all stops in a list of stop-
distance tuples, sorted in ascending order of distance (line 5). The
PAT computation phase then only computes profiles at each stop,
excluding initial transfers. Whenever passengers are generated for
an origin-destination pairp = (o,d), we evaluate the initial transfers
by iterating over the stop-distance tuples (line 14), computing the
corresponding PATs and adding them to the choice set. Once the
departure time plus the perceived walking time τpwalk exceeds the
best PAT found so by far by more than λ∆max, we can stop iterating
through the list since all further options will have a probability of
0 (line 18). The remainder of the assignment phase continues as in
the original assignment algorithm. Refer to the full version of this
paper [10] for further details.

Grouping Multiplied Passengers. The original CSA-based assign-
ment algorithm generated λmul copies of each passenger in the
demand and then simulated the movement of all these copies inde-
pendently. This approach leads to redundant work because different
copies of the same passenger will often make the same choices. We
solve this problem by grouping passengers that make the same
choices together into passenger groups. The number of passengers
in a group is indicated by the group size γ . At the start of the
assignment phase, we generate one group of size λmul for each
origin-destination pair. When distributing a group of size γ across
k options with probabilities P1, . . . , Pk , we split it into k groups
of sizes ⌊γP1⌋, . . . , ⌊γPk ⌋ and route each group according to the
corresponding option. Because the group sizes are rounded down,
some of the original γ passengers may still be left over afterwards.
These passengers are handled individually by randomly choosing
an option for each passenger according to the probabilities and
adding the passenger to the corresponding group, as in the origi-
nal assignment algorithm. If the probability of an option is lower
than 1/γ and none of the leftover passengers are assigned to it, the
corresponding group becomes empty and is deleted. In addition to
improving the performance, this grouped approach increases the
accuracy of the result because the resulting group sizes match the
expected distribution of the passengers as closely as possible.

Algorithm 1: ULTRA-Assignment.
Input: Public transit network (S, C,T ,G = (V, E)),

shortcut graph G ′ = (S, E ′), and demand D
Output: Utility u : C → R+0 and corresponding journeys J

1 Let O be the set of all origins with demand in D
2 Let D be the set of all destinations with demand in D
3 for each o ∈ O do
4 N (o) ← {(v, dist(o,v)) | v ∈ S} // Using Bucket-CH

5 Sort N (o) in ascending order of distance dist(o, ·)
6 Sort D lexicographically by destination, origin
7 Sort C ascending by departure time
8 for each destinationd ∈ D do
9 Compute PAT profiles from every stop to d

10 for each p = (o,d) ∈ D with destination d do
11 Generate passenger group д of size λmul for p
12 J ← J ∪ {Jд = {}}

13 Let C be an empty choice set for p
14 for each (v, dist(o,v)) ∈ N (o) do
15 τdep ← τdep(p) + dist(o,v)
16 τ

p
walk ← λwalk · dist(o,v)

17 τ̄
p
arr ← min{τparr | (τ

p
arr, ·, ·) ∈ C} + λ∆max

18 if τdep + τ
p
walk > τ̄

p
arr then break

19 τ
p
arr ← f v ,dwait(τdep + τbuf(v)) + τ

p
walk + λbuf · τbuf(v)

20 C ← C ∪ {(τ
p
arr,v, τdep)}

21 Evaluate which choice from C the passengers use
22 for each c ∈ C do
23 Evaluate if passengers waiting at vdep(c) enter c
24 u(c) ← Number of passengers in c
25 Add c to journeys Jд of groups д in c
26 Evaluate if passengers using c disembark at varr(c)
27 Evaluate if passengers at varr(c) can transfer to d
28 Evaluate to which stop passengers at varr(c) transfer
29 for each Jд ∈ J do Remove cycles from Jд
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Figure 1: Sequential execution time of ULTRA-Assignment
and its sub-phases compared to the algorithm from [3], de-
pending on the passenger multiplier (average of 10 runs).
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4 EXPERIMENTS
All algorithms were implemented in C++17 and compiled with GCC
version 7.3.1 and optimization flag -O3. We conducted all experi-
ments on a machine with two 8-core Intel Xeon Skylake SP Gold
6144 CPUs clocked at 3.5 GHz with 192GiB of DDR4-2666 RAM.

For our experiments we use public transit data from the greater
region of Stuttgart, Germany. The network contains 13 941 stops
and 3 710 524 connections; the demand data comprises 1 249 910
origin-destination pairs. This benchmark instance was previously
used in [3, 11]. For the unlimited walking we added a footpath graph
with 1 170 198 vertices and 3 710 524 edges from OpenStreetMap1,
assuming a walking speed of 4.0 km/h.

4.1 Preprocessing
Our assignment algorithm requires preprocessing for the Bucket-
CH queries and the ULTRA shortcuts, which in turn requires a
core graph. The CH was computed in 2:44min (1 thread) and
added 5 469 298 shortcuts. The core graph was computed using
CH contractions until an average vertex degree of 16 was reached,
which took 2:30min (1 thread) and yielded a core graph with 25 477
vertices and 407 664 edges. Finally, the ULTRA preprocessing took
another 2:03min (16 threads) and resulted in 74 038 shortcuts.

4.2 ULTRA-Assignment
Using a passenger multiplier λmul of 100, the assignment computa-
tion takes 181.9 seconds sequentially and 16.8 seconds in parallel
with 16 threads. This is more than a factor of 2 faster than the CSA-
based assignment with limited walking, which has a running time
of 36.9 seconds on the same instance. Qualitative figures like the
average travel time or number of used trips are only slightly lower
(less than 5%) when comparing unlimited to limited walking. How-
ever, the number of distinct journeys per origin-destination pair
increases from 9.27 to 12.79 when switching from limited walking
to unlimited walking. Enabling unlimited walking also increases
the number of origin-destination pairs for which feasible journeys
exist from 1 209 761 to 1 246 337.

The most important tuning parameter of our assignment al-
gorithm is the passenger multiplier λmul, which determines the
number of samples evaluated in our Monte Carlod method. As such,
it has a significant impact on both the accuracy of the result and the
computation time.While the impact that λmul has on the accuracy is
quite clear (the logarithm of λmul corresponds to the number of dec-
imal places to which the result is computed), its impact on the run-
ning time is not at obvious. We therefore evaluate the performance
of our algorithm depending on the passenger multiplier in Figure 1,
which also includes a curve for the original CSA-based assignment.
The running time of both algorithms increases sub-linearly with re-
spect to λmul. However, the curve of our new algorithm (dark green)
grows significantly slower due to our passenger grouping approach.
We also report the running times for 4 sub-phases of our algorithm
(the colors correspond to the line numbers in Algorithm 1). The
plot shows that the most costly phase of our algorithm is the PAT
computation phase. This observation matches our expectations, as
the PAT computation phase has to scan the complete multi-modal
transportation network, including final transfers.
1http://download.geofabrik.de/

5 CONCLUSION
We presented a new public transit traffic assignment algorithm
that can handle unrestricted walking and is faster than previous
approaches that were restricted to the pure public transit network.
We achieved this by integrating the novel ULTRA approach for
handling unrestricted transfers into a state-of-the-art assignment
algorithm. By doing this, we developed the first one-to-many query
algorithm that is able to use ULTRA shortcuts. We proceeded with
improving the overall performance of the assignment algorithm,
so that we can compute an assignment for over 1.2 million origin-
destination pairs in less than 17 seconds. In a thorough experimental
study we demonstrated the validity of our approach. In particular
we showed that our algorithm solves the assignment problem effi-
ciently, regardless of the applied discrete choice model, the demand
data, or the requested accuracy.

For future work, we would like to improve the overall quality
of the computed assignments by integrating more complex jour-
ney choice models. More sophisticated models could for example
consider vehicle capacities and reduce the likelihood of assigning
passengers to overcrowded vehicles. Furthermore, it would be inter-
esting to correlate the probabilities of journeys that overlap partially,
for example if both use the same vehicle as a leg of the journey.
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