Efficient Computation of Multi-Modal Public Transit Traffic Assignments using ULTRA

Jonas Sauer, Dorothea Wagner, Tobias Zündorf
Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany

Motivation

Traffic planners need good predictions of the utilization of public transit vehicles

Challenges

- Not all passengers behave the same
- Some passengers walk long distances
- Previous algorithms do not support long walking
- ULTRA enables fast queries, but only one-to-one
- Estimate passenger behavior
- Cycles in perceived arrival time optimal paths

Decision Models

- Our algorithm implements a sequential choice model
- Random utility depends on perceived arrival time (PAT)
- Choice is a function: PAT \(\rightarrow \) probability
- We support various choice functions

Algorithm

Preprocessing:

- ULTRA: Core-CH and shortcuts
- Bucket-CH: CH and buckets

Assignment:

- For each origin \(o \):
 - Let \(N(o) \) be a list of stops, sorted by distance from \(o \)
- For each destination \(d \):
 - Compute perceived arrival times from all stops to \(d \)
 - For each origin \(o \) with demand for \(d \):
 - Generate a group \(g \) of passengers for the demand
 - Use \(N(o) \) to decide where \(g \) walks first
 - Decide which passengers use \(c \)
- Remove unwanted cycles from journeys

Running time:

- Grouping of passengers reduces running time
- Faster, despite solving a problem more complex problem

Literature