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Abstract

Timetable information systems (such as the DB Navigator) and navigation systems
for road networks (such as Google Maps) have become an integral part of everyday
life. The widespread use of such journey planning applications has been enabled by
algorithmic developments of recent decades. Considering road networks, a shortest
path across all of Europe can be computed in well below one millisecond. Similarly,
timetable information systems are able to �nd optimal journeys throughout Germany
in less than 50 milliseconds. However, if these two network types are combined into
a single, multimodal network, where the mode of transportation can be switched
arbitrarily, then computing optimal journeys requires signi�cantly more time.

In this thesis, we consider several variants of journey planning problems in multi-
modal transportation networks. In contrast to many other works, we do not only
consider the passengers point of view, but also the point of view of the public transport
operator. Algorithms that compute optimal journeys between two given locations
in the multimodal network are particularly relevant for a passenger. Public trans-
portation operators, on the other hand, are often interested in the overall passenger
�ow through a network. The computation of passenger movements from a given list
of demands lies at the core of traffic assignment problems. The result of the tra�c
assignment can then, for example, be used to evaluate the utilization of trains or
other vehicles in the network.

Single Source Single Target Journey Planning. This �rst part of this work fo-
cuses on the problem of �nding optimal journeys between a single source and target
location within a multimodal network. Computing such a journey on a country sized
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network can take seconds, even if the multimodal network only consists of public
transit and one additional mode of transportation (e.g., walking). Faster journey
planning algorithms that can consider both, walking and public transit, of course
already exist. However, all of them achieve their e�ciency by limiting the maximal
distance that can be traveled by walking. Since this can be seen as an approximation
of the problem with unlimited walking, the question arises, to what extent journeys
can bene�t from unlimited walking.

In order to answer this question we develop a �rst multimodal pro�le algorithm.
That is, an algorithm that computes for every possible departure time a set of optimal
journeys from a source location to a target location. Our algorithm is based on
the idea of iteratively reducing the size of the time interval for which the pro�le is
unknown, which we do with the help of existing journey planning algorithms that
require a �xed departure time. Through careful algorithm engineering, this approach
is capable of computing pro�les, which comprise a whole day, in a few seconds.

We use our novel pro�le algorithm to assess the impact of the permitted walking
distance on the overall travel time of optimal journeys. To this end, we evaluate and
compare pro�les for several hundreds of source-target-pairs in both scenarios, with
and without limited walking. As a result, we �nd that allowing unlimited walking
can signi�cantly reduce the travel of optimal journeys, which reinforces the need for
multimodal journey planning algorithms. However, we also observe that traveling
long distances by walking in between rides with public transit vehicles is rarely
required. Instead, walking is mainly needed to reach the �rst public transit stop from
the source location and to reach the target location from the last public transit stop.

Based on this observation we develop a novel preprocessing technique, which
we call ULTRA (UnLimited TRAnsfers), that enables fast multimodal journey plan-
ning. The main idea of our approach is to process walking between public transport
stops di�erently from walking towards the target or from the source. Since walk-
ing between stops is only rarely required, it is feasible to precompute all pairs of
stops where it occurs as part of an optimal journey. On the other hand, possi-
ble paths for walking from the source or towards the target can be explored e�-
ciently at query time. In an extensive experimental evaluation we show that this
approach outperforms any existing multimodal journey planning algorithm. Further-
more, we demonstrate that our approach is not only capable of handling walking
as additional transportation mode, but also any other non-schedule based mode of
transportation, such as cycling or using a car.

Finally, we acknowledge that up to this point we only solved bi-modal journey
planning problems. We change this by addressing a more complex scenario, where
public transportation is combined with unlimited walking and bike sharing. In order
to solve the journey planning problem in this truly multimodal scenario, we present
two possible approaches and develop an additional speed-up technique that signi�-
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cantly reduces the computational overhead of handling bike sharing. In combination
with ULTRA this yields the fastest known multimodal journey planning algorithm.

Public Transit Tra�ic Assignments. The second part of this work focuses on
solving tra�c assignment problems for transportation networks that include public
transit. These problems are not concerned with �nding an optimal journey for a
single pair of source and target locations. Instead, the objective is to predict the
behavior of passengers for millions of origin-destination-pairs.

Although this problem has many similarities with traditional journey planning,
algorithmic advances that have been made for the single source single target problem
have not yet been applied to the assignment problem. Thus, we initially focus on
accelerating the computation of assignments for networks that solely consist of
public transit. Analyzing the problem and its structure reveals that the Connection
Scan Algorithm (CSA), which was originally proposed for journey planning in pure
public transit networks, is particularly well suited for solving the assignment problem.
Adapting this algorithm in a way that exploits the special structure of the assignment
problem, yields a new algorithm that can compute assignments in less than one
minute, on problem instances where previous approaches took about half an hour.

Finally, we explore to what extent the approaches and results from the �rst part of
the work can be applied to the assignment problem and our CSA-based approach.
To this end, we demonstrate how the basic idea of ULTRA and its preprocessing can
be adopted to the assignment problem. In combination with novel approaches for
handling the multitude of origin and destination locations that are integral to the
assignment problem, we are able to develop a fast, multimodal assignment algorithm.
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1 Introduction

Journey planning systems are widely available in our modern world. Many cars
have built-in navigation systems for road networks. Web services like Google Maps
or Bing Maps provide free journey planning and support multiple modes of trans-
portation, such as using a car, walking, or public transit. Journey planning for
public transportation networks is also available in the form of specialized timetable
information systems, such as DB Navigator or the various applications provided
by local public transportation operators.

These systems are based on fast journey planning algorithms that have been devel-
oped throughout the last decades [Bas+16]. Many of these algorithms achieve their
practical e�ciency by augmenting the network data with additional information that
only has to be computed once and can then be used for faster query answering. A
prominent example that utilizes this approach are Contraction Hierarchies (CHs), a
speed-up technique for journey planning in road networks [GSSD08]. Through a rela-
tively lightweight preprocessing step (the road network of Europe can be processed in
a few minutes) CHs achieve query times of about 0.1 milliseconds. This corresponds to
a speed-up of about 10 000, when using Dijkstra’s algorithm as a baseline. Even faster
queries are possible if more extensive preprocessing is used. Currently the fastest al-
gorithm for journey planning in road networks is Hub Labeling (HL), which achieves
query times of less than one microsecond on the Europe network [ADGW11].

Unfortunately, techniques that perform well on road networks are often not suitable
for public transportation networks [BDW11]. Therefore, specialized algorithms
have been developed for public transit, which allow for signi�cantly faster query
times than Dijkstra’s algorithm on a graph-based representation of the network.
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However, the speed-ups achieved for public transit networks are much smaller than
the aforementioned speed-ups for road networks. One of the fastest public transit
journey planning algorithms, that does not require preprocessing, is RAPTOR (Round-
bAsed Public Transit Optimized Router) [DPW15a], which achieves a speed-up
of 5.3 compared to a variant of Dijkstra’s algorithm that is suitable for public transit
networks. An additional speed-up of 4.5, compared to RAPTOR, is achieved by Trip-
Based Public Transit Routing [Wit15], which requires a few minutes of preprocessing.
In order to achieve even greater speed-up factors, extensive preprocessing phases
are required. The fastest currently known algorithm for journey planning in public
transit networks is Transfer Patterns [Bas+10], which is 136 times faster than Trip-
Based Routing. However, Transfer Patterns requires several days of preprocessing in
order to accomplish this speed-up.1

1 Note that each speed-up factor reported in this paragraph is based on a di�erent network, since the
presented algorithms were not evaluated on a common network.

Combining both, public transit and road networks, results in a multimodal trans-
portation network. Research considering such networks has yielded even fewer
results than research on journey planning in public transit networks. Most successful
approaches for journey planning in multimodal networks are based on combining
a journey planning algorithm for road networks with a public transit algorithm.
Notable examples for this are MCR (multiModal multiCriteria RAPTOR) [Del+13],
which combines Dijkstra searches with RAPTOR, and HLRAPTOR [PV19], which
combines Hub Labeling with RAPTOR. However, while Hub Labeling on its own
yields signi�cant speed-ups on road networks, its combination with RAPTOR is only
two to three times faster than MCR.

Multimodal Journey Planning. In this thesis, we address several multimodal jour-
ney planning problems, i.e., journey planning problems in networks that comprise
multiple modes of transportation. In this context, a mode of transportation refers
to a means of transportation that can be used by a traveler, such as riding a bicycle,
walking, or using public transit. However, we do not explicitly distinguish di�erent
forms of public transit (e.g., trains, buses, etc.), since, as long as they follow a �xed
schedule, they are equivalent from an algorithmic standpoint. Based on this, we
consider multimodal journey planning to be the task of �nding optimal (fast) jour-
neys that utilize multiple transportation modes. In particular, we are interested in
algorithms that compute journeys where the mode of transport is changed en route.
This is in contrast to many available systems that can compute an optimal unimodal
journey for each of the available modes of transportation.

Within this work, we distinguish between two general classes of problems related
to multimodal journey planning. First, we consider problems as they occur from
a traveler’s point of view. That is, we are given a source and a target location and
want to recommend one or several good journeys from the source to the target.
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We study variants of this problem with �xed and with �exible departure times, and
with various combinations of available transportation modes. The second class of
problems arises from the planning and analysis of transportation networks, where
the overall passenger �ow is of interest. In this case, the objective is to estimate, for
a large number of passengers, which journeys will be used, such that the utilization
of public transit vehicles can be predicted. Problems of this kind are also known as
tra�c assignment problems.

Di�iculty of Combined Networks. Before we introduce our approaches for solv-
ing the aforementioned multimodal journey planning problems, we want to give
an intuition why journey planning is more di�cult in multimodal and in public
transit networks than it is in road networks. A major reason for this are structural
di�erences between the network types. Many speed-up techniques for road net-
works achieve their performance by exploiting the inherent hierarchy of the network.
However, public transit networks are generally much less hierarchical than road
networks [Bas09]. Moreover, public transportation networks are signi�cantly more
dense than road networks, which has a negative e�ect on the performance of the
journey planning algorithms [BDGM09].

In addition to these structural di�erences, public transport networks are generally
time-dependent, i.e., travel times change over time. Of course, road networks are
also to some extent time-dependent. However, an optimal journey in a road network
changes only slightly, if the departure time of the journey is shifted [SWZ20c]. In
contrast, public transit journeys can change drastically with a shift of the depar-
ture time, for example, if a journey is no longer possible because a train already
departed. Hence, many geographically di�erent journeys can be optimal during
the course of a day, which impedes preprocessing-based speed-up approaches. Still,
specialized algorithms have been developed, which allow for relatively e�cient
journey computation in public transit networks.

To some extent, journey planning becomes even more di�cult when public transit
networks are augmented by road networks. The reason for this is that the resulting
multimodal scenario requires a single algorithm that can handle both networks types.
However, algorithms that are optimized for road networks usually perform poorly on
public transit networks, and specialized public transit algorithms are often not suitable
for road networks. Therefore, approaches for multimodal journey commonly use a
combination of two algorithms, which handle the two parts of the network (e.g., MCR
or HLRAPTOR). But, approaches that combine two algorithms come with their own
disadvantages, such as an enormous preprocessing overhead (e.g., HLRAPTOR) or the
fact that parts of the network have to be processed multiple times (e.g., the scanning
of the road network in MCR).
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Figure 1.1: A visualization of the algorithm en-
gineering methodology as introduced by [San09]
and [MS10]. Algorithm engineering is a cyclic
process consisting of modeling the problem, fol-
lowed by the design and analysis of an algorithm,
which is subsequently implemented and experi-
mentally evaluated, before the next cycle begins.

Methodology. This work is focused on developing multimodal journey planning al-
gorithms that achieve good practical performance. Accordingly, we will not evaluate
our algorithms in terms of asymptotic worst case running time, but via experiments us-
ing real world data. While we are not interested in provable runtime bounds, we never-
theless want to guarantee that the journeys computed by our algorithms are optimal2

2 The notion of optimal is formally de�ned in Section 3.

.
We develop algorithms that comply with these requirements by following the

algorithm engineering methodology [San09, MS10], which establishes a cyclic process
for the development of algorithms, as shown in Figure 1.1. The development of an
algorithm usually starts with choosing an appropriate model for the problem, which
in our case also includes decisions about the network representation. This step
is followed by the design and analysis of an algorithm that solves the problem.
Many theoretical works on algorithms �nish at this point. However, the algorithm
engineering methodology continues with the implementation and experimental
evaluation of the algorithm. The evaluation of the algorithm on realistic data often
yields valuable insights about the problem structure, which can be used in another
iteration of the algorithm engineering cycle, in order to further improve the algorithm.

In practice, not all iterations of the algorithm engineering cycle have the same
impact. Some iterations may only yield negligible progress, while other iterations
entail signi�cant results. Moreover, it is not necessary to perform all steps of the
cycle within each iteration. In order to keep this work concise, we will not report
every single iteration that was conducted. Instead, we focus on the most important
results and �ndings, i.e., the algorithms we found to perform well in praxis.

An example for large-scale iterations of the algorithm engineering cycle are chap-
ters 5, 6, and 7. The experimental evaluation of the algorithm presented in Chapter 5
leads to structural insights into the problem structure, which sparks the development
of an e�cient preprocessing technique for multimodal journey planning in Chapter 6.
This novel preprocessing technique in turn enables us to consider a problem with
even more transportation modes in Chapter 7.
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1.1 Main Contributions
The major contributions of this thesis comprise structural insights into multimodal
journeys, several e�cient algorithms for multimodal journey planning, and fast
assignment algorithms for public transit. We introduce all algorithms in detail in
chapters 5 through 8, where we also experimentally evaluate their performance. Prior
to this, we present a brief summary of the most important results in this section.

Multimodal Profile Algorithm. Our �rst contribution is an e�cient multimodal
pro�le algorithm. That is, a journey planning algorithm that does not require a
concrete departure time as input, but a whole interval of possible departure times.
The algorithm then has to compute optimal journeys for all departure times within
the speci�ed interval. While several pro�le algorithms have been proposed for time
dependent road networks as well as public transit networks, the problem has (to the
best of our knowledge) not yet been studied for multimodal networks.

We show how a journey planning algorithm for speci�c departure times can be
extended to a pro�le algorithm. Using the MCR algorithm as a concrete example for
this, we demonstrate with an experimental evaluation that our approach indeed yields
a practical pro�le algorithm. For the multimodal network of Switzerland our approach
can compute a full 24 hour pro�le in about 30 seconds even for long range queries.

Multimodal Journey Structure. Given the multimodal pro�le algorithm we de-
veloped, it becomes practical to analyze multimodal travel times between a large
number of stops, throughout a day. Thus, we use our pro�le algorithm to compare
optimal travel times in a network where walking is possible between all pairs of
stops and networks where this is not the case. As a result we �nd, that the ability
to walk besides using public transit can reduce travel times signi�cantly. However,
most importantly we observe that walking is predominantly required between the
source location and the �rst stop and between the last stop and the target location of
a journey. In contrast, it is only rarely necessary to walk from one stop to another.

Fast Multimodal �eries through ULTRA. We exploit the aforementioned prop-
erty of multimodal journeys (i.e., the fact that walking between two stops is only
rarely necessary) within ULTRA (UnLimited TRAnsfers), our novel preprocessing
technique for fast multimodal journey planning. The basic idea of ULTRA is to de-
termine all pairs of stops (and their distance), between which walking is required
as part of an optimal journey. This information can then be used by most existing
public transit journey planning algorithms (with minor modi�cations) in order to
compute optimal multimodal journeys.
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We prove the validity of our approach with an extensive experimental evaluation.
In detail, we demonstrate that the preprocessing phase of ULTRA is well suited for
parallelization, such that the preprocessing takes only a few minutes for smaller net-
works like London or Switzerland and a few hours for larger networks like Germany.
Furthermore, we show that the results of the preprocessing enable highly e�cient
journey planning in multimodal networks. Optimal journeys can be computed in
only 5 milliseconds on smaller networks and in less than 100 milliseconds on the
Germany network. Overall, our algorithm is about one order of magnitude faster
than the best existing multimodal journey planning algorithm (MCR). The running
time of our approach is even comparable to state-of-the-art journey planning algo-
rithms for public transit networks. Moreover, our experiments show that ULTRA
cannot only handle walking between stops but also other modes of transportation
like cycling or taking a taxi.

Journey Planning with Bike Sharing. The excellent performance of ULTRA al-
lows us to consider more complex scenarios. Therefore, we examine networks that
feature bike sharing, where bicycles can be rented at bike sharing stations and have
later to be returned at bike sharing stations of the same operator. We present two
basic approaches for modeling networks with bike sharing and we show how optimal
journeys can be computed in both models. Furthermore, we adapt ULTRA to this
extended scenario and also develop a new preprocessing step that can be combined
with ULTRA to enable even faster queries.

An experimental evaluation of our approach demonstrates that the basic idea
of ULTRA also works in this more complex scenario. Furthermore, we show that
the special preprocessing step, which we developed for bike sharing, can reduce
the preprocessing time of ULTRA by more than an order of magnitude. Moreover,
we can show that our query algorithms are also more than an order of magni-
tude faster than our baseline. Overall, using our algorithms, optimal journeys can
be computed in about 20 milliseconds for the smaller networks (Stuttgart, Lon-
don, and Switzerland), while queries on the much larger network of Germany take
about 650 millisecond on average.

Highly E�icient Tra�ic Assignment. All contributions mentioned thus far con-
sider queries between single pairs of source and target locations. Another important
class of problems related to journey planning are assignment problems, which re-
quire the prediction of journeys for millions of passengers. However, standard
speed-up techniques for journey planning have thus far not been used to improve
assignment algorithms. We �ll this gap and demonstrate how the Connection Scan
Algorithm (CSA) can be adapted to the tra�c assignment scenario. As a result we
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present the CSA-Based Assignment (CBA) algorithm, which can compute an assign-
ment of 1.2 million passengers in about 34 seconds, a task that takes half an hour
using state-of-the-art commercial applications.

Multimodal Tra�ic Assignment. As a �nal contribution we extend the assign-
ment problem to multimodal networks. We achieve this by combing our prepro-
cessing approach for multimodal networks (ULTRA) with our e�cient assignment
algorithm (CBA). The main challenge in implementing this combination is the fact
that ULTRA is inherently an algorithm for computing journeys between a single
pair of source and target locations while CBA gains its e�ciency from computing
journeys for multiple targets simultaneously. We overcome this problem through
careful engineering of the data structures used to represent partial journeys. As a
result we obtain the �rst e�cient multimodal tra�c assignment algorithm, which is
capable of assigning 1.2 million passengers in about 17 seconds.

1.2 Thesis Outline
We continue by outlining the structure of the remainder of this thesis. While doing
so, we especially point out that parts of this work have previously been published
in conference proceedings and technical reports [Bri+17, WZ17, Bau+19a, Bau+19b,
SWZ19a, SWZ19b, SWZ20a, SWZ20b].

Chapter 2 provides an overview of the literature related to this work. In particular,
we present the state-of-the-art regarding algorithm for journey planning in
road networks, public transit networks, and multimodal networks, as well as
models and approaches for computing tra�c assignments.

Chapter 3 introduces fundamental concepts and notations used throughout this
thesis (Section 3.1). Building upon this, in Section 3.2 we give precise de�ni-
tions for the various journey planning problems considered in this work. The
algorithms we develop in order to solve these problems are partially based on
existing algorithms, which we brie�y explain in Section 3.3.

Chapter 4 introduces the real world data sets, which we use to evaluate all algo-
rithms presented in this work. We state the source of all data sets in Section 4.1.
Afterwards, Section 4.2 describes the necessary preprocessing steps to obtain
reliable and consistent multimodal transportation networks from the raw data.
In order to be able to compare our results with existing public transit algorithms,
we also compile networks that are suitable for these algorithms in Section 4.3.
This chapter is partially based on joint work with Dorothea Wagner [WZ17].
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Chapter 5 considers multimodal pro�les. Section 5.1 describes how journey plan-
ning algorithms, which assume a �xed departure time, can be extended to solve
pro�le queries. We continue with an experimental evaluation of our approach
in Section 5.2. In this context we analyze the e�ciency of our approach, as
well as the structure and travel time of the computed journeys, in comparison
to journeys in pure public transit networks. The chapter is concluded in Sec-
tion 5.3 with some �nal remarks on the discovered properties of multimodal
journeys. This chapter is based on joint work with Dorothea Wagner [WZ17].

Chapter 6 presents ULTRA, a preprocessing technique for networks with unlim-
ited transfers. The chapter begins with the introduction of shortcuts, which
are precomputed in order to reduce the complexity of unlimited transfers, in
Section 6.1. Afterwards, in Section 6.2, we describe how these shortcuts can
be used, in combination with preexisting public transit algorithms, to compute
multimodal journeys. We continue by discussing a special case, the combi-
nation of our shortcuts with the Trip-Based query algorithm, in Section 6.3.
This combination yields the fastest known algorithm for multimodal journey
planning, which we demonstrate with an extensive experimental evaluation
in Section 6.4. We conclude the chapter with some �nal remarks in Section 6.5.
This chapter is based on joint work with Moritz Baum, Valentin Buchhold,
Jonas Sauer, and Dorothea Wagner [Bau+19a, Bau+19b, SWZ20b].

Chapter 7 considers journey planning in multimodal networks that comprise public
transit, walking, and bike sharing. We start with a formal de�nition of this
extended scenario in Section 7.1. Afterwards, we present two possible ap-
proaches for modeling journey planning algorithms that can solve this problem
in Section 7.2. In this context we also describe how ULTRA can be used to
compute journeys with bike sharing. We continue by introducing an additional
speed-up technique that is tailored to the special properties of networks with
bike sharing in Section 7.3. The chapter is concluded with a discussion of
extended scenarios and an experimental evaluation of the algorithms for bike
sharing in Sections 7.4 and 7.5. This chapter is based on joint work with Jonas
Sauer and Dorothea Wagner [SWZ20a].

Chapter 8 considers assignment problems, which are highly relevant for planning
and analyzing public transit networks. We start with introducing some addi-
tional concepts and notation, which we will use throughout the chapter, in
Section 8.1. Additionally, we present a detailed de�nition of the assignment
problem within this section. We continue with introducing a novel assignment
algorithms for public transit algorithm in Section 8.2. Afterwards, in Section 8.3,
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we demonstrate how this algorithm can be combined with ULTRA, which yields
the �rst e�cient assignment algorithm for multimodal networks. We conclude
this chapter with an experimental evaluation of our two assignment algorithms
in Section 8.4. This chapter is based on joint work with Lars Briem, Sebastian
Buck, Holger Ebhart, Nicolai Mallig, Jonas Sauer, Ben Strasser, Peter Vortisch,
and Dorothea Wagner [Bri+17, SWZ19a, SWZ19b].

Chapter 9 concludes this work by summarizing its key results and its contribu-
tion to the state-of-the-art in journey planning. Finally, we discuss possibil-
ities for extending the algorithms presented in this work to some interesting
open problems.
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2 Literature Overview

In this chapter we present an overview of existing work related to multimodal
journey planning and tra�c assignments. We focus especially on techniques and
approaches that are relevant for this thesis, either because they serve as basis for
the algorithm developed in this work or because they solve similar problems, which
enables us to compare results. A much broader overview of state-of-the-art journey
planning algorithms is presented in [Bas+16] and a detailed introduction into public
transit tra�c assignments is given in [GN16].

2.1 Journey Planning
We begin our literature overview by discussing journey planning algorithms, where
we distinguish three types of algorithms. First, we discuss algorithms for road net-
works, followed by techniques for public transit, and �nally, we consider the multi-
modal scenario. For algorithms designed for pure road networks or public transit we
additionally provide a brief assessment of their applicability in multimodal scenarios.

2.1.1 Algorithms for Road Networks

Journey planning algorithms for road networks have seen remarkable advances
over the past decades. Typically, journey planning problems in road networks are
formulated as classical shortest path problems in a graph that represents the network.
Using this approach the problem can for example be solved with the well-known
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algorithm of Dijkstra [Dij59]. However, for larger networks the running time of
Dijkstra’s algorithm is too slow for many applications. Thus, many algorithms have
been developed that aim at improving the time required to compute a shortest path.
One of the simplest speed-up techniques for Dijkstra’s algorithm is a bidirectional
search, where a forward search from the source and a reverse search from the target
are performed simultaneously [Dan63, Nic66]. However, even such a simple approach
cannot be directly transferred to public transport networks, since performing a reverse
search would require the arrival time at the target, which is not known.

Preprocessing-Based Speed-up Techniques. More sophisticated speed-up tech-
niques commonly use a two phase (or even a three phase) approach, where early
phases compute additional information that is later used to reduce the running time
of the last phase, i.e., the actual query. Many algorithms that utilize a preprocessing
phase can furthermore be categorized as goal-directed or hierarchical. In goal-directed
techniques, the data computed during the preprocessing is used to guide the search
towards the target. In contrast, hierarchical techniques aim at skipping unimportant
parts of the network, which is often achieved through the usage of shortcuts. In what
follows, we list notable examples for both approaches.

Goal-Directed Techniques. An early example for a goal-directed preprocessing
technique is Arc-Flags [Lau04, Möh+06, HKMS09]. During the preprocessing for
Arc-Flags, the road graph is partitioned into regions. Afterwards a �ag is computed
for every pair of directed edge and region, which indicates if the edge is part of
an optimal journey that ends in the region. These �ags are then used at query
time to speed-up Dijkstra’s algorithm by restricting it to scan only edges that are
�agged for the region of the target.

Another example of a goal-directed technique is ALT (A*, Landmarks, Triangle
inequality) [GH05, EP13], which is a variant of the A∗ algorithm [HNR68] that does
not require any additional input data besides the road graph. The A∗ algorithm uses
lower bounds on the distance to the target to direct a Dijkstra search towards the
target. In particular, it changes the order in which vertices are settled by Dijkstra’s
algorithm, favoring vertices that are expected to be located on a short path from the
source to the target (based on the lower bound for the distance to the target). In ALT
the lower bounds required by the A∗ algorithm are obtained by utilizing the triangle
inequality and distances from and to a few landmark vertices. For this, ALT requires
a preprocessing phase, during which a small set of landmark vertices is selected and
the distances between all vertices and the landmarks are computed.

While it is possible to adapt goal-directed techniques for networks containing
public transportation, the resulting speed-up is quite limited [BDGM09]. The reason
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for this is the di�erent structure of public transit networks, which leads to imprecise
lower bounds when using ALT and requires that almost all edges are �agged when
using Arc-Flags.

Hierarchical Techniques. A prominent example for a hierarchical speed-up tech-
nique is Contraction Hierarchies (CHs) [GSSD08, GSSV12], which is based on vertex
contractions. A vertex is contracted by removing it from the road graph and replacing
it with shortcut edges, such that the shortest path distance between all other vertices
remain unchanged. The main idea of CH is then to iteratively contract vertices until
the whole graph is contracted. Afterwards, the original graph and the shortcuts
are used within the highly e�cient CH query, which is a bidirectional variant of
Dijkstra’s algorithm that only considers edges (and shortcuts) that lead from vertices
that were contracted earlier to vertices that were contracted later.

On road networks the CH approach yields excellent performance, with a query that
is about 10 000 times faster than Dijkstra’s algorithm, while the required shortcuts can
be computed in a few minutes. However, as with many other speed-up techniques for
road networks, CHs are not particularly well suited for networks containing public
transit. One reason for this is that the CH query is inherently bidirectional, which
is a problem as this requires knowledge of the arrival time. Nonetheless, variants
of CH for time dependent networks [BDSV09, BGNS10] and public transportation
networks [Gei10] have been developed. Instead of using a bidirectional query, these
approaches unpack the search space of the backward search, such that it can be
explored within the forward search. However, these approaches still yield signi�cant
longer preprocessing times and query times than CH for road networks.

A possible solution for problems that are too complex to be solved with CH alone
are core-based approaches [Bau+10b, Del+13, DPW15b, Bau+15]. The basic idea of
these approaches is to contract only some vertices and to keep the most di�cult parts
of the network uncontracted. This uncontracted part of the network is then called the
core, which is generally much smaller than the original network and can be handled
by a specialized query algorithm. Core-based approaches have been successfully
applied to networks containing public transit by keeping parts of the network related
to public transit in the core (MCR [Del+13], UCCH [DPW15b]).

CHs have also been adapted to some important extended scenarios. One such sce-
nario are one-to-many queries, where multiple targets are speci�ed and the distance
to all of them has to be computed. Since CH uses a bidirectional query, this would
normally require one query per target. To overcome this, Bucket-CHs have been
proposed [Kno+07, GSSD08, GSSV12], where the backward search space of the targets
is processed during preprocessing, such that a single forward search is su�cient
to compute the distance to all targets. Another import journey planning problem
arises in dynamic scenario, where travel time can change (e.g., through congestion).
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In order to solve this problem with CHs the preprocessing has do be repeated when-
ever the travel times change, which is quite costly. This shortcoming is solved
with CCH (Customizable Contraction Hierarchies) [DSW16], which extends the two
phase approach of CHs to a three phase approach. This �rst phase of CCH determines
the order in which vertices are contracted without considering travel times. After-
wards, a much faster second preprocessing phase can compute the travel times for
all shortcuts, once the actual travel times of the edges are known. Finally, CHs have
also been adapted for other means of transport, such as bicycles, where the height
di�erence of the journey should be optimized, in addition to the travel time [Sto12].

Besides CH, another important hierarchical speed-up technique is Multilevel Dijk-
stra (MLD). Interestingly, this technique was originally proposed for public transit
networks [SWZ02], and was only later adopted for road networks [JP02, Del+09,
HSW09]. However, MLD is much more relevant for journey planning in road net-
works, where it achieves much higher speed-ups than in public transportation net-
works. Independent of the network type, the basic idea of MLD is to partition the
network into regions, which can be skipped through the use of shortcuts, if neither
the source nor the target is located within the region. Similar to CCH, MLD can be
extended to a three phase approach for handling dynamic scenarios [DGPW17].

Other notable examples for hierarchical speed-up techniques are Transit Node
Routing (TNR) and Hub Labeling (HL). TNR is based on the observation that long
distance journeys pass through a small number of important vertices (called transit
nodes), e.g., slip roads. Thus, precomputing the distances between all pairs of such
vertices can be used to speed-up query algorithms, which compute journeys in
three hops (source to �rst important vertex, �rst to second important vertex, and
second important vertex to target) [BFSS07, BFM09]. Using CHs enables an e�cient
implementation of this idea [ALS13]. Furthermore, this approach can also be applied
to public transit networks [DPW09a, AW12], where it is not nearly as e�cient as
for road networks. HL is based on a very similar idea, as it precomputes distances
between all vertices and some important vertices (called hubs) [ADGW11, ADGW12,
DGSW14]. given these distances, the query algorithm �nds optimal journeys by trying
all possible two hop journeys between the source and the target, which is extremely
e�cient. This approach was also applied to public transit networks [DDPW15].

2.1.2 Public Transit Algorithms

We continue with an overview of journey planning algorithms that have been devel-
oped for public transportation networks. Many of these algorithms also consider the
possibility of walking between neighboring stops and can therefore in theory handle
at least two modes of transportation (e.g., public transit and walking). However, in
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this work we only consider an algorithm to be multimodal, if it has been shown that
the algorithm can handle networks where walking is possible between most stops
and not only between a limited subset of stops.

For journey planning in public transit networks two general classes of algorithms
can be di�erentiated. The �rst class models the problem as a classical shortest path
problem in a graph representing the network. This approach enables in theory the
usage of techniques developed for road networks (or the usage of shortest path
algorithms in general). However, in practice speed-up techniques developed for
road networks often perform poorly on public transportation networks [BDW11].
An alternative approach are algorithms that were developed to work directly on
the timetable and aim at exploiting its structure. In the following we list notable
examples for both approaches.

Graph-Based Approaches. Research on journey planning for public transporta-
tion networks has yielded a wide range of algorithms that utilize a graph-based
model of the timetable. In this section we present some of the most important results
for graph-based approaches. A more extensive overview of existing techniques is
given in [MSWZ07]. In general, graph-based approaches can be subdivided into time-
dependent and time-expanded techniques. Time-dependent techniques use vertices to
model locations and represent all options for traveling between two locations with a
single edge, where the travel time of the edge is a function of the departure time [BJ04,
PSWZ04]. In contrast, time-expanded techniques unroll the time dimension of the
network and represent every departure or arrival of a public transit vehicle at some
location with a unique vertex. Thus every vertex represents a time and a location and
two vertices are connected if traveling between them is possible (either by waiting
or by using a public transit connection) [PS98].

An advantage of the time-expanded approach is that it can easily be extended
to more complex scenarios, such as optimizing ticket costs as an additional crite-
rion [MS07]. The e�ciency of the time-expanded model can be further improved
by reducing the number of edges needed in the graph and by using goal directed
techniques, such as Arc-Flags or ALT [DPW09b]. Handling dynamic updates of the
timetable is also possible with a time-expanded approach and only requires a few
microseconds if the time-expanded graph has been optimized for updates [Cio+17].
Applying HL to a time-expanded representation of timetable yields one of the
fastest known journey planning algorithms for public transportation networks,
which is called Public Transit Labeling (PTL) [DDPW15]. However, a drawback
of this approach is, that it is only viable if the number of stops between which
walking is possible is small. Furthermore, PTL requires several days of preprocess-
ing, even for relatively small networks, such as the metropolitan area of London.
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Nonetheless, handling dynamic updates of the timetable is possible with PTL by using
a fast algorithm that updates the preprocessed data if some public transit vehicles are
delayed [DK19]. Another speed-up technique that builds upon the time-expanded
network representation is Transfer Patterns [Bas+10]. It is based on the observation
that many optimal journeys use the same stops for transferring between public transit
vehicles. Precomputing the patterns of these transfers enables extremely fast journey
planning at the cost of a very time consuming preprocessing phase. An improved
version of this approach, called Scalable Transfer Patterns, can be used to reduce the
time consumption and the space consumption of the preprocessing phase [BHS16].

The time-dependent approach is generally more space e�cient than the time-
expanded approach and for simple scenarios (e.g., optimizing only the travel time) it
also leads to faster algorithms than the time-expanded approach [PSWZ08, BDW11].
In [DMS08] it is shown how multiple criteria can be optimized in the time-dependent
representation of the network by using a multi-criteria version of Dijkstra’s algorithm.
Careful engineering of the time-dependent graph can be used to enable dynamic
updates of the timetable data and faster query algorithms [BGM10]. Finally, the
time-dependent approach has been combined with HL to speed-up queries [Wan+15].
However, this approach is not as e�cient as PTL for time-expanded graphs.

Timetable-based Approaches. A huge disadvantage of modeling the timetable
as a graph is that parts of the timetable’s structure are lost (e.g., the existence of
bus lines or train lines that are repeated periodically). Thus, many algorithms have
been developed that operate on an explicit representation of the timetable and aim at
exploiting its structure. One example for such an approach is RAPTOR (Round-bAsed
Public Transit Optimized Router), which exploits the existence of lines (which are
often called routes in this context) in the timetable [DPW12, DPW15a]. The basic idea
behind RAPTOR is that only the �rst reachable vehicle of a route has to be considered
during journey planning. The reason for this is that taking a later vehicle of a route
never leads to improved arrival times. As its name suggests, RAPTOR operates in
rounds, where the i-th round discovers journeys that use i vehicles. Thus, RAPTOR
inherently optimizes two criteria: the travel time of the journey and the number of
trips used by the journey. While RAPTOR on its own is already quite fast, it can
be combined with a partition-based speed-up technique, similar to MLD, to enable
even faster queries [DDPZ17]. However, since public transit networks are not as
hierarchical as road networks, the speed-up achieved by this approach is quite limited.

Another algorithm that operates directly on the timetable data is the Connection
Scan Algorithm (CSA) [DPSW13, DPSW18]. The fundamental idea of CSA is to split
the trips of the public transit vehicles into connections between consecutive stops.
These connections are then sorted chronologically, such that optimal journeys can be
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found through a single linear scan of the sorted array of connections. This approach
is extremely memory e�cient and therefore yields a fast query algorithm. Using CSA,
it is also possible to �nd journeys with a minimum expected arrival time (MEAT)
based on the delay probability of the public transit vehicles [DSW14]. Finally, a
speed-up technique similar to MLD has been developed for CSA, which reduces
the running time of the journey computation signi�cantly [SW14]. However, this
speed-up technique is only viable for pure public transit networks and cannot be
used for networks that allow for walking between neighboring stops.

Further examples for journey planning algorithms that exploit the structure of
the timetable include Frequency-Based Routing and Trip-Based Routing. Frequency-
Based Routing is based on the observation that many public transit trips are repeated
with a �xed frequency, which can be used to compress the timetable and enables fast
journey planning [BS14]. This approach has also been used to reduce the preprocess-
ing time of Transfer Patterns. The basic idea of Trip-based Routing is to precompute
all pairs of trips between which transferring is reasonable [Wit15]. With this informa-
tion a graph is constructed that contains one vertex for every trip of a public transit
vehicle. Two of these vertices are connected by directed edges if a reasonable transfer
between the corresponding trips was found during the preprocessing phase. Given
this graph, optimal journeys can be computed with a slightly modi�ed breadth-�rst
search. The running time of this search can be signi�cantly reduced by precomputing
and compressing the search trees [Wit16]. Using these condensed search trees yields
one of the fastest journey planning algorithms for public transit networks.

2.1.3 Multimodal Techniques

A journey planning algorithm is called multimodal if it can compute optimal journeys
in a network that combines public transit with one or more other transportation
networks. A particularly simple example of such a combined network consists of
public transit and a footpath-graph that enables walking between arbitrary public
transit stops. Of course, other transportation modes might also be added, such as
cycling, using electric scooters, taking a taxi, or any other mode of transportation that
does not have a �xed schedule. As before, the public transit part of the multimodal
network can either be modeled as a graph (together with the modes of transportation)
or it can be modeled by using a direct representation of the timetable. In the following,
we present the state-of-the-art for both approaches.

Graph-Based Approaches. Similar to public transit, a multimodal network can
be modeled as a time-dependent graph or a time-expanded graph [HJ13, GPZ19].
However, with an additional mode of transportation that is available, the size of
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the graph increases signi�cantly. Thus, journey planning algorithms that do not
use speed-up techniques are often too slow in practice. An example for a multi-
modal speed-up technique is Access Node Routing [DPW09a], which combines a
time-dependent representation of the network with TNR. In particular, this approach
identi�es all stops that are used to transition between the road networks and the
public transit network. These stops are called access nodes and they are used, similar
to transit nodes in TNR, in order to speed-up the journey computation. However,
Access Node Routing was only evaluated for relatively small public transit networks,
where it already required a comparatively large number of access nodes. Thus, it is
questionable whether applying Access Node Routing to larger networks is practical.

Another example for a multimodal speed-up technique is State Dependent ALT,
which combines a time-dependent graph representation of the multimodal network
with ALT [Kir13]. This approach was evaluated for the networks of New York
and Île-de-France, where it achieves a signi�cant speed-up. Furthermore, State
Dependent ALT can also handle additional modes of transportation, such as bike
sharing or using a car. However, only networks with a single bike sharing operator
are supported, i.e., bicycles can be returned at any bike sharing station.

Currently, the best known graph-based multimodal journey planning algorithm
is UCCH (User-Constrained Contraction Hierarchies) [DPW15b]. It combines a time-
dependent graph representation of the network with a core-CH. In particular, UCCH
keeps all public transit stops and all vertices where the transportation mode can be
changed in the core. The core-based approach enables the usage of the bidirectional
CH query for public transit, which normally is not viable as it requires knowing the
arrival time. The reason for this is, that the backwards search can be restricted to the
contracted part of the network, which does not contain any public transportation.

An alternative approach for fast journey planning in complex multimodal net-
works are heuristic algorithms. In this case the provable correctness is sacri�ced in
favor of speed. Nonetheless, a carefully engineered heuristic algorithm can often
�nd the optimal solution in practice [BJR16].

Timetable-based Approaches. Only a few multimodal journey planning algo-
rithms that operate directly on the timetable have been developed. The �rst such
approach is MCR (multiModal multiCriteria RAPTOR), which extends RAPTOR to
the multimodal scenario [Del+13]. Overall, the approach of MCR is similar to the
approach of UCCH, as it is also based on a core-CH where the public transit network
remains uncontracted. After the core-CH has been computed in a preprocessing step,
the query of MCR is mostly equivalent to RAPTOR. The main di�erence is, that every
relaxation of transfer edges in RAPTOR is replaced with a Dijkstra search on the
core graph. An advantage of MCR is that additional criteria besides travel time and
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number of used public transit vehicles can be optimized (e.g., walking distance).
Most recently HLRAPTOR and HLCSA have been proposed, which combine HL

with RAPTOR and CSA, respectively [PV19]. Both of these algorithms apply the
speed-up technique (HL) only to the non-schedule based part of the multimodal
network, i.e., the public transit network is not a�ected. This is quite similar to the
approach of UCCH and MCR. HL is integrated into the query algorithm of RAPTOR
and CSA by replacing the relaxation of transfer edges in these algorithms with
multiple HL queries. Because of this, HLRAPTOR and HLCSA ar not nearly as fast
as a single HL query on a road graph. However, they still achieve the best known
running times for journey planning in multimodal networks.

Multicriteria optimization. Multimodal journey planning is often combined with
multicriteria optimization. That is, besides travel time, other criteria have to be
optimized, such as travel time, ticket cost, or walking distance. In general, an optimal
route is no longer uniquely de�ned if more than one criterion is optimized. Thus,
the goal of multicriteria optimization is to �nd a Pareto-set of journeys. While these
Pareto-sets can get quite large in theory, they only contain a few entries in practice
if only two criteria are optimized [MW01].

Almost all public transit algorithms and multimodal algorithms covered in this
chapter support Pareto-optimization for two criteria: travel time and number of used
public transit vehicles. Some algorithms support even more criteria. However for
three or four criteria, the size of the Pareto-set increases signi�cantly and quickly
becomes impractical. Therefore, several approaches for �nding meaningful subsets
of a Pareto-set have been proposed [MS07, BBS13]. A notable example for such an
approach is RAPTOR/MCR, which has been combined with fuzzy logic in order to
determine the most signi�cant journeys within a Pareto-set. Another example is
Bounded McRAPTOR which introduced the notion of restricted Pareto-sets [DDP19].
These restricted Pareto-sets have the additional advantage that the Pareto-sets can be
reduced during the execution of the algorithm, which also improves the running time.

2.2 Tra�ic Assignments
In the �nal section of our literature overview we consider tra�c assignment algo-
rithms for public transportation networks. In general, the tra�c assignment problem
can be subdivided into two subproblems [She85]. The �rst problem is to generate
for each individual demand (i.e., pair of origin and destination) a set of journeys that
could be used to ful�ll the demand. This set is usually called the choice set and should
not only contain optimal journeys, but all reasonable journeys. The objective of the
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second subproblem is to determine for every journey in the choice set the percentage
of passengers that would use that journey. Since passengers are assigned to journeys
in this second step, the overall problem is called the tra�c assignment problem.

While the �rst subproblem, at its core, has many similarities with journey planning
problems, hardly any of the results covered in the last section were applied to the
tra�c assignment problem. Many assignment algorithms simply use Dijkstra’s algo-
rithm (modi�ed such that additional suboptimal journeys can be found) to compute
the journeys for the choice sets [TW99, Møl99, NF06]. However, this can be quite slow,
since it is not uncommon that the demand consists of millions of origin-destination
pairs. A more sophisticated approach uses branch and bound to compute extended
shortest path trees that also represent slightly suboptimal journeys [FHW01].

Discrete Choice Models. Most research on public transit tra�c assignments fo-
cuses on the second part of the problem, i.e., deciding which journeys in the choice set
are used by which percentage of the passengers. Probably the simplest solution for this
subproblem are all-or-nothing assignment, where all passengers are assigned to the
best journey from the choice set (given a suitable de�nition of best journey) [SLM07].
While this simple approach already yields good results for tra�c assignments in
road networks, it does not produce realistic assignments for public transit net-
works [She85]. This is because in many cases public transit passengers will not agree
on single best journey (e.g., some passengers prefer fast journeys, while other passen-
gers prefer journeys that do not require many transfers between di�erent vehicles).

To solve this issue, discrete choice models can be used, which stochastically assign
the passengers to multiple journeys in the choice set. A comprehensive overview of
various discrete choice models used for public transit assignments is given in [Tra09].
For this work, we focus on Random Utility Models (RUMs), which are one class
of discrete choice models [Mar60, McF73]. A RUM rates the usefulness of every
option (i.e., journey in the choice set) with a utility, which is a random variable. The
probability that a certain option is chosen is then equivalent to the probability that the
random utility of this option is greater than the random utility of each other option.

A commonly used RUM is the Logit model, which is based on the assumption that
the random utilities have a Type-I Extreme Value distribution [DM75]. An advantage
of this model is that the computation of the probabilities for all journeys in the
choice set is comparatively simple. However, the resulting probabilities can become
unrealistic if the choice sets are very large or if many journeys are similar (e.g., use
the same vehicle for parts of the journeys). In order to overcome this shortcomings,
many extensions to the Logit model have been proposed.

One example for an extended Logit model is the C-Logit model, which adds a
commonality factor to the utility of the journeys [CNRV96, RV03]. This factor is
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proportional to similarity of two journeys and adjusts their probability in order to
re�ect that they are not independent choices. However, the commonality factor has
to be computed for all pairs of journeys, which is quite time consuming. Another
approach for making the probabilities of similar journeys more realistic are nested
Logit models [Dal87]. These models are based on the idea that the decision about
which journey to choose from the choice set can be broken down into several in-
dependent decisions. For example: �rst deciding between using a tram or using a
bus and afterwards deciding which speci�c line of the chosen vehicle type should be
used. An extension of this idea is the sequential route choice model [GP06]. Within
this model, every journey is split into several small sections (e.g., walking between
to stops or taking a train from one stop to another). Afterwards, the probability of a
journey is determined by evaluating a sequence of discrete choice models (one for
every section) and multiplying their probabilities.
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3 Fundamentals

In this chapter we present a detailed introduction of the basic concepts and notation
used throughout this thesis. We start by formally introducing multimodal transporta-
tion networks and all of their components in Section 3.1. Next, we de�ne the di�erent
journey planning problems covered in this thesis in Section 3.2. Finally, Section 3.3
highlights the most important algorithmic approaches, which are used as a basis for
the solutions developed in this thesis. An additional quick guide to the notation can
be found on page 187.

3.1 Network Models
Throughout this thesis we will encounter several di�erent variants of journey plan-
ning problems. Since no single algorithm exists that achieves the best performance
for all problem variants, we will use di�erent algorithms, depending on the problem
at hand. Moreover, many of the algorithms that are relevant for this thesis require a
representation of the public transit network that is tailored to the algorithm. Thus,
we have to handle several slightly di�erent network models. In the following section
we will introduce the most important network representations. For this, we �rst
introduce a quite detailed base model, and then derive the other models from it.

On a fundamental level, we can model a public transit network based on its stops,
vehicles, and events (where we di�erentiate between departure events and arrival
events). The stops are all locations where it is possible to enter or leave a public
transit vehicle (i.e., bus stops, train stations, platforms, ferry ports, etc.). These stops
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are connected by the vehicles (buses, trains, ferries, etc.), which travel between them.
The network contains one arrival event for every time when a vehicle arrives at a
stop, such that passengers may leave the vehicle. Similarly, the network contains one
departure event for every time when a vehicle departs from a stop, with the possibility
of passengers entering it beforehand. We can represent both types of events using
triples containing a stop, a time, and a vehicle. In order for the transit network to
be valid, we require that all events of one vehicle, when sorted by time, form an
alternating sequence of departure and arrival events, starting with a departure event
and ending with an arrival event. Furthermore, the stop of each departure event has
to be the stop of the preceding arrival event, except for the �rst departure event,
which has no preceding arrival event.

3.1.1 Connection-Based Model
The �rst concrete network model we introduce is the one used by the Connection Scan
Algorithm [DPSW13]. It revolves around the idea that the shortest amount of time a
passenger can meaningfully spend in a public transit vehicle is the time between a
departure event and the subsequent arrival event of the same vehicle. The model thus
aggregates pairs of consecutive departure and arrival events into connections, which
are also the origin of the name of the network model and the algorithm building upon
it. Formally, a connection c is a 5-tuple (vdep(c), varr(c), τdep(c), τarr(c),T (c)). It represents
a vehicle driving from a departure stop vdep(c) to an arrival stop varr(c) without any
intermediate stops. The vehicle is scheduled to depart from vdep(c) at the departure
time τdep(c) and arrives at varr(c) at the arrival time τarr(c), which we require to be
greater than τdep(c). Thus, a connection can be seen as an atomic part of a public
transit journey, since a passenger can either use a connection entirely or not at
all (it is not possible to stay inside a vehicle for a fraction of a connection). The
trip T (c) of the connection is an abstraction of the vehicle that drives the connection.
Two connections c, c ′ are part of the same trip (i.e., T (c) = T (c ′)) if and only if a
passenger can use both connections without leaving the vehicle in between. Thus,
two connections being part of the same trip implies that they are served by the same
physical vehicle. However, a single physical vehicle may serve several trips, for
example when the vehicle returns to the depot in between.

The set of all connections that are present in the public transit network is de-
noted by C. All stops served by the connections in C are compiled into the set of
stops S B {vdep(c) | c ∈ C } ∪ {varr(c) | c ∈ C }. Similarly, we de�ne the set T of all
trips in the network as T B {T (c) | c ∈ C }. Using this, we �nally de�ne the public
transit network N , in its connection-based form, as the triple N B (C,S, T ).

Some algorithms (e.g. tra�c assignments, which we cover in Chapter 8) require
that all connections departing from the same stop have a well-de�ned order of
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departure, i.e., ∀c, c ′ ∈ C : vdep(c) = vdep(c ′) ⇒ τdep(c) , τdep(c ′). Because of this, we
establish a unique order of departures by perturbing the departure times of concurrent
connections by some ε > 0. However, this has no e�ect on the journeys, which we
will de�ne in Section 3.1.4. In particular it does not change weather a journey is
possible or not within the connection-based model.

3.1.2 Route-Based Model
The algorithms of the RAPTOR-family [DPW12] require a slightly di�erent repre-
sentation of the timetable data, while ultimately yielding the same results as other
algorithms. Instead of focusing on the connections between subsequent stops, the
route-based model has the interaction of a vehicle with a single stop at its core. To
this end, we de�ne a stop event ϵ as a triple (τarr(ϵ), τdep(ϵ), v(ϵ)), which encapsulates a
vehicle arriving at the stop v(ϵ) at the arrival time τarr(ϵ) and subsequently departing
from the same stop at the departure time τdep(ϵ). Similar to a connection, a stop
event also is the combination of an arrival and a departure event. However, while a
connection combines a departure event with the subsequent arrival event at the next
stop, the stop event combines an arrival event and the subsequent departure event
at the same stop. Since we initially de�ned that the sequence of events belonging
to a vehicle starts with a departure event and ends with an arrival event, we have
to introduce special cases for the �rst and the last stop event of a vehicle. We do so
by de�ning the arrival time of the �rst stop event of a vehicle as τarr(ϵ) B −∞ and
the departure time of the last stop event as τdep(ϵ) B ∞.

Similar to the connection-based model, we use trips as an abstraction of physical
vehicles. For the route-based model, we de�ne a trip T as a sequence 〈ϵ0, . . . , ϵk 〉
of stop events that are served consecutively (without interruptions) by the same
vehicle, such that a passenger may ride along all of them without requiring a transfer.
For these trips we also introduce some additional notation: First, we de�ne the
length of a trip T = 〈ϵ0, . . . , ϵk 〉 as |T | B k . Thus, the length of a trip is the
number of stop events it contains minus one, which corresponds to the number of
connections in the trip when using the connection-based model. Secondly, we denote
the i-th stop event of a trip T by T [i]. Thirdly, we de�ne the stop sequence v(T ) of
a trip T as v(T ) B 〈

v(T [0]), . . . , v(T [k])〉. And �nally, we say that the trip Ta ∈ T
overtakes the trip Tb ∈ T if both trips have the same stop sequence and there
exist two indices i < j, such that Ta arrives at or departs from v(Ta[i]) before Tb
and Ta arrives at or departs from v(Ta[j]) after Tb .

The crucial idea of the route-based model is to partition the set of trips T into
routes, such that any two trips of the same route have the same stop sequence and do
not overtake each other. The rationale behind this is that a passenger that could use
several trips of a route, only needs to consider the �rst trip of the route he can reach.
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The reason for this is that all later trips reach the same stops at later points in time.
In order to obtain a maximal bene�t from this, we require that the set of trips is par-
titioned into as few routes as possible. We also require that every trip in the network
is part of exactly one route. The resulting set of routes is denoted by R. Note that the
partition of trips into a minimal number of routes is not necessarily unambiguous.

Using the trips and routes we introduced above, we de�ne the public transit
network N , in its route-based form, as the triple N B (S, T ,R). As before, for the
connection-based model, S B {v(T [i]) | T ∈ T , 0 ≤ i ≤ |T | } denotes the set of all
stops in the network.

3.1.3 Transfer Graphs
Since this thesis is focused on multimodal journey planning, we, of course, also
consider other transportation modes besides public transit. We model non-schedule-
based modes of transportation (such as walking, cycling, or driving) using transfer
graphs. A transfer graph G is a weighted, directed graph, which we de�ne as a
tupleG B (V, E), consisting of a vertex set V and an edge set E ⊆ V ×V . The vertices
represent locations in the network. We require that they are a superset of the stops
in the public transit network (S ⊆ V). By doing so, we establish a natural connection
between the transfer graph and the public transit network. Each edge e = (v,w) ∈ E
represents a street or pathway in the network that allows passengers to move from
vertex v to vertex w . The transfer time required to move along the edge e in G is
denoted by τtra(e). Since we do not intend to introduce time travel in this work, we
limit the co-domain of the transfer time function to the non-negative real numbers.
Formally, we de�ne τtra : E → R+

0. For simplicity of notation we also use τtra(v,w)
to denote the transfer time of an edge e = (v,w) ∈ E . We call the graph G = (V, E)
transitively closed if, for each pair (v,w), (w, x) ∈ E of edges, a third edge (v, x) ∈ E
exists such that τtra(v, x) ≤ τtra(v,w) + τtra(w, x).

A path P inG is a sequence of vertices 〈v1, . . . , vk 〉, such that an edge (vi , vi+1) ∈ E
exists for every 0 < i < k . The number of vertices in the path P is denoted by |P | B k .
We extend the notion of transfer time from edges to paths P = 〈v1, . . . , vk 〉, using
the de�nition τtra(P) B

∑k−1
i=1 τtra(vi , vi+1). We also allow paths to consist of only a

single vertex and de�ne τtra(〈v〉) B 0 for this case. We call the path P = 〈v1, . . . , vk 〉
an s-t-path if v1 = s and vk = t holds.

An s-t-path P is called a shortest path if τtra(P) ≤ τtra(P ′) holds for all s-t-paths P ′
that exist in G. Using this de�nition of shortest paths, we introduce a distance mea-
sure δτ : V × V → R+

0 ∪ {∞} on the vertices of a graph. To this end, we de�ne δτ (v,w)
as the transfer time τtra(P) of a shortest v-w-path P in G, if such a path exists. If the
vertices v andw are not connected by any path in the graph, we de�ne δτ (v,w) B ∞.
Thus, δτ (v,w) is the minimal time required to transfer from vertex v to w . We can
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use this for an alternative characterization of transitively closed graphs. A graph G
is transitively closed if for every pair of vertices v,w ∈ V with δτ (v,w) , ∞ an
edge (v,w) ∈ E exists such that δτ (v,w) = τtra(v,w) holds.

We call a graph Gc
= (V c

, E c) a core graph of G if its vertices are a subset of the
vertices from G and the transfer times of shortest paths in G are preserved in Gc for
pairs of vertices from V c. More formally, we de�ne that Gc

= (V c
, E c) is a core graph

of G = (V, E) if V c ⊆ V and ∀v,w ∈ V c: δτ (v,w) in G = δτ (v,w) in Gc holds. Note
that Gc is sometimes also called overlay graph in the literature.

3.1.4 Journeys and Profiles

With the multimodal network being well-de�ned, we can now focus on the ob-
jects we want to compute, given a network. Most relevantly, we want to describe
the movement of a passenger through the network. For this purpose, we �rst re-
quire the notion of a trip leg. A trip leg T i j is a subsequence of the trip T , rep-
resenting a passenger boarding the trip T at the i-th stop and disembarking at
the j-th stop. Hence, for a given trip T = 〈ϵ0, . . . , ϵk 〉, we de�ne T i j

B 〈ϵ i , . . . , ϵ j 〉.
In addition, we de�ne the departure time of T i j as the departure time at the �rst
stop of the trip leg T i j, i.e., τdep(T i j ) B τdep(T [i]). Similarly, the arrival time of the trip
leg is de�ned as τarr(T i j ) B τarr(T [j]).

Two trip legs can be connected using an intermediate transfer. Given two trip
legsT i j

a andTmn
b , we de�ne an intermediate transfer as a path P in the transfer graphG

with the following properties: First, the path P begins with the vertex of the last stop
event of the trip leg T i j

a , i.e., v(Ta[j]). Secondly, the path P ends at the vertex of the
�rst stop event of the trip leg Tmn

b , i.e., v(Tb [m]). Thirdly, the transfer time τtra(P) of
the path is su�cient to reach Tmn

b . The transfer time is su�cient if, after vacating T i j
a ,

there is enough time to transfer to the departure stop of Tmn
b before Tmn

b departs. We
can express this formally as τarr(Ta[j])+τtra(P) ≤ τdep(Tb [m]). An initial transfer before
a trip leg T i j is a path P =

〈
s = v0, . . . , vk = v(T [i])〉 in G from a source vertex s to

the �rst stop of T i j. Correspondingly, we de�ne a final transfer after a trip leg T i j

as a path P =
〈
v(T [j]) = v0, . . . , vk = t

〉
in G from the last stop of T i j to the target t .

We use the term transfer on its own to denote the union of all transfer types, or if
the actual type of the transfer can be deduced from context.

Journeys. Building upon trip legs and transfers, we can �nally introduce journeys
within the multimodal network. We de�ne a journey J = 〈P0,T

i j
0 , . . . ,T

mn
k−1, Pk 〉 as

an alternating sequence of transfers and trip legs. Note that some or all of the
transfers may be empty, i.e., consist of a single stop only. We call a journey J
an s-t-journey if the �rst vertex of P0 is s and the last vertex of Pk is t . The set
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Journeys with 0 trips:
J1 =

〈〈s, v,w,y, t〉〉
Journeys with 1 trip: Journeys with 2 trips:
J2 =

〈〈s, v,w〉, 〈3→ 6〉, 〈z , t〉〉 J5 =
〈〈s〉, 〈2→ 3, 3→ 4〉, 〈x〉, 〈5→ 7〉, 〈t〉〉

J3 =
〈〈s〉, 〈2→ 3〉, 〈w,y, t〉〉 J6 =

〈〈s〉, 〈5→ 6, 6→ 7〉, 〈x〉, 〈7→ 9〉, 〈t〉〉
J4 =

〈〈s, v,w〉, 〈10→ 13〉, 〈z , t〉〉 J7 =
〈〈s〉, 〈8→ 9, 9→ 10〉, 〈x〉, 〈11→ 13〉, 〈t〉〉

Figure 3.1: A small example of a multimodal network. The public transit net-
work contains 3 routes (colored arrows) and 12 connections, which are annotated
with τdep → τarr. The transfer graph contains 6 edges, which are annotated with their
transfer times. Below the network we list the s-t-journeys (s and t are marked in
green) in a Pareto-set, with respect to departure time, arrival time, and number of trips.

of all s-t-journeys is denoted by J t
s . For our objective of journey planning, we

need to assess the quality of a journey. To this end, we introduce some properties
of journeys that are of special interest: First, we de�ne the departure time of a
journey J = 〈P0,T

i j
0 , . . . ,T

mn
k−1, Pk 〉 as τdep(J ) B τdep(T i j

0 ) − τtra(P0), and the arrival time
as τarr(J ) B τarr(Tmn

k−1) + τtra(Pk ). Using these two values, we can see that the overall
travel time of the journey is τtra(J ) B τarr(J ) − τdep(J ). Finally, we are interested in
the number of trips (i.e., vehicles) used by the journey, which we denote as |J | B k .
An important special case is a journey J = 〈P0〉 that consists solely of a path in the
transfer graph. Since such a journey does not rely on any trip, it can be traveled
at any time. Thus, its departure time τdep(J ) has to be stated separately. Given the
departure time, the corresponding arrival time is de�ned as τarr(J ) B τdep(J ) + τtra(P0).

Since multiple properties a�ect the quality of a journey, it is not possible in general
to establish a total order on a set of journeys. However, we can de�ne a partial order-
ing, using the concept of Pareto dominance. To this end, let F be a set of functions
that map journeys to some totally ordered set (e.g. F = {τarr(·), | · | }). We then say
that a journey J weakly dominates a journey J ′ with respect to F if f (J ) ≤ f (J ′)
holds for all f in F . The journey J strictly dominates J ′ with respect to F if J weakly
dominates J ′ and f (J ) < f (J ′) holds for at least one function f ∈ F . Let J be a set of
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Figure 3.2: A trip-dependent arrival time s-t-pro�le f +
arr (left) and a trip-dependent

travel time s-t-pro�le f +
tra (right) for the multimodal network from Figure 3.1. The blue

plots represent f +
arr(τ , 0) and f +

tra(τ , 0). The yellow plots represent f +
arr(τ , 1) and f +

tra(τ , 1).
The red plots represent f +

arr(τ , 2) and f +
tra(τ , 2). The �lled points correspond to the

journeys in the Pareto-set of s-t-journeys.

journeys. We call a journey J ∈ J Pareto-optimal (with respect to J and F ) if no jour-
ney that strictly dominates J exists in J . Furthermore, a subset J ′ ⊆ J of minimal
cardinality, such that each journey in J is weakly dominated by a journey from J ′, is
called a Pareto-set of J (with respect to F ). Note that the Pareto-set is not necessarily
unique. Common examples for the set F are F = {τtra(·), | · | }, where we want to
minimize the travel time and number of used trips, and F = {−τdep(·), τarr(·), | · | },
where we optimize for journeys that depart as late as possible, arrive as early as
possible, and use as few trips as possible. In order to keep the notation simple,
we will not specify the set of functions F explicitly every time that we work with
Pareto-optimization. Instead we simply mention (in text form) the properties of the
journeys we want to optimize. An example of a small multimodal network and an
accompanying Pareto-set of s-t-journeys is shown in Figure 3.1.

Profiles. Closely related to Pareto-sets that consider departure time as one of their
optimization criteria is the notion of pro�les. An arrival time s-t-profile is a func-
tion farr : R→ R ∪ {∞} that maps each departure time τ to the minimal arrival time
of any s-t-journey J with τdep(J ) ≥ τ . The arrival time pro�le is a piecewise linear
function consisting of segments with a slope of either 0 or 1. Segments with slope 0



Chapter 3 Fundamentals

30

indicate that the best journey uses at least one trip and requires some additional
waiting time before it departs. Segments with slope 1 correspond to transferring
directly to the target (without using the public transit network). Since this can
be done at any departure time and since the time required for the transfer is in-
dependent of the departure time, the slope is 1. The breakpoints of the arrival
time s-t-pro�le function correspond exactly to the journeys in a Pareto-set of s-t-
journeys with respect to departure time and arrival time, since the pro�le function
returns the minimal arrival time for every departure time. A slightly di�erent view
on the same data is given by the travel time s-t-profile function ftra : R→ R+

0 ∪ {∞},
which is de�ned as ftra(τ ) B farr(τ ) − τ .

A generalization of the aforementioned pro�les, which also considers the num-
ber of trips used by the journeys, are trip-dependent pro�les. A trip-dependent
arrival time s-t-profile is a function f +

arr : R × [0, . . . , |R|] → R ∪ {∞} that maps each
departure time τ and maximal number of trips n to the minimal arrival time of
any s-t-journey J with τdep(J ) ≥ τ and |J | ≤ n. As before, this function is piece-
wise linear, if we �x its second parameter. Moreover, the breakpoints of this pro-
�le function once again correspond to the journeys in a Pareto-set. In particu-
lar, the breakpoints of a trip-dependent arrival time s-t-pro�le are precisely the
journeys in a Pareto-set of s-t-journeys with respect to departure time, arrival
time, and number of trips. We can also see that the trip-dependent pro�le is a
true generalization of the normal pro�le, as farr(τ ) = f +

arr(τ , |R|) holds. The reason
for this is that every Pareto-optimal journey will use at most one trip of every
route in a public transit network. Thus, asking for the minimal arrival time of
any journey with at most |R| trips is equivalent to asking for the minimal arrival
time of any journey. Finally, we can again de�ne a representation of the pro-
�le that focuses on travel time instead of arrival time. We do so by de�ning the
trip-dependent travel time s-t-profile as a function f +

tra : R × [0, . . . , |R|] → R+
0 ∪ {∞}

with f +
tra(τ ,n) B f +

arr(τ ,n) − τ . An example of a trip-dependent arrival time pro�le and
the corresponding travel time pro�le is given in Figure 3.2.

Often we are not interested in the optimal journeys for every departure time, but
only for a small interval I = [τmin, τmax] ⊆ R of departure times. We achieve this
for every pro�le type by simply restricting the domain of the function. However,
it is important to note that such a restriction does not carry over directly to the
corresponding Pareto-set of the pro�le. In detail, this means that the set of breakpoints
of a pro�le restricted to the departure time interval I = [τmin, τmax] is not equivalent
to the Pareto-set of journeys J with τdep(J ) ∈ I . The reason for this is that an optimal
journey for the departure time τmax might involve some waiting time at the source,
such that the actual departure of the journey is greater than τmax. However, we can
still formulate a slightly altered correlation: The breakpoints of the trip-dependent
arrival time s-t-pro�le restricted to departure times in I = [τmin, τmax] correspond
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exactly to the journeys in the union of the following two sets. The �rst set is the
Pareto-set of { J | J ∈ J t

s , τdep(J ) ∈ I } with respect to departure time, arrival time,
and number of trips. The second set is the Pareto-set of { J | J ∈ J t

s , τdep(J ) ≥ τmax }
with respect to arrival time and number of trips. An analogous correlation can be
formulated for all other pro�le types.

3.1.5 Minimum Change Times and Departure Bu�er Times

We obtain multimodal transportation networks by combining a public transit network
with one or multiple transfer graphs. Doing this does not require any additional steps,
as the stops of the public transit network are a subset of the vertices in the transfer
graph by de�nition. For this work, we introduced journeys within the multimodal
network in a way that allows switching from trips in the public transit network to
paths in the transfer graph at stops without any constraints. However, this is not the
only formulation of journeys used in the literature.

Minimum Change Times. The most common approach speci�es an additional
minimum transfer time orminimum change time τch(v), which has to be observed when
transferring between two trips at the stop v of the public transit network [DPW12,
Wit15, DPSW18]. More speci�cally, a journey J = 〈. . . ,T i j

a , 〈v〉,Tmn
b , . . . 〉 is only valid

if the di�erence between the departure time τdep(Tmn
b ) of the tripTb at v and the arrival

time τarr(T i j
a ) of the trip Ta at v is greater or equal to the minimum change time τch(v)

of the stop. The minimum change time was introduced, because a single stop v is
occasionally used to represent a whole station instead of individual platforms. In
order to transfer between trips at a large station, it can be necessary to change from
one platform to another, which requires additional time. In this case, the minimum
change time ensures that two trips can be part of a single journey only if the time
between them is su�cient for the transfer.

It is important to note that the minimum change time has to be observed only
when transferring between two trips at the same stop. The minimum change time
does not apply to cases where a path in the transfer graph is used to transfer between
trips. It is also not used when transferring from the source vertex to the departure
stop of the �rst trip in a journey. The reason for this is that minimum change times
were introduced before complex transfer graphs have been considered. Most works
that use minimum change times only allow transfers between trips, which consist of
at most one edge e = (v,w) in the transfer graph. In this case, the time required for
leaving the station v or entering the station w is simply added to the transfer time of
the edge connecting them.
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Figure 3.3: An example of a network with minimum change time τch(v) at the
stop v (left) and an equivalent network without minimum change times (right).
Connections share the same color if they are part of the same trip. For the construc-
tion of the right network, the stop v is split into two stops vin and vout. These new
stops are connected by two new edges ev = (vin, vout) and e ′v = (vout, vin).

Departure Bu�er Times. An approach better suited for the use within multimodal
scenarios is based on departure buffer times τbuf(v). Here, a journey is only valid if
the departure time τdep(T i j ) of each trip leg T i j in the journey is greater or equal
to the arrival time at that stop plus the departure bu�er time τbuf(vdep(T i j )). This
requirement is independent of the mode of transportation that was used to arrive at
the departure stop. The departure bu�er time can be interpreted as the time required
for a passenger to orient himself and �nd the way to the departure platform.

Network Transformations. While these two approaches make the overall net-
work model more realistic, they do not increase the complexity of any journey
planning problem. In fact, we can replicate the e�ects of both, minimum change
times and departure bu�er times, with small modi�cations to the public transit net-
work. If we want to handle departure bu�er times, we simply reduce the departure
time τdep(ϵ) of each stop event ϵ in the network by τbuf(v(ϵ)), which yields the new
stop event ϵ ′ B (τarr(ϵ), τdep(ϵ) − τbuf(v(ϵ)), v(ϵ)). It is easy to see that these modi�ed
stop events lead to the same results as departure bu�er times, since they require an
arrival time that is less or equal to τdep(ϵ) − τbuf(v(ϵ)) in order to embark the trip of ϵ ′,
just like the departure bu�er time would.

Handling minimum change times is more involved, since we need to be able to
di�erentiate whether a stop was reached by trip (in which case the minimum change
time has to be observed) or by a path (in which case it is immediately possible to enter
a trip). We achieve this by replacing each stop v of the network with two stops vin
and vout, which are connected by two new edges ev = (vin, vout) and e ′v = (vout, vin), as
shown in Figure 3.3. Inbound connections of the original stop v are connected to vin
and outbound connections are connected to vout. Thus, transferring between trips at
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the stop v is only possible by using the edge ev . By de�ning the transfer time of this
edge as τtra(ev ) B τch(v) we account for the minimum change time, which is required
for the transfer. Edges like e ′ = (v, z 2) that originate at v are substituted with edges
that start at vin. Therefore, a trip leg can be succeeded by a path in the transfer graph
without incurring the minimum change time. Similarly, edges like e = (z 1, v) that
end at v are substituted with edges that end at vout, enabling the usage of trips after a
path without applying the minimum change time. We ensure that paths, which pass
through v , can still be represented in the new network by de�ning the transfer time of
the edge e ′v as τtra(e ′v ) B 0. Finally, in order to prevent gaps within trips, an additional
connection from vin to vout is added to the network for every trip that passes through v .

The construction of this network reveals another problem of minimum change
times that arises when they are combined with a transfer graph. Assume that z 1 and z 2

from Figure 3.3 are the same vertex. In this case, transferring from vin to vout is not only
possible via the edge ev but also via the path through z 1. This path can be used to evade
the minimum change time if its transfer time is less than τch(v). The reason for this is
the de�nition of the minimum change time, by which the minimum change time only
has to be observed if no path in the transfer graph is used to transfer between trips.

It is important to note that for both approaches, the constructed network may
contain stop events where the vehicle departs before it arrives. However, this is not
a problem since journeys that arrive at the same vertex that they started from, but
at an earlier time, are still not possible. We therefore adjust our de�nition of public
transit networks to allow stop events with a negative duration. We furthermore
specify that the order of stop events in a trip is still determined with respect to
the original time of the stop events.

Throughout this work, we will use networks with departure bu�er times, since
this is the most appropriate approach for multimodal scenarios. However, we will not
discuss the e�ect of departure bu�er times explicitly for every algorithm presented in
this work. Instead, we simply assume that the departure bu�er times are integrated
into the stop events of the public transit network.

3.2 Journey Planning and Assignment Problems
Throughout the literature, several di�erent journey planning problems have been
considered for networks as those, which we de�ned in the previous section. In this
section we introduce the journey planning problems addressed in this work and
di�erentiate them from common other journey planning problems. To this end, we
present a brief classi�cation of some common journey planning problems. We classify
journey planning problems on the basis of four properties: the number of sources,
the number of targets, the optimization goal, and the timeframe.
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Number of Sources/Targets. For both, the number of sources and the number of
targets, we distinguish between three options. The �rst option is that a single vertex is
speci�ed as source or target location of the journey. We denote this case by using the
word one within the problem de�nition. Alternatively, a set of vertices can be speci�ed
as source or target locations. In this case the objective is to �nd an optimal journey for
each pair of source and target location. We use the word many to denote this within
the problem formulation. Finally, we distinguish the special case where optimal
journeys have to be found for all vertices of the network, which we denote by all.

The number of sources and targets can be chosen independently of each other and
each combination results in a separate journey planning problem. For denoting these
problems we use the notation: source-type-to-target-type. An example for this is the
one-to-many problem, where a single source vertex and multiple target vertices are
given. Accordingly, the objective of this problem is to �nd optimal journeys from the
source vertex to all target vertices.

Optimization Goal. We further di�erentiate journey planning problems on the
basis of the criteria with regard to which the journeys are optimized. In particular,
we consider two types of optimization problems in this thesis. The �rst type is
the earliest arrival problem, which asks for the minimal possible arrival time at the
target. Finding a journey that actually achieves the minimal possible arrival time is
not considered to be a separate problem within this work, since almost all earliest
arrival algorithms also provide the corresponding journey. It is important to note
that a journey not necessarily minimizes the travel time if it minimizes the arrival
time. Most earliest arrival algorithms require some additional steps in order to �nd a
journey with minimal travel time. However, �nding such a journey generally does
not require much additional time, once the earliest arrival time has been computed.

In addition to earliest arrival problems we also consider bicriteria problems in this
work, where the arrival time and the number of used trips are optimized. In particular,
the goal of the bicriteria problem is to �nd a Pareto-set of journeys with respect
to arrival time and the number of used trips. Similar to earliest arrival problems
we mainly focus on �nding the Pareto-optimal values for the arrival time and the
number of used trips. However, most bicriteria algorithms can also compute the
actual journeys that are part of the Pareto-set.

Timeframes. The last part of our problem de�nition is the timeframe for the de-
parture of the journeys. For this we distinguish two cases: a �xed departure time and
a departure time interval. The objective of planning problems with �xed departure
time is to �nd optimal journeys among all journeys with a departure time greater or
equal to the given value. In the case of a departure time interval the objective of the
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problem is to �nd a pro�le for the speci�ed interval. Thus, we denote the problem as
profile problem in this case. If the timeframe of the problem is not explicitly stated
we assume a problem with �xed departure time.

Problems Addressed in this Work. We now brie�y list the problems considered in
this work. All of them assume that a public transit network N and a transfer graphG
are given. The �rst journey planning problem, which we address in Chapter 5, is the
one-to-one bicriteria profile problem. Afterwards we consider the one-to-one earliest
arrival problem and the one-to-one bicriteria problem in chapters 6 and 7.

Finally, we consider assignment problems in Chapter 8. These problems do not
�t in our classi�cation of journey planning problems, as they involve stochastic
discrete choice models. However, the assignment problems have many similarities
with classical many-to-many problems. We will present a precise de�nition of the
assignment problems considered in this work in Chapter 8.

3.3 Algorithms
We proceed with describing existing journey planning algorithms and concepts,
which we will use as basis for our algorithms. In particular we will use ideas from
Dijkstra’s algorithm and Contraction Hierarchies in order to handle the non-schedule-
based parts of the multimodal networks (e.g., walking, cycling, or driving). Regarding
public transit, we will use and combine ideas from three di�erent timetable-based
algorithms: CSA, RAPTOR, and Trip-Based Routing.

3.3.1 Shortest Paths in Non-Timetable Networks
A fundamental idea shared by many shortest path algorithms is the approach of
iteratively extending optimal journeys until a journey from the source to the target
has been found. Algorithms based on this approach commonly use labels to represent
the partial journeys that have already been found. One of the earliest shortest path
algorithm based on this approach is Dijkstra’s algorithm [Dij59].

Dijkstra’s Algorithm. Dijkstra’s algorithm uses one label per vertex in the graph
to represent shortest paths, which start at the source vertex of the query. During
the execution of the algorithm, the label of a vertex v represents the shortest path
found thus far that starts at the source and ends at the vertex v . Each label is either a
single key value or a pair of parent pointer and key, depending on whether only the
length of the shortest path or the shortest path itself has to be computed. In both
cases the key of the label is equivalent to the property of the journey that has to be
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optimized. Classically, this is the distance or the travel time of the journey. In this
work, we will often use the arrival times of the journeys as the key of the label, since
we want to solve earliest arrival problems.

The algorithm starts with a single label for the source vertex that represents a
path of length zero (i.e., a path that only contains the source vertex). This journey
is represented by a label, which has either 0 or the departure time of the query
as key value, depending on whether travel time or arrival time should be mini-
mized. If the optimal path should also be calculated, then the source vertex itself is
used as value of the parent pointer.

Starting with the label of the source vertex, Dijkstra’s algorithm iteratively creates
new labels by extending existing labels. For this, the algorithm maintains a priority
queue of labels that have not yet been processed. This queue initially contains only
the label of the source vertex and uses the key of the labels as priority criterion. After
the queue has been setup the algorithm continues with iteratively processing the label
with the minimal key in the queue. Processing a single label is called settling the label
and starts with removing the label from the queue. Afterwards, all edges e = (v,w)
that start at vertex v that corresponds to the label are relaxed. Relaxing the edge creates
a new label for the vertex w , where the key of this new label is the sum of the travel
time of the edge e and the key of the original label (i.e., the label corresponding to the
vertex v). If another label with a strictly smaller key has previously been computed for
the vertexw , then the new label is discarded. Otherwise, the new label is used for the
vertex w and added to the queue, replacing any previous label of w . Finally, if parent
pointers are used, then v is used as the value of the parent pointer of the new label.

The algorithm ends when the queue is empty. At this point the computed labels
correspond to the optimal paths to all vertices in the graph. If only the optimal path
to a certain target vertex has to be computed, then the algorithm can be terminated
once the target has been removed from the queue. In order to �nd the optimal path,
the parent pointers can be traced back to the source node.

An important factor for the running time of Dijkstra’s algorithm is the imple-
mentation of the priority queue. The best known worst case bound for the running
time is achieved by using a Fibonacci heap [FT87]. However, it has been shown that
Fibonacci heaps are outperformed by 4-ary heaps on realistic networks [CGR96].
Thus, we use 4-ary heaps as priority queues in this work.

Bidirectional Search. A simple yet versatile speed-up technique for Dijkstra’s
algorithm is based on the idea of searching simultaneously from the source and
the target [Nic66]. In order to implement this, a second set of vertex labels and a
second priority queue is used for the additional backward search. This backward
search di�ers in two points from the forward search, which we described above.
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First, it is initialized with one label for the target vertex instead of the source vertex.
Secondly, it relaxes edges in the opposite direction, i.e., the edge (w, x) is relaxed
during the settling of the vertex x and creates a new label for the vertex w .

After both searches (forward and backward) have been initialized, the bidirectional
algorithm continues with settling the labels in the queues. For this purpose, it has to
be decided whether the next label to be settled should be extracted from the forward
queue or the backward queue. Common approaches for choosing the next queue
are: selecting the queue with the smaller minimal key, selecting the queue that
contains fewer entries, or alternating between the two queues, which we do in all
bidirectional algorithms presented in this work.

Finally, the bidirectional search algorithm �nds optimal journeys by combining
labels from the forward search with labels of the backward search. For this purpose,
the algorithm keeps track of the tentative key of the best journey that has been found,
which is initialized as∞. Every time a new label for some vertex w is created (while
relaxing the edge (v,w) in the forward search or the edge (w, x) in the backward
search), the algorithm checks whether a path throughw can improve the tentative key.
In particular, the tentative key is updated with the sum of the keys of the forward and
backward label of w , if both these labels exist and if the sum of their keys is smaller
than the tentative key. The algorithm terminates when the sum of the minimal keys
of the two queues is larger than the tentative key.

Contraction Hierarchies. One of the most e�cient speed-up techniques for road
networks is Contraction Hierarchies (CHs), which is based on a bidirectional search
algorithm that uses precomputed shortcut edges to reduce the size of the search
space [GSSV12]. We use CHs in this work as they, and especially core-based vari-
ants of them, are particularly well suited for complex journey planning scenarios,
such as multimodal journey planning.

The CH preprocessing phase is based on vertex contractions. A vertex w is con-
tracted in two steps: First, the vertex w is temporarily (until the end of the pre-
processing phase) removed from the graph. Secondly, shortcuts are added to the
graph, such that the minimal travel time between the remaining vertices is equiv-
alent to the minimal travel time in the original graph. The shortcuts required for
this are determined by iterating over all pairs of an incoming edge (v,w) and an
outgoing edge (w, x) of the vertex w , which is contracted. For each of these pairs,
the CH preprocessing algorithm checks, whether a shortcut edge (v, x) with travel
time τtra(v, x) B τtra(v,w) + τtra(w, x) has to be added to the graph. The shortcut has
to be added if the minimal travel time from v to x increases due to the removal of w .
In order to check this, the bidirectional variant of Dijkstra’s algorithm is used to com-
pute a shortest path from v to x in the graph withoutw . If the travel time of this path
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is longer than the travel time of the shortcut, then the shortcut is added to the graph,
otherwise it is omitted. In the case that the graph already contains an edge from v
to x , the travel time of this edge is simply updated instead of adding the shortcut edge.

While the contraction of a single vertex is a fast operation, contracting millions of
vertices can take quite a long time in practice. In order to improve the running time,
the bidirectional search, which accounts for the largest portion of the overall running
time, can be terminated early. In this case it is simply assumed that no path exists and
the shortcut is added to the graph. This might lead to super�uous shortcuts in the
graph, but it does not a�ect the correctness of the algorithm. The CH implementation
used in this work adds shortcuts to the graph if the bidirectional search did not �nd
a shorter path before settling more than 400 vertices.

The goal of the CH preprocessing phase is to contract all vertices in the graph while
adding as few shortcuts as possible. In order to minimize the number of shortcuts, the
vertices have to be contracted in a suitable order. However, �nding a contraction order
that minimizes the number of shortcuts is NP-hard [Bau+10a]. Thus, most implemen-
tations use some heuristical approach for determining the order in which the vertices
are contracted. Most commonly a greedy algorithm is used, where the next vertex to
be contracted is chosen depending on a linear combination of multiple factors. In this
work we consider two factors to rate a vertex v : The �rst factor is the exact number
of shortcuts that have to be added if v is contracted divided by the number of edges
incident to v . The second factor is the level of v , where the level of a vertex is zero
if none of its neighbors is contracted and otherwise the level is one plus the maximal
level of any of its contracted neighbors. We weight the �rst factor four times as much
as the second factor and contract the vertex that minimizes this linear combination.

The CH query algorithm is a variant of the bidirectional search, which uses the
contraction order and the shortcuts to skip unimportant vertices. To this end, the
query algorithm only relaxes edges (and shortcuts) that lead to vertices that have
been contracted after the vertex that is currently settled. In contrast to the stan-
dard bidirectional search, the CH query can only terminate after the minimal keys
of both queues are larger than the tentative key.

Core-CH. For road networks the preprocessing phase of CH only takes a few
minutes. However, in more complex networks the preprocessing phase can become
much slower or even be infeasible. A common reason for this are vertices that produce
a large number of shortcuts if they get contracted. Adding a large number of shortcuts
increases the average vertex degree in the uncontracted graph, which in turn increases
the number of shortcuts that have to be considered when contracting further vertices.
In such a case the preprocessing can take several weeks which renders it impractical.
Moreover, a large number of shortcuts can also lead to a slowdown of the query phase.
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These problems can be resolved by aborting the preprocessing phase before all
vertices have been contracted. In this case the vertices that have not been con-
tracted form a core graph. Due to its construction the optimal travel times in the
core are equivalent to the optimal travel times in the original graph. Thus, apply-
ing a journey planning algorithm to the core yields correct results and is usually
faster than using the original graph.

A mostly unmodi�ed version of the CH query algorithm can be used to compute
journeys between contracted vertices. It only needs to be ensured that core vertices
and edges between them are considered by the query. One possible approach for this is
to relax edges between core vertices in the forward search, which corresponds to per-
forming Dijkstra’s algorithm on the core. Alternatively, edges between core vertices
can be relaxed in both, the forward search and the backward search, which corre-
sponds to performing a bidirectional search on the core. A third option is to restrict
the CH query to settle only vertices that are not part of the core and use an entirely
di�erent algorithm to handle the core. An example for this is core-ALT [Bau+10b].

Bucket-CH. The standard CH query algorithm only solves a one-to-one problem,
since it is based on a bidirectional search. Solving a one-to-many problem with CHs
would thus require multiple queries, or at least multiple backward searches. However,
additional preprocessing can be used to improve one-to-many queries, if the targets
are known in advance and remain unchanged between queries [Kno+07, GSSV12]. In
particular, the backward searches can be performed during the preprocessing phase,
such that the query only consists of a single forward search.

The main idea of Bucket-CH is to represent the results of the backward searches
with buckets. The goal of this approach is to enable e�cient access to the results of
the precomputed backward searches during the query. For this purpose the algorithm
maintains for every vertex in the graph a bucket, which contains pairs of target
vertex and travel time. These buckets can be implemented as dynamic arrays and are
empty at the begin of the preprocessing phase. Next, the backward search of the CH
query is performed once for every target. Every time that the backward search for
the target t settles a vertex v , the algorithm adds t to the bucket of v . Finally, the key
of the label of v (which at this point is equal to the minimal travel time from v to t ) is
used as travel time value for the new bucket entry.

The Bucket-CH query is a modi�ed forward search that interprets the bucket
entries as additional edges. To this end, an entry (t, τtra) in the bucket of some
vertex v is interpreted as an edge from v to t with travel time τtra. Within the query
algorithm these edges are handled as follows. Every time a vertex v is settled during
the forward search all entries in the bucket are relaxed in addition to the edges and
shortcuts in the graph.
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3.3.2 Journey Planning in Timetable Networks
We proceed with introducing the public transport journey planning algorithms, which
form the basis of the algorithms developed in this thesis. In particular, we build upon
ideas from three di�erent public transit algorithms: CSA, RAPTOR, and Trip-Based
Routing. All of them operate on a public transit network N = (C,S, T ) and an
additional transfer graph G = (V, E). However, since they are only public transit
algorithms and not multimodal algorithms, they cannot handle arbitrary transfer
graphs. In order to be suitable for the three algorithms mentioned above, the vertices
of the transfer graph have to be equivalent to the stops of the network (V = S) and
the transfer graph has to be transitively closed.

CSA. The �rst public transit algorithm that we describe in detail is CSA, which
solves the one-to-all earliest arrival problem [DPSW18]. Besides the network data,
the input for CSA consists of a source stop and a desired departure time. CSA is based
on the observation that there exist only one possible order in which the connections
of the network can be used in a journey, i.e., in chronological order. Consequently,
the preprocessing phase of CSA inserts all connections of the network into an array,
which is then sorted by the departure time of the connections.

The CSA query algorithm uses one label per vertex to maintain earliest arrival
times, similar to Dijkstra’s algorithm or CHs. Additionally, the query algorithm
maintains one reachability �ag per trip in the network, which is initialized as not
reachable. The algorithm starts with initializing the label of the source stop with
the desired departure time and relaxing all outgoing edges of the source stop. Next,
a binary search on the sorted connection array is used to �nd the �rst connection
with a departure time greater or equal to the departure time of the query. Starting
with this connection, the algorithm proceeds with scanning all later connections of
the network using a single linear sweep over the connection array. The scanning
of a single connection is done as follows: First, the algorithm checks whether the
connection is reachable. This is the case if the trip of the connection is �agged as
reachable. Alternatively, the connection is also reachable if the departure time of the
connection is greater or equal to the earliest arrival time of the connection’s departure
stop, which is maintained by the label of the stop. In the case that the connection is
reachable, the following two steps are performed: First, the trip of the connection
is �agged as reachable. Secondly, the algorithm checks whether the connection’s
arrival time is smaller than the current arrival time maintained by the label of the
connection’s arrival stop. If this is the case then the label of the connection’s arrival
stop is updated with the connection’s arrival time and all outgoing edges of the
connection’s arrival stop are relaxed. Afterwards, the algorithm continues with
scanning the next connection in the sorted array.
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CSA terminates after all connections have been scanned. However, if the algorithm
is used to solve a one-to-one problem instead of a one-to-all problem, then an earlier
termination is possible. In this case the algorithm only needs to scan connections
that depart before the minimal arrival time at the target. Thus, the algorithm can
stop scanning connections as soon as the departure time of a scanned connection is
greater or equal to the earliest arrival time at the label of the target.

Important properties of CSA are that it solves the one-to-all problem and that
it builds journeys by using connections as fundamental building blocks. Because
of these properties, CSA is particularly well suited for the e�cient computation of
assignments, as we will see in Chapter 8. CSA can also be extended to compute Pareto-
optimal journeys with respect to arrival time and number of trips. However, doing
so increases the running time of the algorithm considerably. But this has no e�ect
on the assignment computation, which does not require Pareto-optimal journeys.

RAPTOR. The second public transit algorithm that is relevant to this work is
RAPTOR, which solves the one-to-all bicriteria problem [DPW15a]. Just like CSA,
the input for the algorithm consists of a source stop and a desired departure time in
addition to the public transit network and transfer graph.

RAPTOR operates on a partition of the public transit trips into routes and exploits
the fact that only one trip per route has to be considered within optimal journeys. The
algorithm operates in rounds, where the i-th round �nds journeys that use exactly i
di�erent trips. It does this by extending journeys that have been found in the previous
round with an additional trip. RAPTOR also uses labels to represent the computed
journeys, similar to CSA or Dijkstra’s algorithm. However, instead of using a single
label per vertex, it maintains for every round one label per vertex.

The algorithm starts by initializing the labels for round 0. In particular, this means
that the desired departure time of the query is assigned to the arrival time of the source
stop’s label. Furthermore, the algorithm relaxes all outgoing edges of the source stop.
All other labels (i.e., labels that correspond neither to the source, nor to a vertex
reachable from the source in the transfer graph) initially have an arrival time of∞.

After the initialization, the algorithm continues with round one. Each round
consists of three steps: collecting routes that where reached in the previous round,
scanning these routes, and relaxing transfer graph edges. In order to collect the
routes during the �rst step, RAPTOR keeps track of the stops whose labels were
updated in the previous round. The algorithm then collects all routes that contain
one of these stops. Afterwards, each of these routes is scanned in the second step of
the round. The scan starts with the �rst stop v of the route that was reached. For this
stop the algorithm determines the earliest trip of the route that can be boarded using
the arrival time in the stop’s label from the previous round. Afterwards, all stops that
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follow after v are processed in the order in which they appear in the route. When
processing a stop w , the algorithm �rst checks whether the current trip can improve
the arrival time of the stop’s label for the current round. If this is the case, the label
of w is updated accordingly. Afterwards, the algorithm checks whether an earlier
trip of the route can be boarded at w using the arrival time in the label of w from the
previous round. If this is the case, the current trip is replaced with the earliest trip
that is reachable. Once all routes have been scanned, the algorithm continues with
the third step of the round. In this step, the algorithm relaxes the outgoing edges
of all stops whose labels were updated during the route scanning. The algorithm
terminates after the �rst round that did not update any stop labels.

The running time of RAPTOR can be improved when solving a one-to-one problem
instead of a one-to-all problem. In contrast to CSA and Dijkstra’s algorithm, this
does not a�ect the criterion for terminating the algorithm. Instead, the algorithm is
altered in such a way that labels are only updated with an arrival time if this arrival
time is smaller than the arrival time in the target’s label.

Because of its round-based structure the RAPTOR algorithm implicitly solves
the bicriteria problem. (Every round �nds an optimal arrival time for a di�erent
number of used trips.) On realistic inputs, the scanning of a route is a very e�cient
operation and the number of required rounds is usually small. Thus, the overall
algorithm is quite e�cient and a good starting point for the development of our
multimodal algorithms in chapters 5 through 7.

Range RAPTOR. Range RAPTOR (rRAPTOR) is an extension of the RAPTOR
algorithm that can compute pro�les. The rRAPTOR algorithm operates in iterations,
where each iteration performs RAPTOR for one departure time.

In detail, the rRAPTOR algorithm works as follows. First, it collects all meaningful
departure times for the source stop. That is, the departure times of trips departing
directly from the source and the departure times minus the transfer times of trips
departing from stops that are reachable from the source by using the transfer graph.
Afterwards, the collected departure times are sorted and the algorithm performs one
iteration for each of them, in descending order. An iteration of rRAPTOR essentially
consists of performing RAPTOR for the corresponding departure time. However, the
labels of RAPTOR are not reset between iterations. Thus, later RAPTOR iterations
operate on labels, which contain the arrival times that were computed in earlier
iterations. Since rRAPTOR processes departure times in descending order, the arrival
times from previous iterations are valid upper bounds for the arrival times of optimal
journeys that are computed in subsequent iterations. This technique is called self-
pruning and ensures that journeys that are not Pareto-optimal because they are
dominated by journeys with a later departure time are pruned as early as possible.
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Algorithm 3.1: rRAPTOR
Input: Public transit network (S, T, R), transfer graph G = (S, E),

a source stop s , and a departure time interval I = [τmin, τmax]
Output: Pro�les from s to all other stops, which cover the intervall I

1 Reset the label for every stop and round
2 DT ← Collect departure times at s
3 for each τdep ∈ DT in descending order do // rRAPTOR iteration

4 S ′← {s }
5 Set the arrival time in the round 0 label of s to τdep
6 Relax outgoing edges for stops in S ′, add updated stops to S ′
7 while S ′ is not empty do // RAPTOR round

8 Collect routes containing stops from S ′, clear S ′
9 Scan routes, add updated stops to S ′

10 Relax outgoing edges for stops in S ′, add updated stops to S ′
11 Generate pro�le entries from round labels

High level pseudo-code of rRAPTOR is given in Algorithm 3.1. As mentioned
before, the labels used by the algorithm are only reset once per pro�le query, in line 1.
The core of the algorithm are the iterations, which correspond to the loop in line 3.
Within each iteration a RAPTOR query is performed, which corresponds to lines 4
through 10. RAPTOR uses the set S ′ to keep track of the updated stops and operates
in rounds, which correspond to the loop in line 7. Each round consists of three steep:
collecting routes, scanning routes, and relaxing edges. The �rst step (line 8), collects
all routes that contain stops from S ′ and clears S ′. Afterwards, S ′ is �lled with the
stops updated during steps two and three. At the end of each iteration, the journeys
found by RAPTOR are added to the pro�les, which form the output of the algorithm.

Multimodal Multicriteria RAPTOR (MCR). With MCR, the RAPTOR algorithm
has been extended to multimodal scenarios and to more than two optimization
criteria [Del+13]. The bicriteria variant of MCR with unrestricted walking (MR-∞) is
particularly relevant for this work, since it solves the multimodal journey planning
problem, which we consider in Chapter 6. For the most part, the MR-∞ algorithm is
equivalent to RAPTOR. The only di�erence is, that the third step of each RAPTOR
round (the relaxation of transfer edges) is replaced with Dijkstra’s algorithm. In
detail this means that all stops, which are updated during the route scanning step,
are added to a Dijkstra queue. Afterwards, Dijkstra’s algorithm is performed on the
labels of the current round, until the queue is empty. Additionally, MR-∞ uses a
Core-CH, where all stops are part of the core, as speed-up technique for the query.
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Trip-Based Routing. The last public transit algorithm that this work builds upon
is Trip-Based Routing, which solves the one-to-one bicriteria problem [Wit15]. This
algorithm is based on a breadth-�rst search (BFS), which operates on a trip-based
graph G t

= (V t
, E t) speci�cally constructed for it. The vertices of this graph are the

stop events of the public transit network (V t
B {T [i] | T ∈ T , 0 ≤ i ≤ |T | }) and the

edges represent transfers between them. In order to compute this graph, Trip-based
Routing requires a small preprocessing phase. During the preprocessing phase, the
algorithm �rst generates all possible edges between stop events, i.e., all pairs of
stop events (ϵ, ϵ ′), such that transferring between the corresponding stops (v(ϵ)
and v(ϵ ′)) is possible in the transfer graph. Transferring between the stop events is
possible if τarr(ϵ) + δτ (v(ϵ), v(ϵ ′)) ≤ τdep(ϵ ′) holds. Afterwards, a transfer reduction step
is performed, which discards unnecessary edges (e.g., edges that represent U-turns
or edges that can never be part of Pareto-optimal journeys).

In contrast to the other algorithms presented in this chapter, the Trip-Based query
algorithm does not compute earliest arrivals for the vertices in the network, but for
the trips. Thus, it does not maintain a label for each vertex, but a label for every trip.
The label of a trip T keeps track of the trip’s last stop event index that has not been
processed by the algorithm, and is initially |T |. Similar to RAPTOR, the Trip-Based
query algorithm operates in rounds, where the i-th round computes journeys that
use i trips. For each of the rounds, the algorithm maintains a �rst-in-�rst-out (FIFO)
queue of trip legs that have to be processed within the round.

The algorithm starts by identifying all trips that are reachable directly from the
source stop or from a neighbor of the source stop in the transfer graph. For each
of these trips T that is reachable at index i , the trip leg T i j is added to the queue of
round one, where j is the index from the label of T . Additionally, the indices in the
labels of T and all later trips in the route of T are reduced to i − 1.

After all trips that are reachable from the source stop have been added to the
queue, the �rst round starts. Each round of the Trip-Based query algorithm consists
of scanning the trip legs in the queue that belongs to the round. Each of the trip
legs is scanned by processing its stop events in the order in which they appear in
the trip leg. A stop event ϵ is processed in two steps: First, it is checked whether the
minimal arrival time at the target can be improved by disembarking from the trip
at the stop event and using the transfer graph to reach the target. If this is the case
then the algorithm has found a new Pareto-optimal journey, which is added to the
result Pareto-set. Secondly, all outgoing edges of ϵ in the trip-based graph are relaxed.
When relaxing an edge (ϵ,T [i]), the algorithm adds the trip T with reachable index i
to the queue of the next round. This is done in the same way as for the initially
reachable trips. After all trip legs in the queue have been scanned, the algorithm
proceeds with the next round. The algorithm terminates after the �rst round that did
not add any trip legs to the queue of the next round.



Algorithms Section 3.3

45

With some minor modi�cations Trip-Based Routing can also be used to compute
one-to-one bicriteria pro�les. For this, an approach similar to rRAPTOR is used,
where the standard Trip-Based query algorithm is performed once for every possible
departure time, in descending order. Just like rRAPTOR, this algorithm does not
reset labels between processing di�erent departure times, and thus bene�ts from self-
pruning. However, in order to be correct, the Trip-based pro�le algorithm requires
one label per vertex and round.
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4 Benchmark Datasets

The previous chapter formally introduced multimodal transportation networks and
how they can be modeled for the purpose of journey planning. In this chapter we
consider the practical aspects of public transit network data, which we will need
in order to test our algorithms, following the algorithm engineering methodology.
To this end, we collected real world timetable and road network data from various
sources and show how it is processed into a meaningful and sound benchmark dataset.

4.1 Data Sources
In order to cover a wide range of network types and structures, we collected data
from several di�erent sources. All of the networks considered in this work have been
used in other works before. We therefore ensure comparability with many other
journey planning algorithms.

London. The �rst network we consider, is the public transit network of the greater
region of London. This network was �rst used to evaluate the RAPTOR algorithm
in [DPW12]. Moreover, this network has already been evaluated in a multimodal
scenario with the state-of-the-art MCR algorithm in [Del+13]. In order to ensure
comparability with the aforementioned algorithm, we use the same timetable data,
which covers a single Tuesday of the periodic summer schedule of 2011. It contains
most of the public transit available in London, including subways (tubes), buses, and
trams. The data was originally extracted from the web presence of Transport for
London (TfL)3

3 http://data.london.gov.uk

, were it is publicly available.

http://data.london.gov.uk
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Figure 4.1: The four networks considered in this Work: Switzerland (top left), Ger-
many (top right), Stuttgart (bottom left), and London (bottom right). The edges of the
transfer graph are depicted using gray lines. The routes of the public transit network
are depicted using blue lines.

Switzerland. The second network we use to evaluate our algorithms is the public
transportation network of Switzerland. Similar to the London network, this network
also has been considered by many journey planning works before [Bas+10, DDPW15].
The timetable of the Switzerland network used in this work was extracted from a pub-
licly available GTFS feed4

4 http://gtfs.geops.ch/

, which contains data provided by the federal o�ce for tra�c

http://gtfs.geops.ch/
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in Switzerland. The data contains a wide variety of public transit types, including local
buses and trams, regional trains, express trains, and even more unusual means of trans-
portation like rack railways and ski lifts. From this data, we extracted two successive
business days: the 30th and the 31st of May 2017, which were also used in [WZ17].

Germany. We use the public transportation network of Germany as a third bench-
mark instance. The timetable data of the Germany network which we consider in this
work was �rst used to evaluate CSA in [SW14]. The network data was provided by
Deutsche Bahn (DB)5

5 http://www.bahn.de/

for research purposes and is unfortunately not publicly avail-
able. Just like the Switzerland network, the Germany network also contains most of
the available public transportation, including local, regional, and long distance tra�c.
The timetable data used in this work covers two successive days from the winter
2011/2012 schedule. However, we ignore the days of operation of the individual
vehicles (i.e., that trips of all days are merged). We do this to ensure comparability,
as the same approach was used in [SW14] and other works.

Stu�gart. The last network considered in this work, is a network covering the
greater region of Stuttgart in Germany. While this network is in theory a subset of
the Germany network, we still include it as its own instance, as it provides additional
data, that is not available to us for the entirety of Germany. Namely, we have real
world estimates for the overall passenger �ow through this network, which will be
important for the evaluation of assignment algorithms in Chapter 8. This data includes
all passengers traveling through Stuttgart, also including commuters. Thus, the
network does not only contain local buses and trams, but also regional trains and long
distance trains reaching as far as Frankfurt, Munich, or Zürich. The timetable data of
the network covers two identical business days and was previously used in [MKV13].
The network was originally presented in [SHP11] and is not publicly available.

Transfer graphs. We extracted transfer graphs from Open Street Map (OSM)6

6 https://download.geofabrik.de/

to ac-
company our four networks. To this end, we gathered data on roads, pathways, pedes-
trian zones, and staircases together with their length and speed limits (if they exist).
This data is then used to construct transfer graphs with varying travel speeds, depend-
ing on the mode of transportation that we want to represent (e.g. walking or cycling).
For our four networks we extracted data of the regions: Greater London, Switzerland,
Germany, and the state of Baden-Württemberg. The extent of the �rst three regions
matches quite well with the corresponding public transit network. However, the
transfer graph for the Stuttgart network covers an area that is quite a bit larger than
the public transit network. Due to the special structure of the Stuttgart network (dense
in the center, incomplete in the surroundings), this is still the best �t. The overall
shape and extent of the resulting four multimodal networks is shown in Figure 4.1.

http://www.bahn.de/
https://download.geofabrik.de/
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4.2 Additional Preparations and Sanitizing
Since we create our networks from real world data, it is to be expected that they
contain some irregularities or even erroneous data. We therefore sanitize all networks
before we work with them, such that the resulting data conforms to our network
de�nition. This step also includes the implementation of the connection between the
public transit networks and the transfer graphs.

Preparation Procedure. An outline of all the steps performed during our data
preparation is given in Algorithm 4.1. As input we use the timetable of the network,
represented as a set of trips T ′, and the stops S ′, for which the data source provides
additional information like coordinates and minimum change times or departure
bu�er times. In addition to this, we also use the transfer graph G ′, that was extracted
from OSM, and a bounding box B as input.

The �rst part of the preparation procedure (lines 1 - 6) sanitizes the timetable data.
First, we remove trips from the network that contain unde�ned stops (e.g. where
the coordinates are unknown) or that leave the speci�ed bounding box. We do
this, since we are interested in the performance of algorithms on densely intercon-
nected networks. Therefore, single trips leaving the main network are not of interest
to us. An example for a trip removed by this, is the Germany network, which origi-
nally contained a single trip from Berlin to Moscow. We further reduce the set of
trips by removing all trips that would allow for time travel in line 2. These trips are
removed, as their data is obviously incorrect. Moreover, they have to be removed
because many journey planning algorithms simply break down, if a network con-
tains such trips. The set of trips is thinned out one �nal time in line 3, where we
reduce the timetable to its maximal connected component. We do this, because we
are interested (as mentioned before) in the performance of algorithms on densely
interconnected networks. Having parts of the network that are not reachable at all
might distort performance measurements. Therefore we remove such parts from
the network. As a last step in the preparation of the trips, we adjust their departure
times to implicitly re�ect departure bu�er times as outlined in Section 3.1.5. Next,
we collect all stops actually used by some trip into the set S . We do this mainly for
comparability reasons, since the original set of stops S ′, which is provided as input,
often contains unused stops, which let the network appear larger than it actually
is. The preparation of the public transit network concludes with the partitioning
of the trips into routes in line 6. For this, we use a simple greedy approach: For
each trip T we check if we have already created a route with the same stop se-
quence, such that T can be added to the route without overtaking any of the trips
in the route or being overtaken by any of them. If such a route exists, we add the
trip T to it, otherwise we create a new route for T .
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Algorithm 4.1: Data Preparation
Input: Set of stops S ′, set of trips T ′, graphG ′ = (V ′, E ′), and bounding box B

Output: Public transit network (S, T ,R) and a transfer graph G = (V, E)
1 T ← T ′ \ {Trips with stops not in S ′ or B }
2 T ← T \ {Trips that arrive at a stop before departing from a preceding stop}
3 T ← {Maximal subset of T that is connected}
4 T ← {Trips in T with τbuf subtracted from their departure times}
5 S ← {Stops used by trips in T }
6 R← Greedy partitioning of T into routes

7 V ← {Vertices from V ′ that are within B }
8 G ← Maximum connected component of the subgraph of G induced by V

9 for each v ∈ S do
10 w ← Nearest vertex to v from V \ S
11 x ← Nearest stop to w from S
12 if v = x and ‖v −w ‖ < 5 m then
13 Replace w with v (in V and in all e ∈ E )
14 else
15 Add v to V
16 if ‖v −w ‖ < 100 m then
17 Add (v,w) and (w, v) to E

18 Contract degree 2 vertices (excluding stops) in G

The second part of our network preparation (lines 7 - 8) a�ects the transfer graph.
Similar to the processing of the timetable data, we start by removing all vertices
that are not located within the bounding box. Afterwards, we look at the graph
that is induced by the remaining vertices. In this graph, we compute a strongly
connected component of maximal size, which we use as our �nal transfer graph G.
As we mentioned before, this is done in order to simplify the analysis and evaluation
of the algorithms presented in this work.

During the third step of the preparation phase (lines 9 - 17), we establish the con-
nection between the public transit network and the transfer graph (i.e., we ensure
that S is a subset of V). For this purpose we identify for every stop v ∈ S its near-
est (regarding linear distance) vertex w ∈ V , which can be done e�ciently using
a k-d tree [Ben75]. If the nearest stop to the vertex w is also v and their distance
is less than 5 meters, then we assume that v and w designate the same location.
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We implement this formally by replacing the vertex w in G with the stop v in line 13,
thereby ensuring that v ∈ V holds. During this process it is quite important to check
whether v and w are mutual nearest neighbors, since v could otherwise be replaced
by another stop later on. In the case, that we cannot identify the stop v directly
with an existing vertex in V , we add v as a new vertex to V . Afterwards, we check
if the linear distance to the nearest vertex w of v is less than 100 meters. If so,
we connect w and v with two new edges.

As the �nal step of the network preparation we contract vertices of degree two
in the transfer graph (line 18). We do this in order to get a meaningful value for
the size of the transfer graph. Since we use OSM, which primarily focuses on map
visualization, as the source of our transfer graph, we expect quite a large number of
vertices with degree two. These vertices are used to model the shape of streets (e.g. in
curves or serpentines). However, they have only a minor impact on the di�culty of
journey planning problems, because if one of them is part of a shortest path, their
neighbors are also part of that shortest path. The only exception to this rule occurs
if a vertex of degree two is the �rst or the last vertex in a shortest path. Therefore,
a graph with many vertices of degree two might look quite large, while solving
a shortest path problem within the graph is relatively easy. This phenomenon is
discussed in detail in [DSW15].

Resulting Dataset Overview. The sizes of the four multimodal networks, after
they have been prepared as described above, are listed in Table 4.1. The visualizations
of the networks in Figure 4.1 (page 48) also corresponds to the networks after they
have been sanitized. Please note, that sizes of the networks used in this work may
di�er slightly from the ones used in other works, even if they are based on same
data source. The reason for this is of course the network preparation, which removes
some of the trips and stops from the networks. However, we argue that this does
not hinder comparability with other works, as the networks are structurally still the
same. The intended e�ect of the network preparation used in this work is, that the
resulting network sizes, which are reported in Table 4.1, re�ect the true dimension
and complexity of the networks more closely.

When comparing the sizes (Table 4.1) and the overall structure (Figure 4.1 on
page 48) of the networks, we observe that the four networks are quite di�erent.
Obviously, the two city networks are much smaller than the two country networks.
But even within both of these network classes there are huge di�erences. Geographi-
cally, the Stuttgart network is much larger than the London network, which is also
re�ected in its larger transfer graph. However, London is of course the larger city, and
thus its network contains signi�cantly more public transit stops and trips. Overall,
the network of London is much denser and more interconnected than the Stuttgart
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Table 4.1: Sizes of the public transit networks that are considered in this work.
Additionally, we report the number of transfers that are available with and with-
out using a transfer graph from a di�erent source. First, we state the number of
Original Transfers, which were extracted from the source of the respective pub-
lic transit network. Secondly, we state the number of vertices and edges in the
Transfer graph, which we extracted from OSM.

Stuttgart London Switzerland Germany
Stops 13 583 20 595 25 125 243 071
Routes 12 350 2 107 13 785 230 216
Trips 91 298 125 436 350 006 2 380 966
Stop events 1 561 912 4 970 428 4 686 865 48 368 190
Connections 1 470 614 4 844 992 4 336 859 45 987 224
Original transfers 33 500 44 840 12 806 92 748
Transfer graph vertices 1 166 593 183 025 603 691 6 870 354
Transfer graph edges 3 680 930 579 888 1 853 260 21 366 756

network. Even the size of public transit network of the whole country of Switzerland
is roughly comparable to the London network. Its structure, on the other hand, is
vastly di�erent and unique among the four networks. The Switzerland network is
the only network that is quite inhomogeneous, with a relatively dense northern
part and a much more loosely interconnected south (due to the Alps). Lastly, the
Germany network is roughly a factor of 10 larger than the Switzerland network
and has a relatively uniform structure in comparison. Overall, we observe that the
four networks cover a broad spectrum of di�erent network types and structures.
This indicates that the presented collection of networks o�ers a good test bed for
analyzing and comparing journey planning algorithms.

In addition to the size of the transfer graphs extracted from OSM, Table 4.1 also
report the number of original transfers, that were speci�ed by the source of the
public transit network. These transfers are only de�ned for pairs of stops and do not
involve any additional vertices. Thus S = V holds for the transfer graph G = (V, E)
if the original transfers are used. The original transfers are used, when we are
not interested in a multimodal scenario, but want to consider a pure public transit
network instead. This is useful for the comparison with algorithms that were not
developed for multimodal scenarios and thus have only been evaluated using the
original transfers. Moreover, we will use the original transfers in Chapter 5, in order
to evaluate the impact of multimodal scenarios.
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4.3 Transitively Closed Instances
Many public transit journey planning algorithms support the usage of transfer graphs,
but require some sort of limitation. A common restriction limits the maximal du-
ration of transfers that can be part of a journey [BHS16, BS14, DDPW15]. Another
frequently used approach for limiting transfers is to require that the transfer graph is
transitively closed [DPW15a, DPSW18, Wit15]. In this section we evaluate, how much
of the transfer graph, which we introduced in the previous section, can be preserved
if the transfers have to be limited. Wo do this for the special case that the transfer
graph represents walking (assuming an average walking speed of 4.5 km/h), as this is
the most common scenario in the literature. To this end, we analyze how the size of
a transitively closed transfer graph changes, depending on the maximal walking du-
ration that should be preserved. Afterwards, we construct transitively closed transfer
graphs with large, but still feasible, walking limits for all four networks. These graphs
will be used in the following chapters to analyze algorithms that require a limited
transfer graph. This section is based on joint work with Dorothea Wagner [WZ17].

Transitively Closed Graphs with Guaranteed Walking Time. Let G = (V, E)
be a transfer graph with transfer times τwalk : E → R+

0 that represent walking. Further-
more, let τ̄walk ∈ R+

0 be the maximal walking time that should be guaranteed. From
these, we want to construct a new transfer graph G ′ = (S, E ′) that is transitively
closed, has as few edges as possible, and preserves all walking times up to τ̄walk. That
is, for all pairs of stops v,w ∈ S with a walking distance τwalk(P) ≤ τ̄walk (where P is the
shortest v-w-path inG) there exists an edge e = (v,w) ∈ E ′with τwalk(e) = τwalk(P). Fur-
thermore, if an edge e = (v,w) ∈ E ′ exists, then τwalk(e) ≥ τwalk(P) has to hold, where P
is once again the shortest v-w-path inG . The graphG ′ can be constructed quite easily
as follows: First we add an edge e = (v,w) to E ′ for every pair of stops v,w ∈ S with
a walking distance in G that is less than or equal to τ̄walk. Afterwards, we compute
the transitive closure of these edges.

Figure 4.2 shows the size and structure of the resulting graph G ′ depending on
the guaranteed walking time τ̄walk for our four networks. The �gure reveals that
the number of edges needed for the transitive closure increases drastically with the
guaranteed walking time. However, even with a relatively high guaranteed walking
time, the graphs still consist of many distinct connected components. The relation
between guaranteed walking time and the structure of the graph is quite similar
for all four networks. With all networks, we observe a signi�cant change, for both
number of edges and number of isolated stops, if the guaranteed walking time is
increased from 0 to values slightly above 0. The reason for this are sets of stops,
which together model a larger station, e.g. the platforms of a train station or two
bus stops on opposing sides of a street. This e�ect is especially pronounced for the
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Figure 4.2: Sizes of the transitively closed transfer graphs depending on the guar-
anteed walking time. Solid lines are plotted using the left y-axis, dotted lines use the
right y-axis. The transitively closed transfer graph is constructed as follows: Two
stops v,w ∈ S are connected with an edge e = (v,w) if the walking time of the short-
est path from v tow is less than or equal to the guaranteed walking time. Afterwards,
the transitive closure is computed. The plots show that the number of connected com-
ponents (blue) remains high, even if the threshold for walking is rather high. Many
stops are not connected to any other stops (green) and even the largest connected com-
ponent remains comparatively small (yellow). However, the number of edges required
for the transitive closure (red) increases drastically with the guaranteed walking time.
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Table 4.2: Sizes of the transitively closed transfer graphs. The guaranteed walking
time was chosen as an integral number of minutes, such that the mean stop degree is
close to 100. We also report the number of stops that are still isolated.
Measured value Stuttgart London Switzerland Germany
Guaranteed τwalk 9 min 4 min 9 min 8 min
Number of edges 945 514 3 755 200 2 639 402 23 880 322
Mean stop degree 69.6 182.3 105.5 97.8
Isolated stops 1 575 529 4 023 62 659

Switzerland network. After this initial jump, the connectivity of the network increases
comparably smoothly with an increasing guaranteed walking time. An exception to
this pattern is the London network, were the connectivity of the transitively closed
graph increases drastically at a guaranteed walking time of about 5 minutes. This
indicates that the public transit network of London is much denser than the public
transit networks of the other three instances.

In order to properly evaluate the algorithms presented in this work, we need to
compare them with existing algorithms, which often require a limited transfer graph.
For this purpose we construct a transitively closed transfer graph that contains as
much of the original graph’s structure as possible, while still being feasible (In terms
of memory consumption of the transfer graph and running time of the algorithms).
As shown by Figure 4.2, this requires a severely limited guaranteed walking time. For
this work, we decided to construct transitively closed transfer graphs with an average
vertex degree of about 100. This results in graphs that are much denser than the
graphs typically used in journey planning, while still being feasible. The sizes of the
resulting graphs for the four networks are reported in Table 4.2. For most networks
we can use a guaranteed walking time of 8 or 9 minutes. Only the London network
requires a much lower guaranteed walking time of only 4 minutes. As mentioned
before, this is due to the London network being much denser than the other networks.

Partial Non-Transitive Transfers. As an alternative to the transitively closed
transfer graph one could impose a limit on the transfer time without considering
the transitive closure. While such an approach drastically reduces the number of
edges required to represent the transfers, it too has severe disadvantages. The biggest
downside is, that journeys found by such an approach can be inconsistent. Figure 4.3
illustrates this using a small example network and a limit for the transfer time
of 10. Within this network there exist three possible s-t-Journeys. However, the
best journey (J3) requires two transfer edges ((v,w) and (w, x)) with a total transfer
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Figure 4.3: E�ect of transfers that are not transitively closed. There exist three
possible s-t-journeys in this network: J1 =

〈〈s〉, 〈0→ 2〉, 〈v,w〉, 〈9→ 16〉, 〈y, t〉〉,
with an arrival time of 19, J2 =

〈〈s〉, 〈0→ 2〉, 〈v〉, 〈3→ 10〉, 〈w, x〉, 〈16→ 18〉, 〈y, t〉〉,
with an arrival time of 18, and J3 =

〈〈s〉, 〈0→ 2〉, 〈v,w, x〉, 〈14→ 16〉, 〈y, t〉〉, with
an arrival time of 16. The journey J3 dominates the other two journeys. However, if
transfers are limited to maximum duration of 10 and if transfers are not transitively
closed, then J3 is not found.

time of 11. Thus, a journey planning algorithm would only report journeys J1 and J2.
Looking at these two journeys, it becomes obvious that it is possible to transfer
from v tow and that it is also possible to transfer fromw to x . Therefore, the question
arises why the combined transfer from v to x has not been considered. Another
inconsistence can be observed if a passenger decides to follow the journey to J1. If
such a passenger recomputes the optimal journey while waiting for the next trip
at w , the algorithm will suddenly �nd a journey J4 =

〈
w, x〉, 〈14→ 16〉, 〈y, t〉〉. This

again raises the question why this option was not found initially.
These problems can of course be solved by a simple search for transfers in the non

transitive graph, instead of only using single edges. However, many algorithms have
not been designed to consider such a search. Moreover, an additional search in the
transfer graph will increase the overall running time of the algorithm. Because of all
these reasons, we only consider transitively closed transfer graphs as means to limit
transfers in this work.
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5 Multimodal Profiles

In this chapter we address the problem of answering one-to-one pro�le queries in
multimodal networks. In particular, we consider public transit networks that allow
for unrestricted walking between the stops of the network. Given a source location,
a target location, and a departure time interval, we want to �nd a Pareto-set of
journeys with respect to travel time and number of transfers for every departure time
in the interval. In order to solve this problem, we introduce a novel pro�le algorithm
that, unlike most state-of-the-art algorithms, can compute pro�les e�ciently in
a network that allows for arbitrary walking. Using our algorithm, we show in
an extensive experimental study that allowing unrestricted walking, signi�cantly
reduces travel times, compared to settings where walking is restricted. This chapter
is based on joint work with Dorothea Wagner [WZ17].

Related Work. To the best of our knowledge, no e�cient pro�le algorithm for
multimodal networks exists. However, many di�erent pro�le algorithms have been
developed for public transit networks. Notable examples of such algorithms are
the Self-Pruning Connection-Setting algorithm [DKP12], which is a graph based
approach, and rRAPTOR [DPW15a], which is the pro�le variant of the RAPTOR
algorithm. Other timetable-based algorithms, such as CSA [DPSW18] and Trip-Based
Routing [Wit15] can also be used to compute pro�les.

All of these algorithms support networks that combine a public transit timetable
with a transfer graph for walking between stops. However, none of the algorithms
is suitable for transfer graphs where walking is possible between arbitrary pairs of
stops. A common restriction imposed by journey planning algorithms for public
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transportation networks is the requirement that the transfer graph has to be tran-
sitively closed. One of the �rst techniques based on this restriction is the RAPTOR
algorithm [DPW15a]. A transitively closed graph is also required for CSA [DPSW13]
and its accelerated version [SW14]. Another technique depending on transitively
closed footpaths is trip-based public transit routing [Wit15].

Other approaches for public transit journey planning do not explicitly state require-
ments on the transfer graph. However, the problems arising from detailed transfer
graphs are often neglected. Either the used transfer graph is not speci�ed, or the algo-
rithms are only evaluated on rather sparse and unconnected transfer graphs. In both
cases it is unknown how the techniques would perform on a public transit network
that features a complete transfer graph, which connects most stops in the network.
An example of a technique where no information about the size of the used transfer
graph is known, was presented in [DMS08]. Another technique where the used trans-
fer graph is not speci�ed, is transfer patterns [Bas+10]. However, for the accelerated
version of this technique, which is called scalable transfer patterns [BHS16], it was
speci�ed that stops are connected by a footpath if their distance is below 400 meters.
This corresponds to a walking time of 8 minutes or less (assuming a walking speed
of 4.5 km/h), which leads to a rather sparse transfer graph. Similarly, frequency-based
search for public transit networks [BS14] was only evaluated using a limited number
of transfers. Here, two variants, one allowing up to 5 minutes walking, the other
up to 15 minutes, were evaluated. Even fewer footpaths are considered in works
that only consider the transfers speci�ed in the source of the public transit network.
This is the case for PTL [DDPW15], SUBITO [BGM10], or the graph based tech-
niques presented in [PSWZ08]. Finally there are algorithms, like delay robust routing
using MEAT [DSW14] or CSA accelerated [SW14], that omit footpaths altogether.

Self-Pruning Profile Algorithms. A common approach used by many e�cient
pro�le algorithms for public transit networks is self-pruning. It is based on the
observation that a pro�le cannot contain more journeys than the number of trips
departing from the source (each departing trip is part of at most one journey). Thus,
algorithms based on self-pruning simply collect all possible departure times at the
source stop (and at stops that are reachable from the source by walking). Afterwards,
the self-pruning algorithm proceeds by computing optimal journeys for each of
these departure times in descending order. During the repeated computation of the
journeys for di�erent departure times, the labels of the algorithm are not cleared.
Since journeys are searched in decreasing order regarding departure time, labels of
the previous search can be used to prune the current search, which leads to very
e�cient algorithms. Examples for algorithms based on this approach are the Self-
Pruning Connection-Setting algorithm [DKP12], rRAPTOR [DPW15a], and the pro�le
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variant of Trip-Based Routing [Wit15]. However, this approach loses its e�ciency
in networks that allow unrestricted walking. In such networks every stop can be
reached by walking from the source. Therefore, journeys have to be computed for
every departure in the entire network, which is not feasible.

Chapter Overview. In this chapter, we reevaluate the common practice of impos-
ing restrictions on the transfer graph. To this end, we present a novel algorithm that
can compute pro�les for public transit networks with unrestricted walking. Using
this algorithm we can e�ciently evaluate the travel times between given source and
target stops over the course of a whole day. In order to evaluate the practicality of our
approach and the impact of unrestricted walking we compare three network variants:
The �rst variant uses a transfer graph that only contains transfers speci�ed by the
source of the public transit network. The second variant uses additional transfers,
which are chosen such that the transitively closed graph still has a practical size. The
third variant uses an unrestricted transfer graph. By evaluating the same set of pro�le
queries for all variants of the network, we show that travel times are signi�cantly
improved by allowing unrestricted walking.

5.1 Profile Algorithm
We now introduce our new pro�le algorithm for public transit networks with unre-
stricted walking, which is based on MCR [Del+13]. As mentioned before, we cannot
use self-pruning based approaches, such as rRAPTOR, since every trip in the network
could potentially be the �rst trip of an optimal journey. However, we can still use
repeated executions of a multimodal journey planning algorithm, such as MCR, in
order to compute a complete pro�le. We begin by describing a simpli�ed variant of
our algorithm, that only computes earliest arrival pro�les. Afterwards, we show how
this basic approach can be extended to compute bicriteria pro�les.

5.1.1 Earliest Arrival Profiles
In the following, we assume that source and target vertices s, t ∈ V , as well as a
time interval I = [τmin, τmax] are given. In order to compute the s-t-pro�le for the
interval I we start with one execution of MCR with τmin as departure time. As result of
this query we obtain a journey with minimal possible arrival time τarr at the target t .
However, we do not know the travel time of this journey, since we do not know
the latest departure time from s that still allows to reach t at τarr. We determine the
latest possible departure time from s by performing a backward MCR query from t ,
starting with the arrival time τarr. As result of these two queries we know one pair of
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departure time τdep and arrival time τarr, such that τarr is the earliest possible arrival
time at t if departing from s at τmin and τdep is the latest possible departure time at s
that allows to reach t at τarr. Therefore, the pair (τdep, τarr) is the �rst entry of the
pro�le function from s to t . Furthermore, the s-t-pro�le is already complete for the
interval I ′ = [τmin, τdep]. This means that we now only need to compute the pro�le
for the interval I ′′ = [τdep + ε, τmax], where the departure time τdep + ε indicates that a
potential passenger just missed the journey that departs at τdep.

The remaining pro�le for I ′′ can now be computed using the same approach as
for the original interval I . We repeat this process, until we are left with an empty
interval. In particular, this means that the backward search results in a departure
time τdep that is greater or equal to the maximum departure time τmax of the interval.

Figure 5.1 illustrates one cycle of forward and backward search of our algorithm.
Initially (left plot), the pro�le function has already been computed for the inter-
val [0:00,2:00]. Thus, the earliest arrival time for the departure time 2:00+ ε has to be
computed. In our example, this arrival time is 5:00, which establishes they-coordinate
of the next breakpoint of the pro�le (middle plot). The algorithm proceeds with a
backward search for the arrival time 5:00, which yields 3:00 as latest departure time.
Thus, the breakpoint (3:00, 5:00) is added to the pro�le (right plot) and the algorithm
proceeds with the next cycle, i.e., a forward search for the departure time 3:00 + ε .

Direct Walking. The pro�le algorithm we described so far will perform exactly
one forward and backward query for every entry of the pro�le. However, the ap-
proach fails if an optimal s-t-journey contains no trips at all, i.e., the optimal journey
corresponds to walking directly from s to t . In this case the forward search started
for a departure time of τdep will result in an arrival time of τarr. Afterwards a backward
search is performed starting with the arrival time τarr. This backward search will then
result with the latest possible departure time being τdep. This means the size of the
interval did not decrease, except by an ε . Even worse, repeating the procedure for a
departure time of τdep+ε will have the same result. In order to solve this issue we use a
slightly modi�ed version of the basic query algorithm (in our case MCR). We demand
that the query algorithm only returns journeys that contain at least one trip, i.e., direct
walking from s to t is prohibited. This can easily be achieved by pruning the initial
exploration of the footpaths graph (within MCR) if it reaches t . Apart from this, the
pro�le algorithm remains for the most part unchanged. As before we perform alternat-
ing forward and backward searches in order to determine one pro�le entry at a time.
However, the resulting pro�le might contain entries that are dominated by a pure
walking journey. We remove these entries in a simple postprocessing step. For this we
compute the walking time from s to t using Dijkstra’s algorithm [Dij59]. Afterwards
we remove all entries with a travel time that exceeds the walking time from the pro�le.



Profile Algorithm Section 5.1

63

0:00 1:00 3:00

τdep

2:00
2:00

3:00

4:00

5:00

6:00
τarr

0:00 1:00 2:00 3:00

τdep
2:00

3:00

4:00

6:00
τarr

5:00

0:00 1:00 2:00 3:00

τdep
2:00

3:00

4:00

5:00

6:00
τarr

Figure 5.1: An example depicting one iteration of our pro�le algorithm. Left: The
pro�le (blue) is already known for the interval [0:00, 2:00]. Thus, the next forward
query uses 2:00+ ε as departure time. Middle: The forward query provides the arrival
time of the next pro�le entry (marked by the yellow line). In this example the arrival
time is 5:00, which is used as input for the backward query. Right: The backward
query provides the departure time of the next pro�le entry (marked by the red line).
The new entry is added to the pro�le, which is now known for the interval [0:00, 3:00].

5.1.2 Pareto Profiles
So far we have shown how an earliest arrival pro�le can be computed. However,
besides arrival time, the number of transfers is another important property of a
journey. Thus, a pro�le that does not only contain all journeys with minimal arrival
time, but all journeys that are Pareto-optimal with respect to arrival time and number
of transfers is often desired. Both, RAPTOR and MCR, naturally support queries that
compute all Pareto-optimal journeys (regarding arrival time and number of transfers)
for given source vertex, target vertex, and departure time. Thus, we only have to
adapt our pro�le algorithm so that it can take all Pareto-optimal journeys found by
MCR into account. As before, the algorithm starts with a forward search from s for
the departure time τmin, when computing a pro�le for the interval I = [τmin, τmax]. The
result of this forward query is a set of Pareto-optimal journeys, containing up to one
journey for every possible number of transfers. Each of these journeys has a di�erent
arrival time and eventually we will perform one backward query for each of these
arrival times. We use a priority queue to organize all arrival times for which we still
have to perform a backward search. As long as this queue is not empty, our algorithm
extracts the minimum arrival time τarr and performs a backward search starting from
the target with τarr as arrival time. As before, the result of the backward search is a
departure time τdep, which, together with τarr, de�nes an entry of the pro�le. Following
the backward search, we perform a forward search with departure time τdep+ε , which
possibly adds new arrival times to the queue. The advantage of this procedure is, that
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one backward search can potentially generate several pro�le entries. This is the case if
several Pareto-optimal journeys di�er only in their number of transfers, but have the
same arrival time. Thus, all these journeys can be found by a single backward search.

Implementation Details. In our implementation of the pro�le algorithm we use
MCR for the forward and backward queries. However, the general approach of
our algorithm can be used together with any algorithm that computes optimal s-t-
journeys for a �xed departure time. The performance of our algorithm depends on
the number of entries in the computed pro�le and the performance of the underlying
query algorithm. More precisely, the underlying query algorithm will be invoked at
most twice for every entry added to the pro�le.

The e�ciency of the backward searches can be increased by implementing ad-
ditional pruning rules. In particular, we propose two pruning strategies: The �rst
uses the labels of the corresponding forward search, while the second uses the labels
of the past backward searches. In detail, our �rst pruning strategy is based on a
common approach for computing journeys with minimal travel time, which works
as follows. The search can be pruned at a vertex v if the latest departure found by
the backward search for v is smaller than the earliest arrival time at v found by the
forward search. In this case we can conclude that a journey with minimal travel time
cannot contain v and therefore the backward search does not need to settle v .

Our second pruning strategy for the backward search is based on the self-pruning
approach. We observe that arrival times for which we perform backward searches are
monotonically increasing. Thus, the latest departure times computed by a backward
search should always be greater than the latest departure times computed by past
backward searches. We exploit this fact by not resetting the labels of the backward
search during the pro�le computation. This is equivalent to the implementation of
self-pruning in other pro�le algorithms, such as rRAPTOR [DPW15a].

5.2 Experiments
We implemented our algorithm in C++17 compiled with GCC version 8.2.1 and
optimization �ag -O3. Experiments were conducted on a machine with two 8-core
Intel Xeon Skylake SP Gold 6144 CPUs clocked at 3.50 GHz, with a boost frequency
of up to 4.2 GHz, 192 GiB of DDR4-2666 RAM, and 24.75 MiB of L3 cache. Before
we continue with the performance analysis of our algorithm, we provide a detailed
description of the networks and the queries, which we used in our experiments.
Afterwards, we conduct an extensive comparison of the pro�les computed for our
example networks, showing that many journeys bene�t from unlimited walking.
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Table 5.1: Comparison of the transfer graph sizes of the three network variants. The
graphs are constructed following the approach from Chapter 4. The vertices of the
Original and Transitive variant only contain the public transit stops, while the Multi-
modal graph also contains vertices that represent additional locations in the network.
Measured value Stuttgart London Switzerland Germany
Original |V | 13 583 20 595 25 125 243 071
Original |E | 33 500 44 840 12 806 92 748
Transitive |V | 13 583 20 595 25 125 243 071
Transitive |E | 945 514 3 755 200 2 639 402 23 880 322
Multimodal |V | 1 166 593 183 025 603 691 6 870 354
Multimodal |E | 3 680 930 579 888 1 853 260 21 366 756

Network Variants. We evaluate our novel pro�le algorithm on all four networks
that were introduced in Chapter 4. In order to analyze the impact of unlimited
walking, we consider three di�erent transfer graphs, which provide various levels of
connectivity, for each of the four networks. The number of vertices and edges in these
graphs are listed in Table 5.1. All graphs represent walking as transfer mode, where an
average walking speed of 4.5 km/h is assumed. The �rst transfer graph variant, which
we call original, is the transitive closure of the transfer edges that are speci�ed by the
source of the public transit data. Therefore, the vertices of this graph only represent
the stops of the public transit network. The second variant, which we call transitive,
corresponds to the transitive closed graphs, which we described in Section 4.3. The
idea behind these graphs is to connect as many stops as possible while the size of
the graph still remains feasible for public transit journey planning algorithms. Our
last transfer graph variant, is the multimodal variant, which contains all roads and
pathways that were available in OSM. These graphs contain many more vertices than
the �rst two variants and connect most pairs of public transit stops via walking paths.
Using this graph variant in combination with the public transit networks yields a truly
multimodal scenario, which can no longer be handled by public transit algorithms.

�eries and Experimental Setup. We want to analyze how the results of realistic
queries change with respect to the three variants of our networks. A query can of
course only be evaluated for all three network variants if the source and target of the
query are part of all three network variants. Thus, we only consider queries, where the
source and target vertices are actual stops, as additional vertices of the ‘multimodal’
transfer graph are not contained in the ‘original’ and ‘partial’ graphs. Our algorithm
can of course handle arbitrary source and target vertices.
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Another important problem regarding the evaluation of public transit routing
algorithms that we have not yet addressed, is the generation of representative queries.
An approach that is commonly used in the literature generates random queries where
source and target stops are picked uniformly at random. However, this approach
does not re�ect query distributions that can be expected in real applications. It is
reasonable to assume that the users of a real application will predominantly make
search queries where the source stop and target stop are located within metropolitan
areas. In contrast, picking source stops and target stops uniformly at random will
often result in queries between rural locations.

The choice of the queries can have a signi�cant in�uence on the results of the exper-
imental evaluation. One reason for this is that stops in rural areas are typically served
by far fewer trips than stops in metropolitan areas. Therefore, queries are potentially
simpler and can be answered faster if the source and target stop are located in rural
areas. Moreover, if a stop is only infrequently served by trips, then walking might
be required more often as part of an optimal journey. Thus, using queries that were
picked uniformly at random could lead to overestimating the importance of walking.

In order to avoid these problems, we do not pick the source and target stops for
the queries, which we use in our experiments, uniformly at random. Instead, we
argue that the number of trips that serve a stop re�ects the number of passengers
that want to travel to or from this stop. Thus, we expect that in a real application
stops, which are served by a large number of trips, will occur more often as source
stop or target stop of a query than stops that are only used by a few trips. We take
this consideration into account during the generation of the random queries for
our experiments. Instead of picking source stops and target stops using a uniform
random distribution, we pick a stop v with a probability that is proportional to
the number of trips that contain the stop v .

Distance Ranks. Another aspect that heavily in�uences the result of a query is
the distance between the source and the target of the query. We address this issue
by partitioning the queries with respect to their distance rank. The distance rank
of a query, is the number of vertices v with the property that the distance from the
source of the query to v is smaller than the distance from the source of the query to
the target. As distance metric we use the length of shortest paths in the ‘multimodal’
transfer graph. In order to obtain representative queries for every distance rank, we
�rst pick random source stops (where the probability of a stop is again proportional
to the number of trips containing the stop). Afterwards we pick one target for every
distance rank 2r with r ∈ N. The target stop for a query with distance rank 2r is
randomly picked from all stops with a distance rank between 2r and 2r−1 (as before
the probability of a stop is proportional to the number of trips containing the stop).
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Figure 5.2: The running time of pro�le algorithms depending on the distance rank.
We compare the three di�erent variants of the Switzerland network. The ‘original’
and ‘transitive’ network variants are transitively closed, therefore, a state-of-the-art
pro�le algorithm, such as CSA, can be applied. For the ‘multimodal’ variant we use
our new algorithm. We evaluated 100 random queries per distance rank.

5.2.1 Performance Experiments

Our �rst experiment is focused on the performance of pro�le algorithms. We compare
the time required to compute complete 24 hour pro�les (containing all Pareto-optimal
journeys with respect to travel time and number of transfers) depending on the
three variants of our networks. For this we evaluated 100 random queries for every
distance rank 2r with r ∈ R. We discuss the resulting running times in detail for the
Switzerland network (Figure 5.2). The running times for the other three networks are
shown in Figure 5.2 and are quite similar. For the network variants that contain only
the original transfers we use CSA [DPSW18]. It is clearly visible that the running time
of CSA is independent of the distance rank for the ‘original’ variant. The reason for
this is, that the transfer graph contains only very few edges, and therefore the running
time is dominated by scanning the connections. Since the algorithm always scans
all connections, the running time is independent from the distance rank of the query.

Computing pro�les for the ‘transitive’ variants can also be done using CSA, since
the transfer graph is transitively closed. The resulting running times, however, di�er
signi�cantly from the running times of the ‘original’ variant. For the highest dis-
tance rank, running times are increased by an order of magnitude, resulting in query
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Figure 5.3: Running times for the networks of Germany, Stuttgart, and London. We
compare pro�le-CSA on the ‘original’ and ‘transitive’ variants with our algorithm on
the ‘multimodal’ variant. For each distance rank 100 random queries were evaluated.
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times of several seconds for the Switzerland network and of about 2 minutes for the
Germany network. The query time decreases with decreasing distance rank, as a
result of target pruning. For small distance ranks, the running time even falls below
the running time for the ‘original’ variant. The reason for this is most probably a
high number of queries where walking is the optimal solution. This decreases the
complexity of the pro�le functions, which leads to decreased running times.

Finally we examine the running time for the ‘multimodal’ variant of our networks.
Since the transfer graph of these variants is not transitively closed, we have to use
our new algorithm. Computing a pro�le using our algorithm takes about 6 minutes
on average. Despite the fact that our algorithm computes pro�les for more complex
networks with unrestricted walking, running times are only a factor 2 to 4 slower than
CSA on the ‘transitive’ variant. Similar to CSA, the running time of our algorithm
decreases with decreasing distance rank. The reason for this is the underlying search
algorithm (in our case MCR), which is faster for local queries due to target pruning.

The results for the other three networks (Figure 5.3) are quite similar to the results
for the Switzerland network. Of course the absolute running times di�er depending
on the size of the network. A notable di�erence in the relative running times can be
seen for the Stuttgart network. Here, the di�erence between our algorithm and CSA
on the ‘transitive’ variant is much more pronounced than on the other networks. The
reason for this is that the di�erence in size between the ‘transitive’ variant and the
‘multimodal’ variant of the transfer graph is also the greatest for this network. Note
that we only report the running times for the eleven highest distance ranks of every
network, as these are the most interesting queries. Moreover, the running times for
low distance ranks hardly di�er from each other.

5.2.2 Travel Time Comparison
Finally, we analyze how the travel times of optimal journeys change, depending on
the used transfer graph. For this we compare the results of the same 100 random
queries per distance rank, which we used for the performance experiments in the
previous section. Our evaluation focuses only on the earliest travel time, i.e., we
ignore Pareto-optimal solutions that use fewer transfers than the fastest journey.
This leads to a conservative estimation for the importance of walking, since walking
is even more indispensable if the number of transfers is limited.

As before, we begin with an exemplary discussion of the results for the Switzerland
network. Afterwards, we address special aspects and deviations that occur in the
other three networks. In all following experiments we consider the travel times that
are achievable in the networks that combine public transit with the ‘multimodal’
transfer graphs as ground truth. We then compare these travel times with the travel
times that are achievable if only the ‘original’ or ‘transitive’ transfer graph is available.
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Figure 5.4: Comparison of optimal travel times throughout the day for the Switzer-
land network. We compare the travel time τmul in the network that uses the ‘multi-
modal’ transfer graph with the travel time τref in a reference network, which in this
case is the network that uses the ‘original’ transfer graph. We evaluated 100 random
queries with distance rank 216, which correspond to an average travel time of about 2
hours. The x-axis states the departure time of the queries. The mean of τmul over
the 100 queries is plotted in green and the mean of τref is plotted in yellow. The median
of the di�erence between the two travel times is plotted in blue and the interquartile
range (IQR) of this di�erence is depicted in light blue. The dark red dotted curve (us-
ing the right y-axis) indicates the percentage of queries where τmul and τref are not
equal. The light red dotted curve (using the right y-axis) indicates the percentage
of queries where the di�erence between the two travel times is more than 1 hour.

Travel Times with Original Transfers. We examined the di�erence in travel
times between the ‘multimodal’ and the ‘original’ transfer graph variant indepen-
dently for all distance ranks. Overall, we found that the relative di�erence in travel
times is consistent over all distance ranks. Therefore, we con�ne our analysis of
the results to one single distance rank. For the Switzerland network we have cho-
sen a distance rank of 216, which roughly corresponds to an average travel time
of 2 hours. The resulting evaluation for this distance rank is shown in Figure 5.4. In
this plot (and in the subsequent plots in this section), the green curve corresponds
to the mean travel time in the case that the ‘multimodal’ transfer graph is used.
We compare this travel time to a reference travel time, which is plotted in yellow.
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Figure 5.5: Comparison of optimal travel times throughout the day for the Switzer-
land network as in Figure 5.4. In this plot, the reference travel time τref corresponds
to the minimal travel time in the network variant that uses the ‘transitive’ transfer
graph. As before this travel time is compared to the multimodal travel time τmul.

For our �rst experiment (Figure 5.4) the reference travel time corresponds to the
minimal travel time in the network variant that uses the ‘original’ transfer graph.
The plots demonstrate that using only the ‘original’ transfers leads to journeys with
travel times that surpass optimal ‘multimodal’ travel times by several hours.

The importance of unrestricted walking becomes even more noticeable when look-
ing at the percentage of queries where using the ‘original’ transfer graph leads to in-
creased travel times. Looking at the dark red dotted curve, which depicts the percent-
age of these queries, we can see that travel times of almost all queries can be improved
by using the ‘multimodal’ transfer graph instead of the ‘original’ transfer graph. More-
over, we observe that percentage of queries where the travel time can be improved
by more than one hour is about 70%, as depicted by the light red dotted curve.

Travel Times with Transitive Transfers. So far we have only looked at the orig-
inal transfers, which are admittedly quite limited. Figure 5.5 shows the result for
the same experimental setup, but using the ‘transitive’ transfer graph instead of the
‘original’ transfers. In this case we observe that the travel times in the ‘transitive’
network are much closer to the travel times in the ‘multimodal’ network, at least
during the day. However, in the evening and during the night, unrestricted walking
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still improves the travel time signi�cantly. The di�erence is particularly signi�cant
at around 23:00, where half of the queries can be improved by more than 2 hours, as
indicated by the blue curve for the median of the travel time di�erence.

Considering the percentage of queries where the travel time in the two network
variants di�ers (dark red dotted curve), we observe considerably lower values than
in the previous experiment. However, about 25% of all queries can still be improved
by unrestricted walking during day time. Moreover, we observe that the travel times
of less than 10% of the queries can be improved by more than one hour, for departure
times between 5:00 and 17:00. However, the minimal travel times still di�er by more
than one hour for about 50% of the queries during the night.

Overall, these results demonstrate that public transit journey planning can provide
reasonable results for queries during the day. However, there exist queries that
bene�t signi�cantly from multimodal journey planning. Especially at night time,
public transit journey planning will often yield travel times that can be reduced by
several hours if unrestricted walking is considered. These results, which we �rst
published in [WZ17] have since been con�rmed by [PV19].

Travel Times with Transitive Intermediate Transfers. In order to better under-
stand why unrestricted walking has such a strong in�uence on optimal travel times,
an extended experiment was proposed in [Sau18]. In this work, travel times in a
multimodal network have been compared to travel times in a network where walking
is only restricted for some parts of a journey. In particular, arbitrary paths in the
‘multimodal’ graph can be used to transfer from the source of a query to the stop
where the �rst trip is boarded. Similarly, arbitrary paths can be used to transfer from
the last trip of a journey to the target of the query. However, for transferring between
two trips, a transfer within the ‘transitive’ graph has to be used.

Figure 5.6 shows the results of comparing optimal travel times in this scenario
with optimal travel times in the ‘multimodal’ network variant. We observe that in
this experiment the optimal travel times are quite similar for most departure times.
Even during the night the mean travel time in the ‘multimodal’ network variant is
not much lower than the mean travel time of queries where the intermediate transfer
are restricted to the ‘transitive’ transfer graph. We also observe, that the percentage
of queries, which lead to a travel time di�erence of more than one hour, is much
smaller than in the previous two experiments.

From these results we conclude that long transfers are particularly important for
reaching the �rst public transit stop from the source and for traveling from the last
public transit stop of a journey to the target. In contrast, long transfers are much
less important for transferring between two public transport trips. This means that
traveling within the public transport network, for the most part, only requires short
transfers, while reaching the public transit network can require quite long transfers.
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Figure 5.6: Comparison of optimal travel times throughout the day for the Switzer-
land network as in Figure 5.4. In this plot, the reference travel time τref corresponds
to the minimal travel time in a network that uses both, the ‘transitive’ and the ‘multi-
modal’ transfer graph. In particular, the ‘transitive’ graph is used for transfers between
two public transit trips, while the ‘multimodal’ graph is used for the transfer from the
source to the �rst trip of the journey and the transfer from the last trip of the journey to
the target. As before this travel time is compared to the multimodal travel time τmul.

Results for the Other Networks. We also performed all three travel time compar-
isons for our other networks. We present the results for the networks of Germany,
Stuttgart, and London in Figures 5.7, 5.8, and 5.9, respectively.

Overall, the results for these networks are quite similar to the results for the
Switzerland network. We observe for all networks that the travel times of a signi�cant
percentage of the queries can be improved by using a multimodal journey planning
algorithm instead of a public transit journey planning algorithm. Furthermore, all
four networks have in common, the travel time di�erence mostly disappears in the
scenario where only the intermediate transfers are restricted.

The only network that di�ers notably from the other is the London network. For
this network we evaluated queries with a distance rank of only 215, since the network is
much smaller than the other networks. We observe that the travel time di�erences for
the London network are signi�cantly smaller than for the other networks. The reason
for this is that London is the only metropolitan network. Because of this, the network
is much more densely interconnected and thus long transfers are needed less often.
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Figure 5.7: Travel time comparisons for the Germany network using the setup from
Figure 5.4. The results are based on 100 random queries with a distance rank of 216. We
compare the ‘multimodal’ network to the network that uses ‘original’ transfers (top),
‘transitive’ transfers (middle), and ‘transitive’ intermediate transfers (bottom).
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Figure 5.8: Travel time comparisons for the Stuttgart network using the setup from
Figure 5.4. The results are based on 100 random queries with a distance rank of 216. We
compare the ‘multimodal’ network to the network that uses ‘original’ transfers (top),
‘transitive’ transfers (middle), and ‘transitive’ intermediate transfers (bottom).
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Figure 5.9: Travel time comparisons for the London network using the setup from
Figure 5.4. The results are based on 100 random queries with a distance rank of 215. We
compare the ‘multimodal’ network to the network that uses ‘original’ transfers (top),
‘transitive’ transfers (middle), and ‘transitive’ intermediate transfers (bottom).
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5.3 Final Remarks
In this chapter, we studied the problem of computing bicriteria pro�les in multimodal
transportation networks. To this end, we demonstrated how the pro�le problem
can be solved by successively computing optimal journeys for �xed departure times.
Building upon this, we presented our novel pro�le algorithm for multimodal network,
which is based on the MCR algorithm for �xed departure time queries.

We proved the viability of our approach with an experimental evaluation on four
real-world networks. Since, to the best of our knowledge, no previous algorithm
exists that can compute multimodal pro�les, we compare our algorithm to public
transit pro�le algorithms. While the multimodal networks are signi�cantly larger
than the public transit networks, our new pro�le algorithm still achieves running
times that are comparable to a state-of-the-art public transit algorithm.

Finally, we used our new multimodal pro�le algorithm to analyze the importance of
walking as transfer mode in public transit networks. Here, our results demonstrated
that considering walking without any restrictions can have a signi�cant impact on a
journey’s travel times. Even if an extensive transitive transfer graph is considered,
optimal travel times can often be improved by more than one hour if a multimodal
network is considered instead. However, our experiments also show that walking is
not equally relevant for all parts of a journey. Long walking transfers are most often
required for the �rst or the last transfer of a journey. In contrast, short transfers are
often su�cient for transferring between two public transit trips.
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6 UnLimited TRAnsfer Shortcuts

In the previous chapter we con�rmed that allowing multimodal journeys has a sig-
ni�cant impact on travel times (even if only the modes public transit and walking
are considered). This result strengthens the need for an e�cient multimodal journey
planning algorithm. However, we also observed that the relevance of walking trans-
fers strongly depends on their position within the overall journey. In this chapter we
present a novel approach for multimodal journey planning that takes advantage of
this fact. This chapter is based on joint work with Moritz Baum, Valentin Buchhold,
Jonas Sauer, and Dorothea Wagner [Bau+19a, Bau+19b].

Problem Se�ing. In this chapter we consider a multimodal journey planning prob-
lem in a network consisting of public transit and an unrestricted secondary trans-
portation mode, which is represented using a transfer graph. While the transfer graph
might represent any non-schedule-based type of transportation (such as using a taxi
or a bike), we will focus on walking as representative transportation mode. In addition
to the multimodal network, which is known in advance, a query consists of a source
stop, a target stop, and a desired departure time. The objective is to compute a Pareto-
set of journeys from source to target that depart not earlier than the desired departure
time, where arrival time and the number of trips are used as optimization criteria.

Proposed Solution. As discussed before, the main obstacle to solving such a multi-
modal journey planning problem e�ciently are the time-consuming searches in the
transfer graph. In order to perform these searches e�ciently, we propose a novel
speed-up technique for public transit journey planning algorithms, which we call
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ULTRA (UnLimited TRAnsfers). Our approach is based on the observation, that long
intermediate walking transfers (i.e., walking from one trip to another) are only occa-
sionally required. This suggests that the number of unique paths in the transfer graph,
which occur as intermediate transfers of a Pareto-optimal journey, is small. Based on
this insight, we propose a preprocessing phase, during which we compute a small num-
ber of transfer shortcuts that are provably su�cient for computing correct Pareto-sets.
A query algorithm can then use these shortcuts in order to �nd possible destinations of
intermediate transfers instead of searching through the transfer graph. This approach
obviously still requires searches in the transfer graph, in order to �nd initial and �nal
transfers. However, since both of these transfer types have one of their end points
�xed (either the source or the target), they can be found using one-to-many searches,
which are very e�cient. Thus, our algorithm can handle all types of transfers e�-
ciently: Intermediate transfers through lookups in the shortcut graph and initial and �-
nal transfers through the usage of fast one-to-many queries. While the idea for this ap-
proach is based on observations that were made for walking as transfer mode, we show
in Section 6.4 that the performance of ULTRA is independent of the transfer mode.

Chapter Overview. In Section 6.1 we describe the preprocessing algorithm that,
given a public transit network and transfer graph as input, computes the transfer
shortcuts. We start by outlining a general approach for �nding the required shortcuts.
Afterwards, we carefully engineer the preprocessing algorithm to ensure that the
number of discovered shortcuts remains small and the required running time is low.

We continue by showing that the precomputed transfer shortcuts can be integrated
into a variety of state-of-the-art public transit algorithms in Section 6.2. Thus, we do
not present a single query algorithm, but establishing a whole family of ULTRA-query
algorithms. Among other algorithms, this leads to ULTRA-CSA, the �rst e�cient
multimodal variant of CSA.

This family of query algorithms naturally includes ULTRA-Trip-Based. How-
ever, Trip-Based public transit routing allows for a much more sophisticated in-
tegration with ULTRA, which we present in Section 6.3. We show how the pre-
processing steps of ULTRA and Trip-Based routing can be combined in order to
reduce running time and the number of computed shortcuts. Moreover, we present
a variant of the Trip-Based query algorithm that is optimized for a scenario with
unlimited initial and �nal transfers.

We evaluate the performance of the preprocessing phase and the di�erent query
algorithms in Section 6.4. Here we show that ULTRA enables unlimited transfers for
all presented query algorithms without sacri�cing query speed, yielding the fastest
known algorithms for multimodal journey planning. This is true not only for walking,
but also for other transfer modes such as cycling or driving.
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6.1 Shortcut Computation
The preprocessing phase of the ULTRA approach aims at �nding a small number of
transfer shortcuts that are su�cient to answer every point-to-point query correctly.
This is achieved if there exists a journey J ′ for every Pareto-optimal journey J
with the same departure time, arrival time, and number of trips, which only uses
the precomputed shortcuts to transfer between trips. Next, we present a high-
level overview of the ULTRA preprocessing, followed by an in-depth description of
important algorithmic details.

6.1.1 Overview
The basic idea of the ULTRA preprocessing phase is quite simple. We enumerate all
possible journeys that use exactly two trips and require neither an initial nor a �nal
transfer. The transfers between the two trips of these journeys are then considered to
be candidates for shortcuts. Accordingly, the journeys containing them (i.e., journeys
with two trips and no initial and �nal transfer) are called candidate journeys. For each
of these candidate journeys, we check if there exists another journey that weakly
dominates it. If this is the case, we can replace the candidate journey with the
dominating journey without losing Pareto-optimality. Note that if the candidate
journey is contained in a longer journey, then it still can be replaced without a�ecting
the Pareto-optimality of the longer journey. We call such a dominating journey
a witness since its existence proves that the candidate shortcut is not needed. Unlike
the candidate journey, the witness journey can make use of the transfer graph before
the �rst trip or after the second trip. If no witness is found, then the candidate
shortcut is added to the resulting shortcut graph.

A naive implementation of this idea would be to �rst enumerate all candidate jour-
neys and subsequently search for witnesses. However, this would be impractical due
to the sheer number of possible journeys. Therefore, we propose to interweave the can-
didate enumeration and the witness search, with the goal of eliminating as many can-
didates as early as possible. Pseudo code for the result of these considerations is given
by Algorithm 6.1 on page 83. The algorithm resembles invoking rRAPTOR [DPW15a]
once per stop, restricted to the �rst two rounds per iteration. Remember that the
original rRAPTOR algorithm already solves one-to-all range queries. Restricting this
algorithm to the �rst two rounds enables an e�cient enumeration of candidate jour-
neys starting at one stop. Thus, adding a loop over all possible �rst stops allows us to
enumerate al candidate journeys e�ciently. Moreover, many dominated candidates
are eliminated early on, due to self-pruning. We will now continue with a detailed
discussion of Algorithm 6.1, showing step by step what has changed in comparison
to the original rRAPTOR and how this helps with computing the transfer shortcuts.
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6.1.2 Implementation Details

A �rst important di�erence between our preprocessing algorithm and rRAPTOR is
due to the fact that rRAPTOR requires a transitively closed transfer graph. As we
want to allow arbitrary transfer graphs, we replace the RAPTOR that is invoked in
every iteration of rRAPTOR with MR-∞, the variant of MCR that optimizes arrival
time and number of used trips. Because of this change, the relaxation of transfers
in lines 8 and 11 is not done by relaxing outgoing edges of updated stops. Instead,
Dijkstra’s algorithm [Dij59] is performed in order to propagate arrival times found
by the preceding route scanning step. Furthermore, MCR would also use Dijkstra’s
algorithm in order to collect all routes reachable from the source stop in line 6. In
the context of rRAPTOR this leads to many redundant computations, as the source
stop does not change between iterations. Therefore, we compute distances from the
source stop to all other stops once in line 3, again using Dijkstra’s algorithm. These
distances can then be used in line 6.

Departure Time Collection. In line 4, standard rRAPTOR would collect all de-
parture events that are reachable from the source stop s . However, given a transfer
graph without any restrictions, this could quite possibly be every departure event in
the network. Since we are primarily interested in �nding candidate journeys, which
do not have initial transfers, we collect only those departure events which depart
directly at the source stop s . However, in order to �nd witness journeys, we still need
to explore initial transfers in line 6. For this purpose, a naive implementation would
iterate over all stops v ∈ S that are reachable from s and over all routes containing
the stop v . Each of these routes has then to be checked for the existence of a trip
that was not scanned in a previous iteration and can be reached given the departure
time τdep at s . Since initial transfers are unlimited, this would possibly lead to each
stop and each route being processed in line 6.

A more e�cient approach combines lines 4 and 6 into a single operation, that
has not to be repeated for every rRAPTOR iteration. For this, we �rst sort all depar-
ture triplets (v, τdep,R) of departure stop v , departure time τdep, and route R by their
corresponding departure time at the source, τdep − τtra(s, v). Afterwards, we iterate
through this sorted list in descending order of departure time. If the next triplet to
be processed has a departure stop v , s , then its route is added to a set R′, and we
immediately continue with the next triplet. In the case that the next triplet (v, τdep,R)
actually has the source stop as its departure stop (s = v), we again add R to R′,
but afterwards we proceed with lines 6 through 12. Now the routes that have to be
collected in line 6 are exactly the routes in R′ plus the route of the current triplet.
Thus, we simply scan all routes in R′ and then reset R′ = ∅ for the next iteration.
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Algorithm 6.1: ULTRA transfer shortcut computation.
Input: Public transit network (S, T ,R), unlimited transfer graph G = (V, E)
Output: Shortcut graph G s

= (S, E s)
1 for each s ∈ S do
2 Clear all arrival labels and Dijkstra queues
3 τtra(s, · ) ← Compute transfer times in G from s to all stops
4 DT ← Collect departure times of trips at s
5 for each τdep ∈ DT in descending order do // rRAPTOR iteration

6 Collect routes reachable from s at τdep // first RAPTOR round

7 Scan routes
8 Relax transfers
9 Collect routes serving updated stops // second RAPTOR round

10 Scan routes
11 ÚC ← Relax transfers, thereby collecting unwitnessed candidates
12 E s ← E s ∪ ÚC

Limited Transfer Relaxation. Another part of ULTRA that di�ers from rRAPTOR
is the �nal relaxation of transfers in line 11. This is the part of the algorithm where
we actually determine the candidate journeys for which we have not found a witness.
As usual, relaxing the transfers is done by Dijkstra’s algorithm, initialized with the
arrival times from the preceding route scanning step. Whenever a stop is settled
during this execution of Dijkstra’s algorithm, we look at the corresponding journey
and check whether it is a candidate journey, i.e., does not require initial or �nal
transfers. If so, we know that there is no witness journey that weakly dominates this
candidate, because otherwise the search would have reached the stop via this witness
journey instead. Thus, we extract the intermediate transfer of the found candidate
journey and add it as an edge to the shortcut graph.

We further increase the practical performance of our algorithm by adding a stop-
ping criterion to the �nal transfer relaxation in line 11. For this purpose, we count the
number of stops which were newly reached via a candidate journey in the preceding
route scanning step. Whenever such a stop is settled in line 11, we decrease our
counter. Once the counter reaches zero, we can stop settling further vertices as we
know that no more candidates can be found in this iteration. We can apply a similar
stopping criterion to the intermediate transfer relaxation in line 8. In this case, we
count the stops which were reached via a route directly from s , without an initial
transfer, since only these stops can later become part of a candidate journey. As in
line 11, we can stop settling vertices as soon as no such stops are left in the queue of
Dijkstra’s algorithm. This does not a�ect the correctness of the algorithm, as we still
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process all candidates. However, it might cause some witnesses to be pruned and
thus it can lead to super�uous shortcuts in the result. To counteract this, we take
the arrival time τarr of the last stop representing a candidate that is settled. Instead of
stopping the transfer relaxation immediately, we continue until the queue head has
an arrival time greater than τarr + τ̄wit for some parameter τ̄wit (which we call witness
limit). With these changes, the only remaining part of the algorithm that performs
an unlimited search on the transfer graph is the initial transfer relaxation in line 3,
which is only performed once for every source stop (i.e., every stop in the network).

The success of our pruning rule for the transfer relaxation in lines 8 and 11 depends
on the presence of candidate journeys in the Dijkstra queues. Fewer candidate
journeys could therefore lead to an earlier application of the pruning rule. We exploit
this by further restricting the notion of candidate journeys. As before, a candidate
journey must not contain any initial or �nal transfers. In addition, we now only
classify such a journey as a candidate journey if its intermediate transfer is not
contained in the set of already computed transfer shortcuts. This reduces the number
of candidate journeys we have to consider. However, it does not a�ect the correctness
of our approach, since the missing candidates would only produce shortcuts that are
already part of the output anyway.

Cyclic Witnessing. Since witnesses are only required to dominate candidate jour-
neys weakly, there may exist journeys J , J ′ that dominate each other. If two such
journeys act as witness for each other, we could miss a required shortcut. If J has
an initial transfer of length > 0, then J without the initial transfer is not dominated
by J ′ extended by the reverse initial transfer. Therefore, the shortcut required by J
will be added. Thus, cyclic domination is only problematic between journeys with
initial transfers of length 0. We prevent this by temporarily contracting groups of
stops with transfer distance 0 during the preprocessing.

Transfer Graph Contraction. As shown for MCR [Del+13], the transfer relaxation
is often the bottleneck of multimodal journey planning algorithms. Since ULTRA only
needs to compute journeys between stops, rather than journeys between arbitrary
vertices of the transfer graph, only transfers that start and end at stops are relevant.
Therefore, any overlay graph that preserves the distances between all stops can be
used instead of the transfer graph in our preprocessing algorithm. An easy way
of obtaining such an overlay graph is to construct a partial CH that only contracts
vertices that do not correspond to stops of the public transit network. This, of course,
leads to a suboptimal contraction order and thus makes it infeasible to contract all
vertices that are not stops. As done in many other algorithms [Bau+10b, DPW15b,
Del+13, Bau+15, BBDW16], we therefore stop the contraction once the uncontracted
core graph surpasses a certain average vertex degree.
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Parent pointers. We use parent pointers during all searches in order to be able to
retrieve the intermediate transfers of candidate journeys, if we want to collect them
as shortcut. Parent pointers are usually maintained by assigning parent[w] ← v
whenever relaxing an edge e = (v,w) leads to an improved arrival time at the
vertex w . We modify this behavior and assign parent[w] ← parent[v] instead. Thus,
the parent pointer does not represent the preceding vertex within a path but the
origin vertex of the path. Because of this, we do not need to retrace parent pointers
in order to obtain the intermediate transfer of a candidate journey. Furthermore,
we observe that parent pointers are only needed for candidate journeys, since we
are not interested in the vertices used by candidate journeys. We exploit this fact
by assigning a special value to the parent pointers of the origin vertices of witness
journeys. This allows us to e�ciently determine if a given journey is a witness
journey or a candidate journey, as we only need to inspect the parent pointer of
the last vertex in the journey.

Data Structures. For an optimal performance of the preprocessing phase it is
indispensable that e�cient data structures and a streamlined memory layout are
used. To this end, we arrange data that is accessed through a loop sequentially within
the memory. This a�ect edges of the transfer graph with a common start vertex, stop
events within a trip, and trips within routes.

For the three Dijkstra searches within the transfer graph (initial transfer search,
transfer relaxation in line 8, and transfer relaxation in line 11) we use 4-ary heaps
as queues, since they tend to yield the best performance in practice [CGR96]. Fur-
thermore, we use separate queues and labels (encapsulating the arrival time and the
parent pointer) for each of the three searches. This allows us to not clear the queues
in between rRAPTOR iterations. Otherwise queue entries from the second or third
search of an earlier rRAPTOR iteration might interfere with queue entries from the
�rst or second search of the current iteration).

Parallelization. Finally, we observe that ULTRA allows for trivial parallelization.
Our preprocessing algorithm searches for candidate journeys once for every pos-
sible source stop (line 1 of Algorithm 6.1). As these searches are mostly indepen-
dent of each other, we can distribute them to parallel threads and combine the
results in a �nal sequential step. Only the usage of the restricted candidate no-
tion introduces a dependence between the searches for di�erent source stops. As
this is only a heuristic performance optimization, we simply relax the notion of
candidate journeys again: In the parallelized version of the preprocessing phase
we classify a journey as candidate journey, if it has neither an initial nor a �-
nal transfer and its intermediate transfer is not equivalent to a shortcut that has
already been found by the same thread.



Chapter 6 UnLimited TRAnsfer Shortcuts

86

6.1.3 Proof of Correctness
Before continuing with the query algorithms, we want to justify that ULTRA computes
a shortcut graph that is su�cient to answer all queries correctly.

Theorem 6.1. Every Pareto-optimal journey either uses solely intermediate trans-
fers that are contained in the shortcut graph or is weakly dominated by another jour-
ney that uses solely intermediate transfers that are contained in the shortcut graph.

Proof. Assume that a journey J = 〈P0,T
i j

0 , . . . ,T
mn
k−1, Pk 〉 with the following two

properties exists: First, J requires an intermediate transfer that is not contained in the
shortcut graph. Secondly, J cannot be replaced with a journey of equal travel time
and number of trips, which solely uses transfers from the shortcut graph. In this case,
the journey J must contain at least two trips, since otherwise it would not contain
any intermediate transfers. Since the journey contains two or more trips, it can be dis-
assembled into candidate journeys 〈T i j

0 , P1,T
дh

1 〉, 〈T дh1 , P2,T
pq

2 〉, . . . , 〈Tuv
k−2, Pk−1,T

mn
k−1〉.

As J requires a transfer that is not contained in the shortcut graph, at least one
of these candidates must also contain a transfer not contained in the shortcut
graph. Let J c = 〈T дhx , Px+1,T

pq
x+1〉 be such a candidate journey. Since the main loop of

the ULTRA preprocessing algorithm is executed once for every stop in the network, it
was also executed for the source stop v(Tx [д]) of this candidate journey. Derived from
the correctness of rRAPTOR, we know that for a given source stop our algorithm
computes Pareto-optimal arrival labels for all stops reachable with two trips or less.
Thus we also reached the target stop v(Tx+1[q]) of the candidate journey, since it
can be reached from v(Tx [д]) with two trips. The journey J ′ corresponding to the
target’s arrival label is in this case either the candidate journey or a journey that
dominates the candidate journey. In the �rst case, we have added the transfer Px+1
of the candidate journey to the shortcut graph. In the second case, the candidate
journey J c can be replaced by the journey J ′ corresponding to the target’s arrival
label, leading to a journey that is not worse than the original journey and does not
require the missing transfer. Therefore, both cases contradict our assumption. �

6.2 �ery Algorithms
The shortcuts obtained from the ULTRA preprocessing can, in principle, be combined
with any public transit query algorithm that normally requires a transitively closed
transfer graph, such as RAPTOR [DPW15a], CSA [DPSW13, DPSW18], or Trip-Based
Routing [Wit15]. The basic idea of our query algorithm is to simply apply one of
these algorithms to a network that uses the precomputed shortcut graph instead of
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Algorithm 6.2: Query algorithm, using ULTRA transfer shortcuts
Input: Public transit network (S, T, R), shortcut graph G s

= (S, E s),
Bucket-CH of the original transfer graph G,
source vertex s , departure time τdep, and target vertex t

Output: All Pareto-optimal journeys from s to t for departure time τdep
1 τtra(s, · ) ← Run Bucket-CH query from s
2 τtra(· , t) ← Run reverse Bucket-CH query from t

3 G̃ s ← (S ∪ {s, t}, E s)
4 for each v ∈ S do
5 Add edge (s, v) to G̃ s with travel time τtra(s, v)
6 Add edge (v, t) to G̃ s with travel time τtra(v, t)
7 Run black box public transit algorithm on (S ∪ {s, t}, T ,R), G̃ s

the original transfer graph. However, our shortcut graph only represents transfers
between two trips and does not provide any information for transferring from the
source to the �rst trip or for transferring from the last trip to the target. In this section
we describe how the aforementioned public transit algorithms can be modi�ed in
order to handle initial and �nal transfers e�ciently.

6.2.1 Basic �ery Algorithm.
Our approach is based on the observation that for both, initial and �nal transfers,
one endpoint of the transfer is �xed. All initial transfers start at the source vertex of
the query and all �nal transfers end at the target vertex of the query. Therefore, we
can use two additional one-to-many queries (one of them performed in reverse) to
cover initial and �nal transfers. These queries have to be performed on the original
transfer graph, where they compute the distances from the source to all stops and
from all stops to the target. While any one-to-many algorithm might be used to
perform this task, we decided to use Bucket-CH, as it is one of the fastest known
one-to-many algorithms and allows for optimization of local queries. Pseudo code
for the resulting ULTRA query algorithm using Bucket-CH and our precomputed
transfer shortcuts is shown in Algorithm 6.2.

Our query algorithm begins with performing the two Bucket-CH queries: a forward
search from the source vertex in line 1 and a backward search from target vertex in
line 2. Afterwards a temporary copy G̃ s of the shortcut graph G s, which contains
the source and the target of the query as additional vertices, is initialized. In lines 5
and 6, this temporary graph is complemented with edges from the source to all other



Chapter 6 UnLimited TRAnsfer Shortcuts

88

stops and edges from all stops to the target, using the distances obtained from the
Bucket-CH queries. Finally, a public transit algorithm is invoked as a black box on
the public transit network with the temporary graph instead of the shortcut graph
in line 7. The temporary graph is su�cient for the query to yield correct results,
as it contains edges from the source to any possible �rst stop, all edges required to
transfer between trips, and edges from any possible last stop to the target. Since
there are no additional requirements on the black box public transit algorithm, it is
easy to see that any existing public transit algorithm can be used with our shortcuts.

6.2.2 Running Time Optimizations.

We can further improve the performance of this query algorithm in practice by
introducing some adjustments. First, we observe that we actually do not need edges
from the source to every other stop. If the distance τtra(s, v) from the source s to
a stop v is greater than the distance τtra(s, t) from s to t , then every journey that
requires a transfer from s to v is dominated by simply transferring directly from s
to t . Thus, we do not need to add the edge (s, v) to the temporary graph in this case.
The same argument can be made for edges from some stop w to the target t if the
distance τtra(w, t) is greater than τtra(s, t). Moreover, if we know that a stop v is further
away from the source than the target, then we do not even need to compute the actual
distance τtra(s, v). We can use this fact to prune the search space of the Bucket-CH
queries in lines 1 and 2. For this purpose, we �rst perform a standard bidirectional CH
query from source to target that stops settling vertices from the forward (respectively
backward) queue if the corresponding key is greater than the tentative distance from
the source to the target. As a result we obtain the distance τtra(s, t), as well as the
partial forward (backward) CH search space from s (t ), containing no vertices that
have a greater distance from s (to t ) than τtra(s, t). We then perform the second phase
of the Bucket-CH query (i.e., scanning the buckets) only for the vertices in the partial
search spaces of the CH query. Furthermore, we store the entries in each bucket sorted
by the distance to their target. Thus, we can stop scanning through the bucket of a
vertex v once we reach a stopw within the bucket with τtra(s, v)+τtra(v,w) ≥ τtra(s, t).
Doing so can drastically improve local queries, as we do not need to look at all stops,
but only at stops that are close to the source or target.

If we do not treat the underlying public transit algorithm as a black box, we can
further improve practical performance by omitting the construction of the temporary
graph G̃ s. Instead of adding edges from s to stops v , we can directly initialize the
tentative arrival times used by most public transit algorithms with τdep + τtra(s, v).
Instead of adding edges to t , we try to update the tentative arrival time at the target
with the arrival time at v plus τtra(v, t) whenever the arrival time at v is updated.
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6.3 Integration with Trip-Based Routing
Trip-Based public transit routing can be used with the generic query algorithm, which
we presented in the previous section, without any modi�cation. However, some parts
of the Trip-Based approach are particularly suitable for further optimization.

Unlike RAPTOR and CSA, Trip-Based Routing on its own already requires a
preprocessing step, even if it is used without ULTRA. Thus, combining it with ULTRA
leads to a three-phase algorithm: The �rst phase is the normal ULTRA preprocessing,
the second phase is the Trip-Based preprocessing, which uses the ULTRA transfer
shortcuts as input, and the third phase is the ULTRA-Trip-Based query. Of these
three phases, the two preprocessing steps have several parts in common. Therefore,
integrating them and removing redundant parts yields a single and overall more
elegant preprocessing step that produces fewer shortcuts.

Furthermore, the Trip-Based query algorithm can also be optimized for networks
with unlimited transfers. The original query, as introduced in [Wit15], is optimized
for a use case where only a small number of stops is reachable with transfers from
the source or the target. However, with unlimited transfers, we expect that almost
every stop is reachable from the source and the target. Therefore, we propose to
restructure the query, such that the huge number of possible initial and �nal transfers
can be processed more e�ciently.

6.3.1 Trip-Based Preprocessing

The preprocessing phases of ULTRA and Trip-Based Routing have many similari-
ties, despite the fact that Trip-Based Routing requires transitively closed transfers,
which ULTRA does not. Both of them compute shortcuts, which are later used
to accelerate the query algorithm. However, ULTRA computes time-independent
shortcuts (connecting pairs of stops), while the Trip-Based shortcuts are time-depen-
dent (connecting pairs of stop events). This means that a shortcut, which is needed at
one time during the day, is available at all times when using ULTRA, while Trip-Based
Routing is aware that the shortcut is only needed at a certain time.

Both approaches identify unnecessary shortcuts by enumerating journeys with at
most two trips in order to �nd witness journeys which prove that a potential shortcut
is not necessary. The Trip-Based preprocessing does this in a “transfer reduction”
step, after all potential shortcuts have been generated. Since this is no longer feasible
with unlimited transfers, ULTRA interleaves the generation and pruning of shortcuts.
Another di�erence is the type of journeys that are considered as witnesses. In the
Trip-Based preprocessing, witness journeys must start with the same trip from which
the shortcut originated, whereas the ULTRA preprocessing also considers witness
journeys that start with an initial transfer. Furthermore, the Trip-Based preprocessing
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does not guarantee that a witness journey is found before the shortcut it could prune
has already been added to the output, since this depends on the order in which the
shortcuts are explored. Overall, ULTRA has more options for pruning candidate
journeys and thus produces fewer shortcuts.

Since both preprocessing phases enumerate journeys for similar purposes, we
propose to integrate them and remove redundant parts. We implement this by
keeping the general approach of the ULTRA journey enumeration, which can handle
unlimited transfer graphs and prunes more shortcuts overall. In order to produce
time-dependent shortcuts, we switch from computing shortcuts between stops to
computing shortcuts between stop events, which makes the Trip-Based preprocessing
phase obsolete. Achieving this requires some alterations to the original ULTRA
preprocessing phase, which we describe in detail in the remainder of this section.

Candidate Journeys. The original ULTRA preprocessing includes an optimization
that dismisses candidate journeys if their intermediate transfer was already added
as a shortcut before. In the context of ULTRA, this has a signi�cant impact on the
preprocessing time because time-independent shortcuts are likely to be used multiple
times during the day. However, when switching to time-dependent shortcuts, it
becomes much less likely for a new candidate journey to use a previously found
shortcut. Thus, the expected bene�t of potentially dismissing the candidate no longer
outweighs the work required to look up the shortcut. Therefore, we do not prune
candidate journeys with already found shortcuts.

Parent Pointers. In order to determine the shortcut that corresponds to a can-
didate journey, the ULTRA preprocessing algorithm maintains parent pointers for
the stops of the candidate journeys. These parent pointers point to earlier stops
within the same journey and can thus be used to �nd the intermediate transfer of a
journey by tracing them back, starting from the last stop of the journey. Since we
want to compute shortcuts between stop events instead of stops, we also change
the parent pointers from stops to stop events. As before, in the original ULTRA
preprocessing, we propagate parent pointers by assigning parent[w] ← parent[v],
whenever relaxing an edge (v,w) leads to an improved arrival time at w . Doing
this enables an e�cient retrieval of the shortcut corresponding to the intermedi-
ate transfer of a candidate journey. Assume that a candidate journey J ends at the
stop t . In this case, the shortcut corresponding to the intermediate transfer of J
is (parent1[v(parent2[t])], parent2[t]), where parentk [v] is the parent for reaching v
using k trips (i.e., within the k-th RAPTOR round). As before, witness journeys are
distinguished from candidate journeys by assigning a special value to the parent
pointers of witness journeys.
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Figure 6.1: An example network that demonstrates how using weak domina-
tion in the ULTRA-Trip-Based preprocessing leads to missing shortcuts. Transfer
edges (gray) are labeled with their travel time, while trips (colored) are labeled
with τdep → τarr. With weak domination of candidates, the preprocessing only �nds
two shortcuts: (0→ 1, 3→ 4) and (5→ 6, 8→ 9). However, these two shortcuts
are not su�cient for �nding an s-t-journey. If candidate journeys are only dis-
missed if they are strictly dominated by a witness journey, then an additional
shortcut (3→ 4, 8→ 9) is found during the preprocessing. Using this shortcut,
the s-t-journey

〈〈s〉, 〈0→ 1〉, 〈v,w〉, 〈3→ 4〉, 〈x,y〉, 〈8→ 9〉, 〈t〉〉 can be computed.

Initial Transfer and Strict Dominance. The most important modi�cation of the
algorithm is required due to the fact that the ULTRA preprocessing allows witness jour-
neys with initial transfers (unlike Trip-Based). In combination with weak domination
of candidates, this can lead to missed shortcuts between stop events, as demonstrated
in Figure 6.1. In this example, only two shortcuts will be found: (0→ 1, 3→ 4)
and (5→ 6, 8→ 9). However, these two shortcuts are not su�cient for �nding a
journey from s to t with the Trip-Based query algorithm. The algorithm will only
�nd journeys starting at s that reach the only trip of the blue route (0→ 1) and
the �rst trip of the yellow route (3→ 4). No further journeys can be found, since
there is no transfer shortcut from the blue route to the second trip of the yellow
route (0→ 1, 5→ 6) and no transfer from the �rst trip of the yellow route to the
red route (3→ 4, 8→ 9). Either one of these shortcuts would be su�cient for the
computation of journeys from s to t . We argue that, considering these two options,
adding (3→ 4, 8→ 9) as a shortcut is preferable. The reason for this is that passen-
gers using the blue route would have no reason to wait for the second trip of the
yellow route if they can also continue with the �rst trip of the yellow route.

Before explaining the modi�cations that are necessary in order to �nd the short-
cut (3→ 4, 8→ 9), we brie�y examine why this shortcut is not found by a naive
combination of the ULTRA preprocessing and the Trip-Based preprocessing. For this,
we consider the candidate journey J c =

〈〈w〉, 〈3→ 4〉, 〈x,y〉, 〈8→ 9〉, 〈t〉〉, which
contains the missing shortcut. During the ULTRA preprocessing, this journey is
dominated by the witness journey J =

〈〈w〉, 〈5→ 6〉, 〈x,y〉, 〈8→ 9〉, 〈t〉〉, hence no
shortcut is added. Note that this problem only arises when ULTRA and Trip-Based
Routing are combined. When using ULTRA on its own, shortcuts connect pairs
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of stops instead of stop events. This means that the two shortcuts (3→ 4, 8→ 9)
and (5→ 6, 8→ 9) between stop events are both represented with the single short-
cut (x,y) between stops. Therefore, �nding only one of them is su�cient. On the
other hand, when using Trip-Based Routing on its own, the problem does not arise,
as the Trip-Based preprocessing does not consider journeys with initial transfers.
This means that the candidate journey J c is not dominated by the witness journey J ,
since J requires waiting at w , which is considered to be an initial transfer. Therefore,
the shortcut (5→ 6, 8→ 9) is found by the standard Trip-Based preprocessing.

We observe that the problem of missing shortcuts only occurs if a candidate
journey and the corresponding witness journey are equivalent with respect to their
arrival time and their number of used trips. Thus, the problem can be solved by only
dismissing candidate journeys that are strictly dominated by a witness (instead of
being weakly dominated as in standard ULTRA). We now continue with describing
how this change can be implemented within our preprocessing algorithm. Using
strict dominance instead of weak dominance a�ects all parts of the algorithm where
a new arrival time at a vertex v is discovered (i.e., during the relaxation of edges
and during route scanning). Normally the label of v is only updated if the newly
discovered arrival time is strictly better (earlier) than the previously found arrival
time. Instead, we now also update the label of the vertex v if the following three
conditions hold: First, the new arrival time at the vertex v is equivalent to the previous
arrival time. Secondly, the current label of the vertex v does not correspond to a
candidate journey. Thirdly, the journey that corresponds to the new arrival time
is a candidate journey. These new rules for updating a label ensure that a newly
found candidate journey is not implicitly dominated by a previously found journey
with the same arrival time. In the case of equal arrival times, we allow that candidate
journeys replace non-candidate journeys, but not vice versa. This is quite important,
as it prevents cyclic label updates, which would otherwise lead to in�nite loops.

6.3.2 Improved �ery

We use the shortcuts computed by the combined ULTRA-Trip-Based preprocessing
within a modi�ed version of the Trip-Based query algorithm. As before, with the
normal ULTRA query, this requires a special treatment of initial and �nal transfers,
since the shortcuts only cover intermediate transfers. We handle these transfers by
performing two Bucket-CH queries, just like we do in the general ULTRA query.
However, in contrast to the general ULTRA query, e�ciently integrating the results
of the Bucket-CH queries into the Trip-Based query is more involved. We provide an
overview that shows how initial and �nal transfers are processed in our ULTRA-Trip-
Based query in Algorithm 6.3. In the following, we describe this algorithm in detail.
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Bucket-CH �ery. The �rst step of the algorithm (lines 1 - 4) is the execution of the
Bucket-CH queries. As in the case of the generic ULTRA query, we split the Bucket-
CH queries into three parts, in order to improve e�ciency. First, a standard CH query
from s to t with departure time τdep is performed. As result of this query, we obtain
the minimal arrival time τmin at the target via a direct path in the transfer graph, the
forward CH search space Vs originating from s , and the backward CH search space Vt
originating from t . The minimal arrival time τmin is ∞ if no path from the source s
to the target t exists in the transfer graph. If, on the other hand, τmin < ∞ holds,
then we have found an s-t-journey with arrival time τmin that uses zero trips, which
we add to the result set in line 2. Afterwards, we evaluate the buckets containing
vertex-to-stop transfer times for all vertices in Vs , which provides us with the arrival
time τarr(s, v) for each stop v with τarr(s, v) ≤ τmin. Similarly, we evaluate the buckets
containing stop-to-vertex transfer times for all vertices in Vt , in order to obtain
transfer times τtra(v, t) for all stops v with τtra(v, t) ≤ τmin − τdep.

Initial Transfer Evaluation. In the second step of the algorithm (lines 5 - 19), we
evaluate which trips of the public transit network are reachable by an initial transfer.
In the original Trip-Based query [Wit15], this is done by iterating over all stops that
are reachable via an initial transfer. For each such stop v and each route R visiting v ,
the algorithm identi�es the earliest trip of R that can be entered at v after taking the
initial transfer. This approach is e�cient as long as the number of stops reachable via
an initial transfer is small. However, in a scenario with unlimited transfers, where
almost all stops are reachable by initial transfers, consecutive stops of a route often
share the same earliest reachable trip. This can cause the same trip to be found
multiple times, leading to redundant work. To avoid this, we propose a new approach
for evaluating the initial transfers, which is based on two steps of the RAPTOR
algorithm: collecting updated routes and scanning routes.

We start by collecting all routes, which contain a stop that is reachable by an initial
transfer from the source, in lines 5 and 6. This is analogous to collecting routes that
contain updated stops at the beginning of a RAPTOR round. We proceed by scanning
the routes we have collected. The goal of this step is to �nd for each stop v within
a route R the �rst trip Tmin of the route R that can be boarded at v , given the arrival
time τarr(s, v) at v . We achieve this by processing the stops v in the order they appear
in R, while gradually updating Tmin at the same time.

Let v be the next stop to be processed while scanning the route R. If we have
not found a reachable trip for any of the previous stops in R (i.e., Tmin = ∞), then
we use a binary search to �nd the �rst trip in R that can be boarded at v (line 13).
Otherwise, we assume that the earliest reachable trip at v is probably not much
earlier than the previously found trip Tmin. Therefore, we perform a linear search,
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starting fromTmin, to �nd this trip in lines 15 - 17. Note that in cases where the earliest
reachable trip at v departs later than Tmin, the linear search will not �nd it. However,
this is not a problem, since it is preferable to enterTmin at a previous stop, in this case.
After we have found the earliest trip reachable at v , we add it to the queue of trips
that have to be scanned in line 18. Finally, we can stop searching for earlier trips
if Tmin is already the earliest trip in the route R.

The original Trip-Based query also collects �nal transfers to the target before
continuing with the trip scanning step. These are used in the trip scanning step to
e�ciently identify the stops in the trip from which the target can be reached. In the
presence of unlimited transfers, this is no longer worth the e�ort, since the target
can be reached from almost all stops. Therefore, we skip this step and evaluate �nal
transfers on the �y while scanning trips. Unfortunately, skipping the evaluation of
initial transfers is not an option, as we need to evaluate them in order to know which
trips have to be scanned.

Trip Scanning. The third and last step of the query algorithm (lines 20 - 33) is
the trip scanning phase, which is mostly identical to the original Trip-Based query
algorithm. It is organized in rounds, where the n-th round scans the trips that have
previously been collected in Qn , which correspond to journeys that start at s and
contain n trips. For each of these trips, the queue also contains indices i and j , which
indicate the �rst and last stop event of the trip that have to be scanned, respectively.
While scanning the i-th stop event of the trip T , the algorithm checks whether a
�nal transfer from the i-th stop of the trip T to the target exists in line 24. If such a
transfer exists and if this transfer can be used to improve the earliest known arrival
time τmin at the target, then the algorithm has found a new Pareto-optimal journey.
In this case, τmin is updated and the newly found journey is added to the result set J .
If J already contains a journey with n trips (note that a Pareto-set can only contain
one such journey), this journey is replaced.

After the �nal transfers have been evaluated, we continue with relaxing the pre-
computed transfer edges in E t that start at the stop event T [i]. Each of these edges
provides us with a new trip T ′ that can be used to extend the current journey. Thus,
the tripT ′ (together with the index i ′ of the �rst stop event inT ′ that can be reached)
is added to the queue Qn+1 of trips that have to be scanned in the next round.

Note that we scan the trips inQn twice. We only evaluate �nal transfers during the
�rst scan and use a separate second scan to relax transfer shortcuts. We do this for
two reasons: First, separating the two scans improves memory locality, as τtra(· , t) is
only accessed by the �rst scan, and E t is only accessed by the second scan. Secondly,
we improve τmin throughout the �rst scan, which enables better pruning of trips that
cannot contribute to Pareto-optimal journeys in line 30 of the second scan.
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Algorithm 6.3: ULTRA-Trip-Based Query
Input: Public transit network (S, T, R), transfer shortcut graph G t

= (V t
, E t),

Bucket-CH of the original transfer graph G,
source vertex s , departure time τdep, and target vertex t

Output: All Pareto-optimal journeys from s to t for departure time τdep
1 (τmin,Vs ,Vt ) ← Run a CH query from s to t with departure time τdep
2 if τmin < ∞ then J ← {(τarr(s, t), 0)}
3 τarr(s, · ) ← Evaluate the vertex-to-stop buckets for vertices in Vs
4 τtra(· , t) ← Evaluate the stop-to-vertex buckets for vertices in Vt
5 for each v ∈ Vs do
6 R′← R′ ∪ {Routes from R that contain v }
7 for each R ∈ R′ do
8 Tmin ←∞
9 for i from 0 to |R | do

10 v ← i-th stop of trips in R
11 if τarr(s, v) ≥ τmin then continue
12 if Tmin = ∞ then
13 Tmin ← Binary search: �rst T ∈ R departing from v after τarr(s, v)
14 else
15 while the trip before Tmin in R departs from v after τarr(s, v) do
16 Tmin ← The trip before Tmin in R
17 if Tmin is the �rst trip in R then break
18 if Tmin , ∞ and τdep(Tmin[i]) ≥ τarr(s, v) then Enqueue(Tmin, i,Q1)
19 if Tmin is the �rst trip in R then break

20 n ← 1
21 while Qn is not empty do
22 for each (T, j,k) ∈ Qn do
23 for i from j to k do
24 if τarr(T [i]) ≥ τmin then break
25 if τarr(T [i]) + τtra(v(T [i]), t) < τmin then
26 τmin ← τarr(T [i]) + τtra(v(T [i]), t)
27 J ← Pareto-set of J ∪ {(τmin,n)}
28 for each (T, j,k) ∈ Qn do
29 for i from j to k do
30 if τarr(T [i]) ≥ τmin then break
31 for each (T [i],T ′[i ′]) ∈ E t do
32 Enqueue(T ′, i ′,Qn+1)
33 n ← n + 1
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Enqueueing Trips. The enqueue operation, which is used to add trips to the queues
in lines 18 and 32, is identical to the enqueue operation proposed for the original
Trip-Based query algorithm [Wit15]. Internally, this operation maintains an index k
for every trip T in the network. This index marks the last stop event of the trip that
has not been scanned and is initialized as |T |. When invoking Enqueue(T , i,Qn), this
index is used to add the triple (T , i,k) to the queue Qn . Afterwards, k is decreased
to i − 1 for this trip and all later trips in the route of T .

Data Structures and Memory Layout. In order to achieve the optimal perfor-
mance possible for the query algorithm, it is quite important that a streamlined
memory layout is used. To this end, we implement the FIFO queues Qn using dy-
namic arrays. This enables an e�cient enqueue operation and e�cient scanning of
the entries inQn . The edges E t are also stored in an array, such that edges (T [i],Ta[j])
and (T [i],Tb [k]), which start at the same stop eventT [i], occupy consecutive memory
locations. Moreover, the section of this array that contains edges starting with the
stop event T [i] is directly in front of the section that contains edges starting with
the stop event T [i + 1]. Finally, we observe that we only need access to the arrival
time τarr(T [i]) and the stop v(T [i]) of the stop events T [i] during the trip scanning
step. Thus, we store these values separately from the departure time τdep(T [i]) of the
stop event, which improves memory locality.

6.4 Experiments
We implemented our algorithms in C++17 and compiled them with GCC version 8.2.1
and optimization �ag -O3. Experiments were performed on the following machines:
Xeon A machine with two 8-core Intel Xeon Skylake SP Gold 6144 CPUs, which

are clocked at 3.50 GHz, with a boost frequency of up to 4.2 GHz, 192 GiB
of DDR4-2666 RAM, and 24.75 MiB of L3 cache.

Epyc A machine with two 64-core AMD Epyc Rome 7742 CPUs, which are clocked
at 2.25 GHz, with a boost frequency of up to 3.4 GHz, 1024 GiB of DDR4-3200
RAM, and 256 MiB of L3 cache.

6.4.1 Preprocessing
In this section we evaluate the performance of the ULTRA preprocessing phase, which
includes the transfer graph contraction and the shortcut computation. We start by
focusing on the Switzerland network, where we analyze the e�ects of the parameters
core degree, witness limit, and transfer speed in great detail. Afterwards, we discuss
the general results of the preprocessing phase for all four networks.
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Figure 6.2: Impact of the core degree and the witness limit on the running time of
the preprocessing algorithm and the number of computed shortcuts, measured for
the Switzerland network on the Xeon machine. Preprocessing time includes both
contracting the transfer graph and computing the shortcuts.

Core Degree and Witness Limit. The two main parameters in�uencing the per-
formance of the ULTRA preprocessing are the average vertex degree of the contracted
transfer graph and the witness limit τ̄wit. Figure 6.2 shows the impact of these two
parameters on the Switzerland network. The lowest preprocessing times are achieved
with a core degree of 14. While the actual shortcut computation still becomes slightly
faster for higher core degrees, this is o�set by the increased time required to contract
the transfer graph. Contracting up to a core degree of 14 took 8:46 minutes on the
Xeon machine and yielded a graph with 32 683 vertices and 466 331 edges.

Overall, the witness limit τ̄wit has a much more signi�cant impact on the prepro-
cessing time and the number of computed shortcuts than the core degree. Choos-
ing a witness limit of 0 instead of ∞ approximately cuts the preprocessing time
in half. By contrast, the witness limit only has a minor impact on the number of
computed shortcuts, with a di�erence of fewer than 500 shortcuts between τ̄wit = 0
and τ̄wit = ∞. For all following experiments, we chose a witness limit of 15 minutes,
which yields 135 687 shortcuts for the Switzerland network.

The only network where we use a core degree of 20 instead of 14 is the Germany
network. We do this since the share of the core computation in the overall preprocess-
ing time is signi�cantly lower for this network, due to its much larger size. As a result,
the contraction took 23:18 minutes and produced a core graph with 313 241 vertices
and 6 264 851 edges. Preprocessing results for all four networks are listed in Table 6.2.
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Table 6.1: Runtime of the di�erent preprocessing steps required for ULTRA. For the
Core-CH and Bucket-CH we use a sequential algorithm. For the ULTRA shortcut com-
putation, which is the slowest preprocessing step, we report sequential and parallel
running times. We report preprocessing times for both machines, Xeon and Epyc.

Stuttgart London Switzerland Germany

Xe
on

Core-CH time 2:18 0:22 1:29 23:18
Bucket-CH time 3:36 0:13 0:49 16:46
ULTRA time 52:56 3:49:11 1:42:48 102:26:41
ULTRA time (×2) 28:12 2:00:56 53:09 52:27:19
ULTRA time (×4) 14:57 1:04:02 28:33 27:12:54
ULTRA time (×8) 7:59 34:06 15:11 14:18:12
ULTRA time (×16) 4:19 18:42 8:46 7:33:09

Ep
yc

Core-CH time 2:42 0:27 1:36 26:02
Bucket-CH time 4:07 0:14 1:00 18:31
ULTRA time 1:33:40 5:02:49 2:11:13 127:11:51
ULTRA time (×2) 49:25 2:47:59 1:09:34 66:47:30
ULTRA time (×4) 25:00 1:25:32 36:33 34:58:59
ULTRA time (×8) 12:45 42:48 18:19 17:50:13
ULTRA time (×16) 6:28 22:03 9:12 9:06:13
ULTRA time (×32) 3:17 11:03 4:41 4:41:26
ULTRA time (×64) 1:56 6:19 2:44 2:55:53
ULTRA time (×128) 1:09 4:16 1:58 2:35:23

Parallelization. In the previous experiment we used all 16 cores of the Xeon ma-
chine for the shortcut computation. In order to assess the impact of the parallel
execution on the preprocessing time, we repeat the shortcut computation with fewer
threads. Additionally, we compare running times of the Epyc machine, which has
a lower single core performance but contains more cores than the Xeon machine.
An overview of the preprocessing times on both machines is given in Table 6.1.
Overall, we observe that the parallelized preprocessing algorithm is quite e�cient
and achieves good speed-up factors for all networks on both machines. For the
Switzerland network the maximal speed-up of the ULTRA shortcut computation
is 11.7 on the Xeon machine and 66.7 on the Epyc machine. When including the CH
computations, which were not parallelized, the overall speed-up of the preprocessing
phase drops to 9.5 and 29.3, respectively. Independent of the network we observe
the smallest speed-up when switching from 64 threads to 128 threads on the Epyc
machine. In this case the speed-up is most likely limited by the memory bandwidth.
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Table 6.2: An overview of the ULTRA preprocessing results. We report the number
of computed shortcuts and the size of the underlying core graph.

Stuttgart London Switzerland Germany
Number of core vertices 30 012 24 838 32 683 313 241
Number of core edges 420 178 347 737 466 331 6 264 851
Number of shortcuts 77 498 164 869 135 687 2 068 544

Transfer Speed. In order to test the impact of the used transfer mode on the
shortcut computation, we changed the transfer speed in the Switzerland network
from 4.5 km/h to di�erent values between 1 km/h and 140 km/h. We considered two
ways of applying the transfer speed: In the �rst version, we did not allow the transfer
speed on an edge to exceed the speed limit given in the road network. This allowed
us to model fast transfer modes such as cars fairly realistically. In the second version,
we ignored speed limits and assumed a constant speed on every edge. Thus, we can
analyze to which extend the e�ects observed in the �rst version are caused by the
speed limit data. Figure 6.3 reports the preprocessing time and number of computed
shortcuts measured for each con�guration. In all measurements, the preprocessing
time remained below 15 minutes. A peak in the number of shortcuts is reached
between 10 and 20 km/h, which roughly corresponds to the speed of a bicycle. The
number of shortcuts then starts decreasing again for higher transfer speeds and
reaches a plateau at around 188 000 shortcuts, if speed limits are ignored. If speed
limits are obeyed, the number of shortcuts eventually rises again and reaches the
overall peak at 140 km/h, which is the highest speed limit present in the network.

For low to medium transfer speeds, the results conformed with our expectations. As
the transfer speed increases, it becomes increasingly feasible to cover large distances
in the transfer graph quickly, making it possible to transfer between trips that are
further away from each other. Accordingly, new shortcuts appear between these trips.
However, once the transfer speed becomes competitive with the public transit vehicles,
it eventually becomes preferable to avoid the public transit network altogether and
transfer directly from source to target. In this case, all journeys using trips from the
public transit network are dominated by the journey corresponding to the direct
transfer. Since no shortcuts are required for such pairs of source and target stop, we
would expect a sharp decrease in the number of shortcuts. However, the result of
our experiment (Figure 6.3, right plot) does not conform this expectation.

The reason why this decrease is not observed in our measurements is that not
all stops in our network instances are connected by the transfer graph. Consider
what happens in the shortcut computation for journeys between stops s and t that
are isolated from each other and the rest of the transfer graph. In this case, a direct
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Figure 6.3: Impact of transfer speed on preprocessing time and number of shortcuts,
measured on the Switzerland network with a core degree of 14 and a witness limit
of 15 min. Speed limits were obeyed for the red lines and ignored for the blue lines. For
the two lines at the bottom of the right plot, shortcuts were only added if the source
and target of the candidate journey are connected by a path in the transfer graph.
This shows that reducing the number of isolated stops can drastically improve the
number of required shortcuts. However, this does not impact the preprocessing time.

transfer is not possible, regardless of the transfer speed. In fact, unless there is a route
that serves both s and t , any optimal journey from s to t will include at least two
trips. If a transfer is necessary between these two trips, then this journey is a non-
dominated candidate journey and a shortcut is added for the corresponding transfer.
In our Switzerland network, 624 stops are isolated from the transfer graph, usually
as a result of incomplete or imperfect data. To assess the impact of these stops on the
number of computed shortcuts, we repeated our experiments. However, this time we
do not add shortcuts to the result if the source and target stop of the corresponding
candidate journey were not connected in the transfer graph. This resulted in much
fewer shortcuts, especially for high transfer speeds. If speed limits are ignored, the
amount of necessary shortcuts becomes negligible at around 60 km/h and eventually
reaches 0. If speed limits are obeyed, the number of shortcuts stagnates at 17 000.

Overall, these experiments show that our shortcut computation remains feasible
regardless of the speed of the used transfer mode. Moreover, if the network does not
include many stops that are isolated from the transfer graph, transferring between
stops is most useful for transfer speeds between 10 and 20 km/h.
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Figure 6.4: Distribution of the precomputed shortcuts with respect to their transfer
time for the Switzerland network. The bar between 2i and 2i−1 corresponds to the
number of shortcuts with a transfer time in the interval [2i , 2i−1). An exception is the
�rst bar, which also contains shortcuts with a transfer time of less than a second. The
dark blue portion of each bar represents shortcuts where the source and the target of
the corresponding candidate journey are connected by a path in the transfer graph.
Left: Shortcuts between stops as computed by the ULTRA preprocessing. Right: Short-
cuts between stop events as computed by the ULTRA-Trip-Based preprocessing.

Shortcut Graph Structure. The shortcut graph computed by the ULTRA prepro-
cessing phase for Switzerland is structurally very di�erent from the transitively
closed transfer graph, which we created in Chapter 4 for public transit algorithms
like RAPTOR or CSA. This is already evidenced by the fact that the shortcut graph
is much less dense, containing only 3% as many edges as the transitively closed
graph. Furthermore, the transitive graph consists of many small fully connected
components, with the largest one containing only 1 233 vertices. By contrast, the
largest strongly connected component in the shortcut graph contains 10 186 vertices,
which corresponds to 40% of all stops. Accordingly, a transitive closure of the shortcut
graph would contain more than 100 million edges.

During the construction of the transitively closed transfer graph (Section 4.3) we
observed that preserving all transfers with a duration of up to 9 minutes already leads
to a transfer graph with a mean vertex degree of more than 100. Thus, we concluded
that public transit journey planning algorithms, which require a transitively closed
transfer graph, cannot be e�cient and at the same time guarantee that long transfers
are found. We now compare the travel time of the transfers in the transitive graph
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and the shortcuts computed by ULTRA. Looking at the distribution of travel times for
the ULTRA shortcuts in Figure 6.4 (left side), we observe that most of the shortcuts
have a travel time of more than 9 minutes (≈ 29 seconds). Thus, most of the shortcuts
are not contained in the transitive transfer graph. Only 33 765 edges are shared
between the two graphs, which represent 0.7% of all transitive edges and 24.9% of all
shortcuts. Altogether, this shows that the transitively closed graph fails to represent
most of the relevant intermediate transfers, at the expense of many super�uous ones.

Note that the high number of shortcuts with travel time 0 is caused by cases where
several stops model the same physical location. The bars in Figure 6.4 are subdivided
into shortcuts that arise from candidate journeys where the source and target stop are
connected by a path in the transfer graph (dark blue) and shortcuts where this is not
the case (light blue). As before, we make this distinction in order to identify e�ects
caused by imperfect or incomplete data. We observe that stops which are isolated
from the rest of the transfer graph not only cause many additional shortcuts, but
also that these shortcuts are disproportionately long compared to the other shortcuts.
Because of this we suspect that many ULTRA shortcuts are only required by a few
special journeys and that they are only relevant at a few times during a day.

We can analyze this e�ect more thoroughly by looking at the time-dependent
ULTRA-Trip-Based shortcuts (which connect stop events instead of stops) in Fig-
ure 6.4 (right side). An ULTRA shortcut that is used multiple times throughout a day
leads to several ULTRA-Trip-Based shortcuts since they connect stop events, which
occur at a �xed point in time. Thus, the number of ULTRA-Trip-Based shortcuts
with a certain travel time re�ects more accurately how frequently these shortcuts
are required. We observe that most ULTRA-Trip-Based shortcuts have a travel time
between 2 minutes (≈ 27s) and 17 minutes (≈ 210s). This is quite di�erent from
the original ULTRA, where most shortcuts have a travel time of more than one
hour (≈ 212s). Therefore, we conclude that long shortcuts are indeed only rarely
required. Furthermore, we observe that the fraction of shortcuts that are added
due to candidate journeys between vertices that are not connected in the transfer
graph (light blue) is much lower when using the ULTRA-Trip-Based preprocessing
instead of the normal ULTRA preprocessing.

Trip-Based Preprocessing. In our �nal experiment concerning the preprocessing
phase we address the ULTRA-Trip-Based preprocessing. An overview of the results ob-
tained by both preprocessing variants is given in Table 6.3. Here, rows labeled with (in-
tegrated) refer to our new integrated preprocessing approach, while rows labeled
with (sequential) refer to the naive sequential approach, i.e., using the output of the
standard ULTRA preprocessing as input for the Trip-Based preprocessing algorithm.
The results show that using our novel integrated preprocessing leads to a signi�cant
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Table 6.3: An overview of the ULTRA-Trip-Based preprocessing results. We compare
the naive sequential approach for combining ULTRA and Trip-Based Routing with
our improved integrated preprocessing variant. Running times were measured on
the Xeon machine using all 16 cores and are displayed in the mm:ss format.

Stuttgart London Switzerland Germany
Shortcuts (sequential) 25 865 892 58 301 120 58 807 528 1 072 750 574
Shortcuts (integrated) 3 900 258 19 856 062 11 646 572 121 676 520
Time (sequential) 4:40 19:15 9:16 7:54:13
Time (integrated) 5:11 22:24 10:04 9:16:15

reduction in the amount of computed shortcuts. This e�ect is weakest for the London
network, where the number of shortcuts decreases only by a factor of 3. For our largest
network (i.e., the Germany network) the sequential approach produces over 1 billion
shortcuts while the integrated approach only leads to 121 million shortcuts, which cor-
responds to a reduction factor of almost 9. The cost for this reduction in the number
of shortcuts is an increased running time of the preprocessing algorithm. However,
in comparison to the signi�cantly decreased number of shortcuts, the running time
overhead is only minor. For our four test networks, the increase in preprocessing
time ranges from 8% for the Switzerland network to 17% for the Germany network.

Note that all time measurements reported in Table 6.3 were obtained by parallel
execution with 16 threads. We have shown before that the ULTRA preprocessing
is well suited for parallel execution, and the same holds true for the Trip-Based
preprocessing [Wit15]. This also applies to our new integrated preprocessing al-
gorithm. As an example, we have performed the single-threaded preprocessing on
the Switzerland network, where we measured running times of 1:48:55 for the se-
quential approach and 2:11:16 for the integrated approach. This corresponds to a
speed-up factor of 11.8 and 13.0 respectively, which matches the speed-ups observed
for the ULTRA preprocessing and the Trip-Based preprocessing.

6.4.2 �eries
To evaluate the impact of our ULTRA shortcuts on the query performance, we test
them with two public transit algorithms, RAPTOR and CSA. For each algorithm, we
compare three variants: one using our ULTRA approach, one using a transitively
closed transfer graph, and one using a multimodal variant of the algorithm. Addi-
tionally, we compare these algorithms to our integrated ULTRA-Trip-Based approach.
Since we only consider sequential query algorithms, we use the Xeon machine (which
has a better single core performance) for all following experiments.
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Table 6.4: Query performance for CSA, MCSA, and ULTRA-CSA. Query times are
divided into two phases: initialization including initial transfers (Init.), and connection
scans including intermediate transfers (Scan). All results are averaged over 10 000
random queries. Note that CSA (marked with ∗) only supports stop-to-stop queries
with transitive transfers. In contrast, the other two algorithms support vertex-to-
vertex queries on the full graph, and have been evaluated for this query type.

Network Algorithm Full
graph

Scans [k] Time [ms]
Connection Edge Init. Scan Total

Stuttgart
CSA∗ ◦ 101.6 826.8 0.0 3.9 4.0
MCSA • 92.6 1 378.8 0.1 21.9 22.2
ULTRA-CSA • 89.2 104.1 1.1 3.0 4.1

London
CSA∗ ◦ 48.7 199.3 0.0 1.4 1.4
MCSA • 29.0 2 152.5 0.4 109.9 111.6
ULTRA-CSA • 28.0 42.5 1.1 1.1 2.2

Switzerland
CSA∗ ◦ 126.7 1 307 0.2 5.0 5.2
MCSA • 88.0 5 337 12.9 48.4 61.3
ULTRA-CSA • 86.8 51 1.8 3.0 4.8

Germany
CSA∗ ◦ 2 620.3 6 216 2.9 162.1 165.1
MCSA • 1 568.2 118 026 233.6 1462.5 1696.1
ULTRA-CSA • 1 553.8 659 25.7 114.6 140.2

CSA �eries. The �rst query algorithm we evaluate is CSA. We only consider the
earliest arrival variant of CSA since the bicriteria variant is outperformed by RAPTOR,
which we evaluate in the next section. Since no multimodal variant of CSA has been
published thus far, we implemented a naive multimodal version of CSA, which we call
MCSA (Multimodal CSA), as a baseline for our comparison. This algorithm alternates
connection scans with Dijkstra searches on the contracted core graph, in a similar
manner to MCR. Query times for all three CSA variants are reported in Table 6.4. We
observe for all networks that ULTRA-CSA has a running time similar to CSA. This
is despite the fact that ULTRA-CSA solves a multimodal journey planning problem
while CSA solves a much simpler public transit journey planning problem.

Furthermore, we observe that the search space (i.e., the number of scanned con-
nections) of ULTRA-CSA is signi�cantly smaller than the search space of CSA. This
is a direct result of the fact that multimodal journeys have usually a shorter travel
time. Since CSA scans connections in chronological order, the number of scanned
connections correlates directly with the arrival time of the query.
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Table 6.5: Query performance for RAPTOR, MR-∞, and ULTRA-RAPTOR. Query
times are divided into phases: scanning initial transfers (Init.), collecting routes (Coll.),
scanning routes (Scan), and relaxing transfers (Relax). All results are averaged over
10 000 random queries. Note that RAPTOR (marked with ∗) only supports stop-to-
stop queries with transitive transfers, whereas the other two algorithms support
vertex-to-vertex queries on the full graph and have been evaluated accordingly.

Network Algorithm Full
graph

Scans [k] Time [ms]
Route Edge Init. Coll. Scan Relax Total

Stuttgart
RAPTOR∗ ◦ 20.2 1 242 0.0 1.7 2.1 3.0 6.8
MR-∞ • 38.8 817 13.4 5.7 5.3 13.1 38.7
ULTRA-RAPTOR • 41.3 103 1.4 3.9 3.8 1.3 10.5

London
RAPTOR∗ ◦ 5.2 7 097 0.0 1.6 3.1 12.1 16.9
MR-∞ • 6.0 556 6.0 2.3 3.4 7.5 19.5
ULTRA-RAPTOR • 6.5 181 0.9 1.9 2.8 1.7 7.6

Switzerland
RAPTOR∗ ◦ 27.2 3 527 0.0 3.7 6.4 7.8 18.4
MR-∞ • 34.9 769 11.6 5.9 8.2 12.3 39.3
ULTRA-RAPTOR • 35.8 135 1.3 4.6 6.8 1.7 14.5

Germany
RAPTOR∗ ◦ 480.4 25 798 0.0 166.9 178.0 85.1 436.5
MR-∞ • 555.8 12 571 191.1 250.7 202.2 272.2 944.1
ULTRA-RAPTOR • 573.4 2 183 25.7 189.2 170.1 29.8 415.2

Compared to MCSA we observe that our new approach is about one magnitude
faster on all networks. This is because the performance of CSA mainly stems from
the high memory locality of its sequential connection scan. However, MCSA loses
this memory locality, as it has to perform a Dijkstra search every time an arrival
time is updated after scanning a connection. It is quite likely that this problem is
the reason why no multimodal variant of CSA has been published thus far. When
using ULTRA-CSA, however, memory locality is restored because only a few shortcut
edges have to be relaxed after scanning each connection. As a result, ULTRA-CSA is
the �rst e�cient multimodal variant of CSA.

RAPTOR �eries. In the case of RAPTOR, we used the MR-∞ variant of MCR
as the multimodal baseline algorithm. The results of our comparison are shown
in Table 6.5. Using ULTRA-RAPTOR drastically reduces the time consumption for
exploring the transfer graph (the Relax phase) compared to MR-∞. While this phase
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takes 50%–60% of the overall running time of MR-∞, it only takes 10%–20% of the run-
ning time of ULTRA-RAPTOR. The reason for this is that both phases, scanning the
initial/�nal transfers and relaxing the intermediate transfers, are an order of magni-
tude faster in ULTRA-RAPTOR compared to MR-∞. For the initial and �nal transfers,
the Core-CH search of MR-∞ is replaced by a much more e�cient Bucket-CH query
in ULTRA-RAPTOR. Similarly, ULTRA-RAPTOR uses the precomputed shortcuts for
relaxing the intermediate transfers whereas MR-∞ performs an ine�cient Dijkstra
search on the core graph. Overall, ULTRA-RAPTOR is twice as fast as MR-∞ and has
a similar running time to RAPTOR with transitive transfers. Note that comparing the
running times of RAPTOR and ULTRA-RAPTOR has to be done with caution, as they
were measured for di�erent sets of queries. Nonetheless, our experiments clearly
demonstrate that our novel shortcut technique enables RAPTOR to use unrestricted
transfers without incurring the performance loss that is associated with MCR.

If we compare CSA-based queries and RAPTOR based queries, we see that ULTRA-
CSA is about 3 to 4 times faster than ULTRA-RAPTOR. This di�erence is of cause due
to that fact that CSA only computes earliest arrival times, while RAPTOR computes
a full Pareto-set with respect to the criteria arrival time and number of used trips.
However, we still observe that on most networks MCSA is slower than MR-∞. As
mentioned before, this is due to the fact that CSA looses its e�ciency if the scanning
of the connections is interleaved with other tasks.

Impact of Transfer Speed. In addition to overall query performance, we also
measured how query times of RAPTOR and ULTRA-RAPTOR are impacted by the
transfer speed. Results are shown in Figure 6.5 (left side). The performance gains for
ULTRA-RAPTOR compared to MR-∞ are similar for all transfer speeds, and in fact
slightly better for higher speeds. To explain this, observe that the time required for
the route scanning phase decreases as the transfer speed increases. This is because
the total number of rounds and thus the number of scanned routes decreases for
higher transfer speeds. ULTRA-RAPTOR bene�ts more from this since the share of
the route scanning phase in the overall running time is greater for ULTRA-RAPTOR
than for MR-∞. In all cases, the entire query time for ULTRA-RAPTOR is similar to
or lower than the time that MR-∞ takes for the route scanning phases only.

The impact of the transfer speed on the travel time of the fastest journey is shown
in Figure 6.5 (right side). As the transfer speed increases, the overall travel time
decreases and the share of the travel time that is spent on an initial or �nal transfer
becomes larger. From around 50 km/h onward, transferring directly from source
to target is the best option in most cases. In contrast to initial and �nal transfers,
intermediate transfers have a very small impact on the overall travel time, further
demonstrating that long intermediate transfers are rarely needed.
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Figure 6.5: Impact of transfer speed on query times and travel times, measured on the
Switzerland network with a core degree of 14 and a witness limit of 15 minutes. All
results were averaged over 10 000 random queries. Left: Query performance of MR-∞
and ULTRA-RAPTOR. Speed limits were obeyed during the construction of the trans-
fer graph. Query times are divided into route collecting/scanning, transfer relaxation,
and remaining time. Right: Total travel time and time spent on initial/�nal and inter-
mediate transfers for the journey with minimal arrival time. Additionally, we include
a plot of the time required for a direct transfer from source to target as a reference.

Trip-Based �eries. We continue with evaluating our improved ULTRA-Trip-
Based query algorithm. Table 6.6 presents the average query performance (based
on 10 000 random queries) for all four networks. For comparison, we also include the
original Trip-Based algorithm, which cannot solve multimodal queries and thus was
evaluated using a di�erent set of random queries. Overall, we see that our improved
Trip-Based query combined with the integrated preprocessing yields the lowest query
times, independent of the network. For the Germany network, our new algorithm is
about 4 times faster than ULTRA-RAPTOR and more than 10 times faster than MR-∞,
which previously was the fastest multimodal journey planning algorithm (compare
tables 6.6 and 6.5). If the sequential preprocessing is used instead of the integrated
version then the running time of the query algorithm increases by a factor of 2.
However, this version of ULTRA-Trip-Based is still faster than the other algorithms.
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Table 6.6: Query performance for Trip-Based Routing and ULTRA-Trip-Based
(ULTRA-TB, sequential and integrated). Query times are divided into phases: the
Bucket-CH query (B-CH), the initial transfer evaluation (Initial), and the scanning
of trips (Scan). All results are averaged over 10 000 random queries. Note that Trip-
Based (marked with ∗) only supports stop-to-stop queries with transitive transfers,
whereas the other two algorithms support vertex-to-vertex queries on the full graph.

Network Algorithm Full
graph

Scans [k] Time [ms]
Trip Shortcut B-CH Initial Scan Total

Stuttgart
Trip-Based∗ ◦ 11.5 257.1 0.01 0.03 2.04 2.09
ULTRA-TB (seq.) • 25.0 1 528.5 1.41 0.92 5.99 8.33
ULTRA-TB (int.) • 17.0 218.4 1.35 0.81 2.38 4.55

London
Trip-Based∗ ◦ 22.7 1 376.3 0.01 0.05 6.10 6.16
ULTRA-TB (seq.) • 34.1 1 545.1 0.91 0.80 7.47 9.19
ULTRA-TB (int.) • 24.7 450.5 0.90 0.70 4.05 5.66

Switzerland
Trip-Based∗ ◦ 23.8 757.5 0.01 0.04 5.64 5.70
ULTRA-TB (seq.) • 36.5 1 551.1 1.09 1.15 7.18 9.44
ULTRA-TB (int.) • 23.5 238.1 1.07 1.03 3.19 5.32

Germany
Trip-Based∗ ◦ 337.5 16 116.6 0.01 0.05 116.14 116.21
ULTRA-TB (seq.) • 439.4 38 092.3 25.34 18.96 151.35 195.67
ULTRA-TB (int.) • 204.2 3 149.9 26.12 19.13 46.38 91.65

For most networks, ULTRA-Trip-Based is even faster than the original Trip-Based
algorithm, despite the fact that ULTRA-Trip-Based handles a large, realistic transfer
graph while Trip-Based can only consider transitively closed transfer graphs. The
reason for this is the reduced size of the search space due to better pruning of the
shortcuts and the existence of faster journeys in a network with unlimited transfers.
The only exception to this is the Stuttgart network, which has the fewest trips, but
the second-largest transfer graph out of our four networks. Thus, the comparison
with an algorithm that cannot handle unlimited transfer graphs, such as Trip-Based,
is particularly unfair for the Stuttgart network.

In addition to the total query time, we also report time measurements for the three
phases of the Trip-Based query algorithm in Table 6.6. Analyzing these measure-
ments, we see that the Bucket-CH query and the initial transfers evaluation take a
non-negligible fraction of the total running time for both ULTRA-Trip-Based variants.
Furthermore, we observe that using the integrated preprocessing mainly a�ects the
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trip scanning phase of the algorithm. This was expected, as the preprocessing does not
a�ect initial transfers, but only intermediate transfers, which are handled in the trip
scanning phase. Moreover, we observe that the integrated preprocessing not only re-
duces the number of shortcuts that are scanned during the query, but also the number
of trips. For the largest network (Germany) the query algorithm scans less than half as
many trips when the integrated preprocessing is used instead of the sequential variant.

Impact of the �ery Distance.. We conclude the experimental evaluation with
a comparison of running times depending on the query distance. In Figure 6.6 we
compare the running times of the three fastest bicriteria algorithms (MR-∞, ULTRA-
RAPTOR, and ULTRA-Trip-Based) depending on the geo-rank of the query. In order
to generate geo-rank queries, a source vertex is picked uniformly at random among
all vertices in the network. Afterwards, all vertices are sorted by their geographical
distance from the source vertex. The vertex with index i in this order is then the
target of the geo-rank query for rank i . For our comparison in Figure 6.6 we generated
and evaluated 10 000 of these queries for the Germany network. We observe that
independently of the geo-rank the three algorithms have a clear order with respect
to running time. For all geo-ranks, our new ULTRA-Trip-Based algorithm is an
order of magnitude faster than MR-∞. The running time of ULTRA-RAPTOR lies
between these two algorithms and is closer to the running time of the ULTRA-Trip-
Based algorithm for local queries, while it is closer to MR-∞ for long range queries.
Furthermore, we observe that many short range queries can be solved in less than
one millisecond by ULTRA-Trip-Based algorithm with integrated preprocessing.

A comparable geo-rank-based evaluation on the Germany network has also been
performed for the original Trip-Based algorithm in [Wit15]. While the results
from [Wit15] are mostly similar to our results, they contain signi�cantly more outliers.
Across all geo-ranks the evaluation for the original Trip-Based algorithm shows a
considerable number of queries that take more than 10 milliseconds. The reason that
we found fewer outliers in our evaluation is most likely caused by a better correlation
between geo-rank and query complexity in multimodal networks (compared to public
transit networks that were evaluated in [Wit15]).

The extreme outliers for low geo-ranks in Figure 6.6 can be attributed to queries
where the source vertex is located in particularly sparse parts of the network. The
reason for this is a poor correlation between geo-rank and actual distance in sparse
parts of the network. Thus, a query can be a long-range query despite having a low
geo-rank. An example for this are the queries with geo-rank 27, which corresponds
to a distance of less than 1 km for most source-target pairs. However, the source of
the query that took about 50 ms with ULTRA-Trip-Based (int.) is located in Prague,
while its target is located in Germany, which is more than 80 km away.
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Figure 6.6: Comparison of query times depending on the geo-rank for the Germany
network. We evaluated 10 000 random vertex-to-vertex queries for each geo-rank. We
compare the previously fastest multimodal journey planning algorithm (MR-∞) to our
two bicriteria ULTRA query algorithms: ULTRA-RAPTOR and ULTRA-Trip-Based.

Comparison with HL-based Routing. Most recently, a new speedup-technique
that is based on HL has been proposed for multimodal journey planning [PV19]. Sim-
ilar to ULTRA, this approach can be combined with di�erent public transit algorithms
and was evaluated for the variants HLCSA and HLRAPTOR. While these two algo-
rithms are faster than MR-∞, they are outperformed by ULTRA. The preprocessing
of HLCSA and HLRAPTOR takes between one and two hours for the networks of
London and Switzerland, whereas the ULTRA can process these networks in less
than 5 minutes. Regarding query performance we �nd that ULTRA-CSA is 11.1 times
faster than HLCSA and ULTRA-RAPTOR is 3.6 times faster than HLRAPTOR.

6.5 Final Remarks
In this chapter we developed ULTRA, a technique that signi�cantly accelerates the
computation of Pareto-optimal journeys in a public transit network with an un-
restricted transfer graph. We achieved this by computing shortcuts that provably
represent all necessary intermediate transfers. Parallelization enables fast preprocess-
ing, taking only a few minutes for smaller networks and about 3 hours for Germany.
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Our evaluation showed that the number of computed shortcuts is low, regardless of
the underlying transfer mode. The shortcuts can be used without adjustments by any
public transit algorithm that previously required a transitively closed transfer graph.

For RAPTOR and CSA, we showed that using shortcuts leads to similar query times
as using a transitively closed transfer graph. Consequently, shortcuts enable the
computation of unrestricted multimodal journeys without incurring the performance
losses of existing multimodal algorithms. In particular, combining shortcuts with
CSA yields the �rst e�cient multi-modal variant of CSA.

For Trip-Based Routing we presented a tailored variant of the ULTRA preprocessing.
Our integrated preprocessing variant produces up to 9 times fewer shortcuts than
a naive sequential combination of ULTRA and Trip-Based Routing, at only a slight
increase in preprocessing time. Furthermore, we presented an improved ULTRA-
Trip-Based query algorithm, which is an order of magnitude faster than the fastest
previously known multimodal algorithm for bicriteria optimization, MR-∞.

Future Work. For future work, we would like to develop a variant of the ULTRA
preprocessing that can handle additional Pareto criteria, such as walking distance
or cost. Furthermore, it would be interesting to adapt our shortcut computation to
scenarios where public transit vehicles can be delayed. It is of course possible to
continue using our ULTRA shortcuts if some public transit vehicles are delayed, just
like current public transit approaches do not change the transitive transfer graph
in such a case. However, such an approach cannot guarantee to �nd all optimal
multimodal journeys, since journeys with delayed vehicles might require additional
shortcuts. We suspect, however, that the underlying principle of ULTRA (i.e., the fact
that the set of all intermediate transfers is small) is still valid in a scenario with delays.
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7 Bike Sharing

In the previous chapters we have developed algorithms that can handle public transit
networks with one additional transfer mode. For multimodal journey planning we of
course want to be able to handle more than two transportation modes. While it is
possible for ULTRA to handle additional transfer modes, this is not meaningful in
the context of the problems that we have addressed thus far. For example, we could
combine the public transit networks with two transfer graphs, one for walking and
one for cycling. However, in this case no optimal journey would contain walking
transfers since cycling is strictly better than walking in all situations.

In order to obtain a meaningful multimodal journey planning problem, we either
have to consider additional optimization criteria, such as cycling duration, or we have
to incorporate other constraints, such that walking is preferable to cycling in some
cases. Journey planning problems with more than two optimization criteria have
already been considered in several works [MS07, DMS08, Del+13]. Most commonly
these problems are solved by maintaining bags of non-dominated labels for each
vertex, as �rst proposed for the multicriteria variant of Dijkstra’s algorithm [Mar84].

In this chapter we explore the second approach, i.e., as before, we only optimize
two criteria, but we add additional constraints that lead to an overall more realistic
problem formulation. In particular, we consider a scenario with bike sharing, where
bicycles have to be rented and returned at bike sharing stations. Furthermore, we
improve the model of the public transit network by taking into account that bicycle
transport may not be permitted for every trip in the network.

This chapter is based on joint work with Jonas Sauer and Dorothea Wagner, which
has previously been published in [SWZ20a].
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7.1 Preliminaries
In this section we introduce special notation regarding bike sharing. Additionally,
we provide a precise de�nition of the problem that we address in this chapter.

Bike Sharing. In addition to walking, we consider cycling as a second transfer
mode. For each edge e = (v,w) in the transfer graph, we de�ne a walking time τwalk(e)
and a biking time τbike(e), which represent the time required to travel from v to w
by walking or cycling, respectively. Note that τwalk(e) or τbike(e) may be∞ to signify
that e is not usable in the respective transfer mode. Some trips in the public transit
network may allow passengers to carry along a bicycle with them, while others may
not. The bicycle transport function b : T → {true, false} maps to each trip T ∈ T a
boolean value b(T ) that indicates whether T allows bicycle transport or not.

Bikes can be rented from a number of di�erent bike sharing operators. We denote
the number of bike sharing operators by σ and associate each operator with a number
from {1, . . . ,σ }. For simplicity, we will use the number 0 to denote that a passenger is
currently not renting a bike. Each operator i operates a set BSi ⊆ V of bike sharing sta-
tions where passengers can pick up or drop o� a bike. Note that a vertex may act as a
bike sharing station for more than one operator. Each bike sharing station v has an as-
sociated pick up time τpick(v) that is required to pick up a bike, and a drop off time τdrop(v)
that is required to drop o� a bike. A passenger may only carry one bike at a time.

Journey. A journey J de�nes the movement of a passenger through the public tran-
sit network when traveling from a source vertex s ∈ V to a target vertex t ∈ V . As
before, it is an alternating sequence of trip legs and transfers, where a trip leg is a
subsequence of a trip that represents the passenger using that portion of the trip,
and a transfer is a path in the transfer graph that connects the �nal stop of one trip
leg (or s for the initial transfer) with the �rst stop of the following trip leg (or t for
the �nal transfer). Note that some or all of the transfers may be empty.

To de�ne which parts of the journey use bike sharing, the journey is augmented
with a sequence 〈(v1,w1), . . . , (vn,wn)〉, with (vi ,w i ) ∈ BSj for some j ∈ {1, . . . ,σ },
that contains one tuple of bike sharing stations for each bike that is rented during
the journey. For the i-th rented bike, vi is the station where the bike is picked up
and w i is the station where it is dropped o�. It is required that there is a bike sharing
operator j for which vi ,w i ∈ BSj holds. This ensures that multiple bikes are not
rented at the same time and that the journey starts and ends with no bike rented.

The bike sharing stations in the aforementioned sequence must be visited by the
transfers of the journey in the same order in which they appear in the sequence. If vi
and w i are visited during di�erent transfers, all trip legs that lie between these two
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transfers must allow bicycle transport. For every transfer edge e ∈ E used between vi
and w i , the travel time for using the edge is τbike(e). For every edge e ∈ E that is
traversed without a bike, the travel time is τwalk(e).

Problem Statement. The criteria we use to evaluate a journey J are its arrival
time at the target vertex t and the number of used public transit vehicles, i.e., the
number of trip legs in J . A journey J dominates another journey J ′ if J arrives no
later than J ′ and does not use more trips than J ′. We call a journey J Pareto-optimal
if it is not dominated by any other journey. A Pareto-set is a set containing a minimal
number of journeys such that every valid journey is dominated by a journey in the
set. Naturally, all journeys in a Pareto-set are Pareto-optimal. Given source and
target vertices s, t ∈ V and an earliest departure time τdep, our objective is to �nd a
Pareto-set among all journeys from s to t that depart no later than τdep.

7.2 Models for the Bike Sharing Problem
We continue with presenting two approaches for solving the journey planning prob-
lem with multiple bike sharing operators. First, we show how MCR can be adapted
to handle renting and returning of bicycles explicitly within the algorithm. We call
this approach the operator-dependent model. Secondly, we introduce the operator-
expanded model, where all relevant information regarding bike sharing is encoded
directly in the network. This allows any existing multimodal journey planning
algorithm to handle bike sharing without modi�cations. We demonstrate this by
using ULTRA as an example. Finally, we introduce a preprocessing-based speed-up
technique called operator pruning, which can be incorporated into MCR and ULTRA.

7.2.1 Operator-Dependent Model
Most public transit algorithms, including MCR, work by propagating vertex labels
through the network. For the two criteria arrival time and number of trips, a label
at a vertex v can be represented as a tuple (τarr,k), where τarr is the arrival time
at v , and k is the number of trips used so far. Bike sharing can be incorporated by
extending the labels to triples (τarr,k, i), where i is the operator of the currently rented
bike (or 0 if no bike is rented). Since rented bikes have to be dropped o� before
the end of the journey, only labels at the target vertex t with operator 0 represent
complete journeys. Whenever a label (τarr,k, 0) reaches a bike sharing station v , a new
label (τarr + τpick(v),k, i) must be created for each operator i with v ∈ BSi , to represent
the passenger picking up a bike of operator i . Similarly, when a label (τarr,k, i)
with i , 0 reaches a bike sharing station v ∈ BSi , a new label (τarr + τdrop(v),k, 0) must
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be created to represent the passenger dropping o� the bike. The time required to
traverse an edge e ∈ E is τbike(e) for labels with a rented bike and τwalk(e) otherwise.
When propagating a label with operator i , 0 through a route, any trip T that does
not permit bicycle transport (i.e., b(T ) = false) must be ignored.

Without bike sharing, a label (τarr,k)may dominate another label ( ′τarr,k ′) if τarr ≤ ′τarr
and k ≤ k ′ hold. The same dominance rule still applies to labels with the same
bike sharing operator: A label (τarr,k, i) dominates a label ( ′τarr,k ′, i) if τarr ≤ ′τarr and
k ≤ k ′ hold. However, as the following lemma shows, it is not possible to establish
dominance rules for labels with di�erent operators:

Lemma 7.1. Let A = (τarr, k, i) and B = ( ′τarr, k ′, j) be two labels at some vertex v
with τarr ≤ ′τarr, k ≤ k ′, and i , j. Then, A may not dominate B.

Proof. If i = 0, label B has access to a bike and A does not. Using the bike may allow
the journey represented by B to overtake the journey represented by A and reach the
target faster. If i , 0, then the passenger represented by A is carrying a bike, which
must be returned before reaching the target. This may require a detour that may not
be required for B, possibly allowing the journey represented by B to overtake and
reach the target faster. �

MCR with Bike Sharing. Following lemma 7.1 we see that bike sharing can be
incorporated into the Pareto-optimization by treating the bike sharing operator as
a third criterion whose values are all incomparable with each other. In MCR, the
number of trips is not stored directly in the labels but unrolled into the round data
structure. For the MR-∞ variant of MCR, which only optimizes arrival time and num-
ber of trips, it is su�cient to store a single arrival time per vertex and round. Variants
with additional criteria replace the single arrival time with a bag of non-dominated
labels. When a new label is added, it must be compared to all other labels in the bag to
eliminate dominated labels. A naive approach to incorporating bike sharing would be
to store bags of labels with two criteria: arrival time and bike sharing operator. How-
ever, like the number of transfers, the operator criterion is discrete and only permits a
few possible values. Thus, it is more e�cient to unroll it into the data structure as well:
For each vertex and round, we store an array ( 0τarr, . . . ,

στarr), where iτarr is the best arrival
time achieved so far with operator i . As shown by Lemma 7.1, a new label with opera-
tor i only needs to be compared with iτarr, since it is incomparable to the other entries.
Thus, we can handle all operators independently of each other and do not need bags at
all. In each round, we perform σ+1 independent route scanning phases, where phase i
only considers labels with operator i . The resulting algorithm is a variant of MR-∞
whose worst-case running time is proportional to that of the original MR-∞ and σ +1.
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7.2.2 Operator-Expanded Network

One drawback of the operator-dependent model is that it requires algorithms to
be explicitly adapted for bike sharing. An alternative is to unroll the bike sharing
information into an enlarged public transit network. Any existing multimodal public
transit algorithm can then handle bike sharing without modi�cation by operating on
this operator-expanded network.

Network Construction. Given an original public transit network N and transfer
graph G, the operator-expanded network (N e

, Ge) structurally consists of σ + 1
copies N 0, . . . ,N σ of N and σ + 1 copies G0, . . . ,Gσ of G . The idea is that N i and Gi

are used by passengers who are currently renting a bike from operator i , with N 0

andG0 representing walking. Accordingly, the travel time of an edge e ∈ E i is τwalk(e)
if i = 0 holds and τbike(e) otherwise. In all copies N i with i , 0, trips that do not allow
bicycle transport are removed. The network copies are connected as follows: For a
vertex v ∈ V in the original network, we denote its copy in N i andGi by vi . For each
operator i and each bike sharing station v ∈ BSi , the expanded network includes
the edges (v0, vi ) with weight τpick(v) and (vi , v0) with weight τdrop(v). These edges
represent picking up and dropping o� a bike, respectively.

Let OP = {1, . . . ,σ } be the set of all bike sharing operators. We then use the
elements of OP0 B OP ∪ {0} to represent the operator of a rented bike, where 0
indicates that no bike is currently rented. Based on this, we then de�ne the operator-
expanded network formally as N e

= (Se
, T e
,Re) and Ge

= (Ve
, Ee), with

Se
= {vi | i ∈ OP0 ∧ v ∈ S},

T e
= {T i = 〈vi0, . . . , vik 〉 | i ∈ OP0 ∧ T = 〈v0, . . . vk 〉 ∈ T ∧ (b(T ) ∨ i = 0)},

Re
= {{T i | T ∈ R ∧ (b(T ) ∨ i = 0)} | i ∈ OP0 ∧ R ∈ R},

Ve
= {vi | i ∈ OP0 ∧ v ∈ V},

Ee
= {(vi, w i ) | i ∈ OP0 ∧ (v,w) ∈ E} ∪ {(v0, vi ), (vi, v0) | i ∈ OP ∧ v ∈ BSi }.

An example of a normal public transit network and the operator-expanded network
constructed from it is shown in Figure 7.1 on the next page.

An s-t-query on the original network can be solved with an s0-t0-query on the
operator-expanded network, using an unmodi�ed multimodal public transit algo-
rithm (such as MCR) that no longer needs to handle bike sharing explicitly. For
ULTRA, both the preprocessing and the query algorithm can be run on the operator-
expanded network. As with MCR, ULTRA contracts the transfer graph before the
preprocessing is performed. A naive approach would be to create the operator-
expanded network �rst and then contract the expanded transfer graph. However,
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Figure 7.1: A public transit network (left) and the corresponding operator-expanded
network (right). The network features two public transit routes, with the trips of the
yellow route allowing bicycle transport and the trips of the blue route disallowing it.
Bikes can be rented and returned at the three bike sharing stations of operator 1 (red)
or at the two stations of operator 2 (green).

since the transfer graphs Gi of all networks with i , 0 are identical, this would lead
to redundant work. Instead, it is more e�cient to contract two copies of the original
transfer graph: one with walking weights and one with biking weights. Bike sharing
stations are left uncontracted at this point. These contracted copies can then be
inserted into the operator-expanded network in place of the original graph. If desired,
an additional contraction can then be performed on the resulting transfer graph of
the operator-expanded network.

The ULTRA query consists of two phases: The Bucket-CH search for the initial and
�nal transfers is done on the transfer graph of the operator-expanded network, taking
care of bike renting automatically. The main public transit algorithm (e.g., RAPTOR)
uses the operator-expanded network with the shortcuts computed by the preprocess-
ing phase. A shortcut (vi ,w j ) corresponds to a shortcut (v,w) in the original network
that requires a bike from operator i to access and ends with the passenger having
rented a bike from operator j.

7.3 Operator Pruning
A crucial observation that can be used to speed up bike sharing queries is that bike
sharing operators typically only serve a limited region (e.g., a single city). Taking a
rented bike far outside that region is typically not useful, since the passenger would
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eventually need to travel back in order to return the bike. Consider a journey that
involves taking a train from region A served by operator i to region B served by
operator j. If the passenger has rented a bike from operator i , it is usually preferable
to return it before taking the train, and then rent a bike from operator j in region B if
necessary. However, because labels with di�erent operators may not dominate each
other, MCR will also continue exploring the option where the passenger takes the
bike from operator i into region B, even though it cannot be returned there. Without
additional information, the algorithm will not be aware that the only way to turn
this into a valid journey is to travel back to region A, return the bike and then come
back to region B, creating an unnecessary detour. To prevent this, we compute an
operator hull for each operator i , which is a region of the network outside of which it
is never useful to travel with a bike from operator i . This allows algorithms to prune
journeys once they leave the hull for operator i while carrying a bike from operator i .

Preprocessing. For the operator hull computation, we use the cycling network N c,
which we de�ne as N c

B (S, T c
, Rc) with trips T c

B {T ∈ T | b(T ) = true} and
routes Rc

B {R ∈ R | ∃T ∈ R : b(T ) = true}. The cycling network N c together with
the transfer graph G and the travel time function τbike is the network as it appears
to a passenger who is using a bike for the entirety of the journey. The operator
hull H i B (V i , T i ) for an operator i consists of a set of vertices V i ⊆ V and a set of
trips T i ⊆ T such that every journey in N c between bike sharing stations s, t ∈ BSi
is dominated by a journey in N c that only uses vertices in V i and trips in T i. It
can be computed by running a pro�le variant of MCR (without bike sharing) on N c

from each station s ∈ BSi and unpacking all found journeys ending at another
station t ∈ BSi . The individual pro�le searches can be sped up with a simple pruning
rule: A pro�le search from a source station s starts by exploring the initial transfers,
computing for each vertex v ∈ V the biking time τbike(s, v) from s to v . From this we
can compute τmax

bike B maxt ∈BSi τbike(s, t), which is the maximum biking time to any
other bike sharing station of the same operator. Since no optimal journey in N c that
ends at a station in BSi may be longer than this, the pro�le search can prune labels
whose travel time exceeds τmax

bike .
Note that the operator hull is an overapproximation of the region outside of which

it is never useful to travel with a bike: Journeys that are optimal in N c and therefore
contribute to the operator hull may be dominated by journeys that require switching
between di�erent bike operators or dropping o� a bike to take a trip without bicycle
transport. These journeys could be excluded from the hull by using MCR with
bike sharing for the hull computation. While this might lead to smaller hulls, it
would require signi�cantly higher computation times. Moreover, because the hull
computation for one operator would no longer be independent of the other operators,
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any change in the set of bike sharing stations for one operator would necessitate
recomputing all hulls, rather than just the one for the changed operator.

Combination with MCR. Incorporating operator pruning into MCR is straight-
forward: During the Dijkstra searches, labels with operator i are not propagated to
vertices that are not in V i . Similarly, during the route scanning phase for operator i ,
routes with no trips in T i are ignored and arrival times at stops not in V i are not
updated. While it would be possible to skip trips that are not in T i during the individ-
ual route scans, this has no performance bene�t since RAPTOR always scans routes
until the last stop. Thus, if a trip is skipped, the route scan will simply continue with
the next reachable trip.

Combination with Operator-Expanded Network/ULTRA. Given an operator
hull H i = (V i, T i ), we de�ne the hull network N i

H B (Si, T i,Ri ) with Si = S ∩ V i

and Ri ⊆ R being the set of routes for which at least one trip is contained in T i. The
hull network is accompanied by a hull graph Gi

H , which is the subgraph of G that is
induced by V i . In order to incorporate operator pruning into the operator-expanded
network, we �rst compute operator hulls on the original, non-expanded network. For
each operator i , 0, we then replace the network copy N i with the hull network N i

H .
The network copy N 0 that represents walking is left unchanged. In the resulting
network, leaving the operator hull for the currently rented bike is no longer possible
because the corresponding parts of the network have been deleted. Accordingly, any
algorithm that runs on this network (including ULTRA) will automatically bene�t
from operator pruning.

7.4 Extended Scenarios
Free-Floating Bike Sharing. Some bike sharing operators use a free-floating (or
dockless) sharing system without �xed stations, where bikes can be picked up or
dropped o� at any location within the served region. This can be handled by con-
sidering every vertex in the region as a bike sharing station. Unlike with �xed bike
sharing stations, this scenario is inherently dynamic: Bikes are not available at every
vertex in the region, and it is not known in advance where bikes will be located.
Therefore, precomputation techniques such as ULTRA are not applicable. MCR can
handle this by checking explicitly whether a bike is available when arriving at a
vertex. Operator pruning can also be adapted by running the pro�le variant of MCR
from each boundary vertex of the region, in addition to including all vertices and
trips within the region in the hull.



Experiments Section 7.5

121

Fixed Pick up Stations with Free-Floating Drop o�. We also consider a hybrid
system where pick up is restricted to �xed stations but drop o� is allowed at any
location. As with the fully station-based system, we assume that a bike is always
available at every station. This makes ULTRA feasible again. Under the reasonable
assumption that τbike(e) ≤ τwalk(e) holds for every edge e ∈ E , it only makes sense
to drop o� a bike at speci�c vertices: A bike from operator i may be dropped o� at
a stop (in order to enter a trip without bicycle transport), a pick up station from a
di�erent operator j (in order to switch operators), a boundary vertex of the served
region (when leaving the region), or the target vertex. Dropping o� the bike at any
other vertex would cause unnecessary walking costs. For each such vertex v , the
edge (vi , v0) is added to the operator-expanded network. Since the target vertex t
changes with each query, the edge (t i , t0) is only inserted temporarily at query time.

Biking as Additional Trip. In the original MCR publication [Del+13], which con-
sidered bike sharing with only one operator, each bike that was used in a journey was
counted as an additional trip. Incorporating this into our adapted version of MCR is
straightforward. The operator pruning technique can be applied without changes,
since its preprocessing only considers journeys that use a single bike for the entire
journey. Adapting ULTRA, however, would require fundamental changes because it is
based on enumerating all journeys with exactly two trips. If bike usage is counted as
an additional trip, two trips are no longer su�cient for �nding all relevant transfers.

7.5 Experiments
All algorithms presented in this chapter were implemented in C++17 and compiled
with GCC 8.2.1 and optimization �ag -O3. All experiments were conducted on a ma-
chine with two 8-core Intel Xeon Skylake SP Gold 6144 CPUs clocked at 3.5 GHz, with
a turbo frequency of 4.2 GHz, 192 GiB of DDR4-2666 RAM, and 24.75 MiB of L3 cache.

Benchmark Data. We evaluated our algorithms on all four networks that were
introduced in Chapter 4. However, we had to make minor adjustments to these
networks, in order to account for the extended scenario covered in this chapter. First,
we need two di�erent travel times for all edges in the transfer graphs, one for walking
and one for cycling. In order to obtain these travel times, we assumed an average
walking speed of 4.5 km/h and an average cycling speed of 20 km/h. However, the
cycling speed was reduced to the posted speed limit for streets where the speed
limit is below 20 km/h. Secondly, we need to know the locations of bike sharing
stations. We extracted this information for all four networks from OpenStreetMap7

7 https://download.geofabrik.de/

.
We assigned each bike sharing station to an operator based on the information

https://download.geofabrik.de/
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Table 7.1: Sizes of the used public transit networks and their bike sharing systems.
Stuttgart London Switzerland Germany

Stops 13 583 20 595 25 125 244 055
Routes 12 350 2 107 13 785 231 084
Trips 91 298 125 436 350 006 2 387 292
Transfer graph vertices 1 166 593 183 025 603 691 6 872 105
Transfer graph edges 3 680 930 579 888 1 853 260 21 372 360
Bike Sharing Stations 326 823 534 2 682
Bike Sharing Operators 6 4 11 22

available (e.g., identifying di�erent spellings of the same company). For stations that
were not annotated with any information, we chose an operator of other nearby
stations at random. Operators with only one bike sharing station were dropped from
the dataset, as they are irrelevant for journey planning. Finally, we specify a pick up
time of 20 seconds and a drop o� time of 10 seconds for all bike sharing stations. An
overview of the networks is given in Table 7.1.

7.5.1 Preprocessing

All algorithms discussed in this chapter require some form of preprocessing. The
most elaborate preprocessing steps are our novel operator hull computation as well
as the ULTRA shortcut computation. In addition to these two steps, several CH
computations are required. An overview of all required preprocessing steps and
their results is given in Tables 7.2 and 7.3.

Regarding the operator hull computation, we observe that the number of vertices
contained in the union of all hulls is signi�cantly smaller than the size of the corre-
sponding core graph. This means that some parts of the network will never be visited
with a rented bike. The small hulls also have a direct impact on the expanded networks,
as their size is also signi�cantly reduced when operator hulls are applied. Using 16
cores, hulls for the small networks can be computed in a few minutes, while Germany
requires less than 9 hours. For the networks of Stuttgart, London, and Switzerland, this
corresponds to a speed-up factor of 12 compared to a sequential computation. For the
Germany network, we only achieve a speed-up of 9.5. In order to explain this e�ect, we
measured the average number of instructions executed per CPU cycle. For the sequen-
tial hull computation on the Germany network, we recorded a value of 1.1, while it was
only 0.9 for the parallel computation. These measurements suggest that the reduced
speed-up observed for the Germany network is due to an overloaded memory system.
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Table 7.2: Overview of all preprocessing steps for the operator-expanded approach
without operator pruning. We report the sizes of the precomputed data structures
as well as the required computation time. Entries marked with ? are not reported
as their computation would take several weeks. We report single core running times
for all preprocessing steps except for the ULTRA shortcut computation, which was
performed in parallel using 16 cores. The Total row corresponds to the combined
preprocessing time of all required preprocessing steps, using the parallel variant
of the ULTRA shortcut computation and the single core version of the other steps.

Stuttgart London Switzerland Germany

Re
su

lts

Walking core vertices 42 380 26 814 38 075 443 081
Cycling core vertices 42 653 26 742 37 779 435 751
Expanded stops 95 081 102 975 301 500 5 613 265
Expanded vertices 1 422 818 290 791 1 019 779 16 461 221
Expanded edges 3 146 277 2 081 218 7 673 596 155 594 242
ULTRA shortcuts 929 575 1 831 779 3 389 309 ?

Ti
m

e
[h

:m
:s]

Walking Core-CH 1:05 0:06 0:28 6:36
Cycling Core-CH 1:05 0:06 0:28 6:43
Expanded Core-CH 1:22 0:08 0:34 8:38
ULTRA shortcuts (16) 3:27:53 14:14:51 9:59:43 ?
Expanded Bucket-CH 2:25 0:14 1:09 ?
Total 3:33:50 14:15:25 10:02:22 ?

The impact of the operator hulls on the ULTRA shortcuts is also quite strong. On the
London and Switzerland networks, operator hulls reduce the preprocessing time by a
factor of 14 and 20, and the number of shortcuts by a factor of about 4 and 8, respec-
tively. For the Germany network, ULTRA is only viable with operator hulls. Without
operator hulls, only 4.7% of the shortcut computation was �nished after one week. We
therefore estimate that the complete shortcut computation would take about 21 weeks.

7.5.2 �eries

To evaluate the impact of operator pruning and the di�erences between the operator-
dependent and operator-expanded models, we evaluated all algorithms presented in
this chapter on 10 000 random queries. An overview of the results is given in Table 7.4.

We use MCR, or more speci�cally its MR-∞ variant, to compare the operator-
dependent and operator-expanded model, as MR-∞ can be used with both models.
Without operator pruning, both models perform similarly. This is to be expected, as
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Table 7.3: Overview of all preprocessing steps for the operator-expanded approach
with operator pruning. We report the sizes of the precomputed data structures and the
required computation time. We report single core running times with the exception
of two rows marked with (16), which correspond to parallel running times with 16
cores. The Total row corresponds to the combined preprocessing time of all required
preprocessing steps, using the parallelized variant if it is available.

Stuttgart London Switzerland Germany

Re
su

lts

Walking core vertices 42 380 26 814 38 075 443 081
Cycling core vertices 42 653 26 742 37 779 435 751
Operator hull vertices 27 996 13 735 19 018 351 224
Expanded stops 25 875 31 216 36 892 411 980
Expanded vertices 1 194 896 197 558 623 228 7 225 923
Expanded edges 3 897 676 748 938 2 002 615 24 236 935
ULTRA shortcuts 430 456 521 882 435 514 7 873 379

Ti
m

e
[h

:m
:s]

Walking Core-CH 1:05 0:06 0:28 6:36
Cycling Core-CH 1:05 0:06 0:28 6:43
Operator hulls 21:15 3:01:21 50:20 83:38:15
Operator hulls (16) 1:43 15:34 4:15 8:45:22
Expanded Core-CH 1:08 0:07 0:29 7:07
ULTRA shortcuts (16) 23:05 43:31 21:50 30:50:13
Expanded Bucket-CH 1:33 0:09 0:33 17:47
Total 29:39 59:33 28:03 40:13:48

the operator-dependent algorithm more or less simulates what the standard algorithm
does on the operator-expanded model. The number of rounds is exactly the same for
both approaches, and the deviations in the number of settled vertices and scanned
rounds can be explained by di�erences in the respective core graphs and better target
pruning in the dependent model. Still, the operator-dependent model is slightly faster,
as it has less memory usage (due to the compact network representation).

Operator pruning improves query times signi�cantly, achieving speed-up factors
that range from 2.2 on the operator-dependent London network to 8.0 on the operator-
expanded Germany network. Naturally, the speed-up is greater on larger networks
with more bike sharing operators. Approximately one fewer round is performed
on average as a result of a reduced search space. Moreover, the operator-expanded
model bene�ts more strongly from operator pruning than the operator-dependent
model, being faster by a factor of 1.5 to 1.7. This is because vertices and trips, which
are not part of the operator hull, are removed entirely from the network instead of
being skipped at query time.
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Table 7.4: Performance overview of all approaches for solving the multimodal
journey planning problem with bike sharing that we described in this chapter. All
algorithms are evaluated with and without the use of operator pruning (OP) on all
networks, except for the Germany network where the preprocessing without OP is
not feasible. We evaluate the MR-∞ algorithm for both, the operator-dependent (OD)
and the operator-expanded (OE) model, while ULTRA can only be applied to the
operator-expanded model. The query results are averages over 10 000 random
queries. The Vertices column reports the average number of vertices settled by the
algorithm. Similarly, the Routes column reports the average number of routes that
were scanned by the algorithm.

Net-
work Algorithm Preprocessing Query

Time [h:m:s] Rounds Vertices Routes Time [ms]

St
ut

tg
ar

t

MR-∞-OD 2:10 9.50 789 756 182 439 310.2
MR-∞-OD-OP 3:53 8.60 247 158 51 286 112.9
MR-∞-OE 3:32 9.50 561 959 182 446 304.3
MR-∞-OE-OP 5:01 8.49 150 961 49 914 58.0
ULTRA-OE 3:33:50 9.69 79 691 187 668 89.3
ULTRA-OE-OP 29:39 8.64 27 382 51 397 18.0

Lo
nd

on

MR-∞-OD 0:12 9.59 342 361 25 037 112.2
MR-∞-OD-OP 15:46 8.90 135 765 10 884 51.1
MR-∞-OE 0:20 9.59 320 286 25 045 119.1
MR-∞-OE-OP 15:53 8.64 117 188 9 152 34.2
ULTRA-OE 14:15:25 9.70 78 486 25 922 52.8
ULTRA-OE-OP 59:33 8.75 23 534 9 532 17.1

Sw
itz

er
la

nd

MR-∞-OD 0:56 9.55 840 396 171 361 286.8
MR-∞-OD-OP 5:11 8.49 176 364 54 173 85.0
MR-∞-OE 1:30 9.55 782 572 171 410 345.0
MR-∞-OE-OP 5:40 8.35 144 522 43 980 52.8
ULTRA-OE 10:02:22 9.70 107 627 180 064 117.2
ULTRA-OE-OP 28:03 8.48 29 394 44 970 21.0

Ge
rm

an
y

MR-∞-OD 13:19 11.99 17 421 659 2 888 893 9 830.1
MR-∞-OD-OP 8:58:41 10.62 2 689 029 706 307 2 183.9
MR-∞-OE 21:57 11.99 16 120 342 2 889 313 10 599.3
MR-∞-OE-OP 9:05:48 10.24 2 091 814 679 898 1 322.7
ULTRA-OE-OP 40:13:48 10.38 301 832 688 525 649.3
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Figure 7.2: Running time of all query algorithms with operator pruning depending
on the number of bike sharing operators available. We used the Germany network
without bike sharing and gradually added the bike sharing operators in sets of two (in
order to compensate for di�erences in the number of stations). We evaluated the
same 1 000 random queries for each number of bike sharing operators.

We achieve the fastest query times by combining the operator-expanded model
with ULTRA. For this, we use the RAPTOR-based ULTRA query algorithm, which
facilitates the comparison with our baseline approach MR-∞ that is also based on
RAPTOR. Independently of the network, we observe signi�cant speed-ups when
using ULTRA instead of MR-∞, ranging from a factor of 6.6 for the London network
to 15.1 for the Germany network. Furthermore, we observe that ULTRA-OE-OP is
the �rst algorithm that enables query times below a second for all networks.

Impact of Bike Sharing Operators. We evaluated how the number of bike shar-
ing operators in�uences the query time of the algorithms. We do this for the Germany
network, as it is the largest network and has the most bike sharing operators. We
started without any bike sharing operators and created partial instances by suc-
cessively adding operators. To compensate for di�erences in the number of bike
sharing stations, we added operators in pairs of two, pairing large operators with
smaller ones. Finally, we evaluated a single set of random queries for all instances.
The results are shown in Figure 7.2. We observe that the number of operators is
correlated linearly to the query time for all algorithms. The impact on the query time
is the strongest for MR-∞-OD-OP, further con�rming that the operator-expanded
model bene�ts more from operator pruning than the operator-dependent model.
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7.6 Final Remarks
In this chapter we presented two novel approaches for modeling multimodal trans-
portation networks with various competing bike sharing operators: the operator-
dependent and operator-expanded model. We showed that both models result in
similar query performance, with the operator-dependent model being more memory-
e�cient and the operator-expanded model being compatible with existing query
algorithms without modi�cations. Given its compatibility, we were able to combine
the operator-expanded model with ULTRA, a known speedup technique for multi-
modal networks, in order to reduce query times. Additionally, we developed a fast
preprocessing step called operator pruning, which can be used to accelerate queries
in both models. Our experimental evaluation shows that combining operator pruning
with ULTRA-RAPTOR enables queries that are more than an order of magnitude
faster than the operator-dependent variant of MCR. Beyond that, we showed that
using operator pruning also reduces the preprocessing time of ULTRA by more than
an order of magnitude.
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8 Assignments

In previous chapters we have developed multimodal journey planning algorithms
with the goal of providing good journey recommendations for individual travelers.
However, this is not the only application for e�cient journey planning algorithms.
Another important class of problems that require fast journey planning are tra�c
assignment problems, which arise during the planning of public transit networks.
In this chapter we demonstrate how state-of-the-art journey planning algorithms
for public transit networks as well as our novel ULTRA approach can be used to
e�ciently compute tra�c assignments. This chapter is based on joint work with
Lars Briem, Sebastian Buck, Holger Ebhart, Nicolai Mallig, Jonas Sauer, Ben Strasser,
Peter Vortisch, and Dorothea Wagner [Bri+17, SWZ19a, SWZ19b].

Problem Se�ing. Tra�c assignments are an important tool for planning and an-
alyzing transportation networks. E�cient assignment algorithms allow to predict
how new infrastructure could improve tra�c �ows, or to test the limits of existing
networks, based on historic, empiric, or expected passenger demand data. For this, the
demand is given as a list of origin-destination pairs, where each pair is associated with
a desired departure time. A basic variant of the assignment problem then asks for the
expected utilization of each vehicle (i.e., the number of passengers using the vehicle)
in the public transit network at each point in time. A more intricate second variant
additionally asks for a mapping from the origin-destination pairs onto actual journeys
through the network that constitute the overall utilization of the vehicles. Finding
a high quality solution for either of these problems in an e�cient manner generally
requires two steps. First, a fast journey planning algorithm is required, in order to
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compute possible journeys for every origin-destination pair. Secondly, a sophisticated
decision model has to be applied to the journeys found by the �rst step, in order to
adequately re�ect which journeys would be chosen by passengers in the real world.

An example of an application that utilizes tra�c assignments is the planning of
public transportation networks. When implementing new public transit routes (or
redirecting existing ones), it is often desired that the capacity of all the vehicles
serving the route is well utilized. If vehicles are overcrowded, then more or larger
vehicles have to be deployed. However, if vehicles are only sparsely used, they may be
dropped from the schedule, thereby reducing the cost of operating the public transit
network. Using tra�c assignments, the utilization of the vehicles can be estimated
ahead of time, allowing for the design of an e�cient public transportation service.

Chapter Overview. We begin with a formal introduction of the tra�c assignment
problem in Section 8.1. For this purpose we �rst introduce some additional notation,
which we will use throughout this chapter. Afterwards, we de�ne the decision models
and the assignment problem that we address in this chapter.

Since results on e�cient journey planning have not been applied to assignment
problems before, we initially only focus on computing assignments for public transit
networks with transitive transfer graphs in Section 8.2. Within this section we show
in detail how the well-known CSA algorithm can be adapted for solving assign-
ment problems. As a result, we obtain a very e�cient assignment algorithm that is
signi�cantly faster than the commercial algorithm we use as a baseline.

We continue with describing how our new assignment algorithm can be com-
bined with ULTRA in Section 8.3. To this end, we present some additional steps that
are required since ULTRA is inherently a one-to-one algorithm, while the assign-
ment problem is a many-to-many problem. Furthermore, we introduce some minor
improvements that can be used independently of the network type.

Finally, we evaluate the performance of both assignment algorithms, which we
developed in this chapter, in Section 8.4. In particular, we demonstrate the validity
of our approach and show that our algorithm can be combined with several di�erent
decision models. Furthermore, we show that both assignment algorithms developed in
this chapter are very e�cient and outperform the baseline. This is despite the fact that
we can solve a multimodal assignment problem, which was previously not possible.

8.1 Preliminaries
In this section we introduce the notation and the concepts used in the context of
assignment problems. Additionally, we present a short introduction of discrete choice
models. Finally, we de�ne the assignment problem that we solve in this chapter.
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8.1.1 Perceived Arrival Time
Within this chapter we use the connection-based representation of public transit
networks, i.e., N = (C,S, T ), since our assignment algorithms will be based on CSA.
Furthermore, we use the terms origin and destination when we refer to the start
point or end point of a journey, as these terms are most commonly used in the tra�c
assignment literature. This is in contrast to the terms source and target, which we used
in previous chapters and which are commonly used in the journey planning literature.

The core problem of computing a public transit tra�c assignment is to decide for
each passenger which journey (or, more speci�cally, which connections) he or she
uses in order to reach his or her destination. The quality of the resulting assignment
highly depends on these choices. Thus it is important to model the behavior and
preferences of the passengers in a realistic way. This means that we cannot assign
connections to the passengers solely based on the travel time of the resulting journey.
For example, a passenger might prefer a journey with a slightly longer travel time, if
this reduces the number of changes between vehicles.

As a means of re�ecting the passengers’ preferences, we introduce the notion of
perceived arrival time (PAT). Given a connection c ∈ C and a destination d ∈ V ,
the perceived arrival time τ p(c,d) is a measurement for how useful c is in order to
reach d . The PAT τ p(c,d) depends on the possible journeys that end at d and contain c .
We consider �ve properties of these journeys that in�uence the perceived arrival
time: the actual arrival time at d , the number of transfers, the time spent walking,
the time spent waiting, and the delay robustness. In order to control how these
properties a�ect the PAT we introduce some parameters. We account for walking
and waiting time by weighting the corresponding times with factors λwalk, λwait ∈ R+

0.
For every transfer during the journey we add an additional cost of λtrans ∈ R+

0. Finally,
we incorporate delay robustness by computing the expected arrival time under the
assumption that each connection has a random delay of at most λdelay ∈ R+

0.

Delay Model. We adapt the concept of minimum expected arrival time (MEAT),
which was introduced in [DSW14], in order to model delay robustness. For this, we
de�ne thewaiting time τwait, which is the amount of time a passenger has to spend wait-
ing if he arrives at a stop before the departure of the connection he wants to use. If a
passenger starts at vertex v at time τ and wants to use a connection c , then the amount
of time he has to wait is τwait(v, τ, c) B τdep(c) − τ − τtra(v, vdep(c)), where τtra(v, vdep(c))
is the time required to transfer from the vertex v to the departure stop of the connec-
tion c . Of course, the passenger can only use the connection c if the waiting time is
not negative. The notion of waiting time is extended to pairs of connections c, c ′ ∈ C
that are part of di�erent trips by de�ning τwait(c, c ′) B τwait(varr(c), τarr(c), c ′). Thus, a
transfer between connections c and c ′ is valid if and only if τwait(c, c ′) ≥ 0 holds.
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Following the approach used for the de�nition of MEAT in [DSW14], we introduce
a random variable Dc ∈ R+

0 for every connection c ∈ C, which represents the delay of
the connection. This means that the arrival stop varr(c) will be reached at τarr(c) + Dc .
Thus, transferring to another connection can become invalid, if the delay exceeds
the waiting time of the transfer. We de�ne the probability P[Dc ≤ τ ] that the de-
lay is at most τ as follows: P[Dc ≤ τ ] B 0 for τ ≤ 0, P[Dc ≤ τ ] B 1 for τ ≥ λdelay,
and P[Dc ≤ τ ] B 31/30 − (11λdelay)/(300τ + 30λdelay) for 0 < τ < 1, where λdelay is the
maximal delay that can occur. Based on this, the probability that a transfer between
two connections c, c ′ ∈ C is valid is given by P[Dc ≤ τwait(c, c ′)]. Additionally, we
de�ne the probability P[τ ′ < Dc ≤ τ ] B P[Dc ≤ τ ] − P[Dc ≤ τ ′] that the delay of c
is between τ ′ and τ . For more details on the delay model see [DSW14].

Formal PAT Definition. We now proceed with de�ning the perceived arrival
time τ p(c,d) in a recursive way, which allows us to take all journeys beginning
with c into account. There exist three distinct cases for continuing a journey after
using the connection c . If it is possible to use a transfer from the arrival stop of c
to the destination, then the journey can be completed by walking. Otherwise, the
journey continues either with the next connection of the same trip as T (c) or the
vehicle serving c is left at varr(c). Therefore, we de�ne

τ p
arr(c,d) B min

{
τ p
arr(c,d | walk), τ p

arr(c,d | trip), τ p
arr(c,d | trans)},

where τ p
arr(c,d | walk) is the PAT under the constraint that the journey is completed

by walking from c to d , τ p
arr(c,d | trip) is the PAT under the constraint that the

journey continues with the same trip as T (c), and τ p
arr(c,d | trans) is the PAT under

the constraint that the journey continues with a transfer to another connection after c .
The perceived arrival time for walking to the destination is de�ned as:

τ p
arr(c,d | walk) B

{
τarr(c) if varr(c) = d
τarr(c) + λwalk · τtra

(
varr(c),d

)
otherwise.

This means that the PAT is the actual arrival time, if the destination is reached directly
by using c . If this is not the case, the time needed for walking to the destination is
multiplied with the cost factor λwalk and added to the arrival time. For the de�nition
of τ p

arr(c,d | trip) let Ctrip(c) B {c ′ ∈ C | T (c ′) = T (c) ∧ τdep(c ′) ≥ τarr(c)} be the set
of all connections following after c in the trip of c . We then de�ne the PAT for
continuing with the same trip as the minimum over the perceived arrival times of all
subsequent connections in the trip:

τ p
arr(c,d | trip) B

{
min{τ p(c ′,d) | c ′ ∈ Ctrip(c)} if Ctrip(c) , ∅
∞ otherwise.
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Finally, we proceed with de�ning the PAT τ p
arr(c,d | trans) for transferring from c

to a connection c ′ of another trip. For this purpose, we �rst introduce the perceived
time τ p

tra(v,w) for transferring from v to w as a weighted sum of the walking or
waiting time and the transfer costs:

τ p
tra(v,w) B

{
λtrans + λwait · τch(v) if v = w
λtrans + λwalk · τtra(v,w) otherwise.

Additionally, we de�ne τ p
tra(c, c ′) B τ p

tra(varr(c), vdep(c ′)), in order to re�ect the perceived
time for transferring from a connection c to another connection c ′. Transferring
between connections c, c ′ ∈ C may include some additional waiting time τwait(c, c ′)
at the departure stop of c ′, after the actual transfer took place. We account for
this by introducing the perceived waiting times τ p

wait(v, τ , c) B λwait · τwait(v, τ , c),
and τ p

wait(c, c ′) B λwait · τwait(c, c ′). Using this perceived waiting time we de�ne the
perceived arrival time τ p

arr(c, c ′,d) B τ p
tra(c, c ′) + τ p

wait(c, c ′) + τ p
arr(c ′,d) of journeys start-

ing with the connection c , followed by a transfer to the connection c ′, and ending
at the destination d . In order to de�ne τ p

arr(c,d | trans), we only need to specify
which connection c ′ is used after c . Here, we take not only the perceived arrival
time τ p(c ′,d) into account, but also the possibility that the transfer from c to c ′ might
become invalid due to a delay of c . We achieve this by considering all connections that
are Pareto-optimal with respect to their PAT and their delay robustness as possible
candidates. To this end, let Ctrans(c) B {c ′ ∈ C | τwait(c, c ′) ≥ 0} be the set of all
connections c ′ where it is possible to transfer from c to c ′. Based on this set, the
set Copt

trans(c) of all Pareto-optimal connections reachable from c can be de�ned as:

Copt
trans(c) B

{
ĉ ∈ Ctrans(c)

��∀c̄ ∈ Ctrans(c) : τwait(c, c̄) ≥ τwait(c, ĉ) ⇒ τ p
arr(c, c̄,d) ≥ τ p

arr(c, ĉ,d)
}
.

Let 〈c1, . . . , ck 〉 be the sequence of connections from Copt
trans(c) sorted by their waiting

time in increasing order, that is τwait(c, ci ) ≥ τwait(c, ci−1) for i ∈ [2,k]. This means
transferring from c to c1 results in the minimum PAT. If, however, transferring to c1
is not possible due to delay, c2 is the next best option, and so on. Based on this, we
�nally de�ne τ p

tra(c,d) as the sum of the perceived arrival times of all ci , weighted by
the probability that the transfer to ci is valid, while the transfer to ci−1 is invalid:

τ p
arr(c,d | trans) B


k∑
i=1

(
P[τwait(c, ci−1) < Dc ≤ τwait(c, ci )]

P[Dc ≤ τwait(c, ck )]
· τ p

arr(c, ci ,d)
)

if k > 0

∞ otherwise.

Note that our recursive de�nition of τ p(c,d) is well-de�ned, since it only depends on
the perceived arrival times of connections c ′ with τdep(c ′) > τdep(c).
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8.1.2 Decision Models

In general, a passenger who wants to travel to some destination d has more than one
option for doing so. An important aspect of the assignment process is to determine
for each available option the likelihood of being chosen by the passenger. We do this
with the help of a decision model, which estimates the likelihood of each travel option
based on the utility that the option provides for the traveler. We quantify the utility
of a travel option based on the PAT of the option, using the following de�nition.

Since we want to use PATs to de�ne the utility of a travel option and since the PAT
is de�ned on the level of connections, we also use connections to represent travel
options. Assume that there are k possible connections c1, . . . , ck that can be used as
the �rst connection in a journey to the destination d . We then de�ne the utility u(ci )
of the i-th travel option, i.e., the utility of using ci in order to reach d , as

u(ci ) B max
(
0 , min

1≤j≤k
(
τ p
arr(c j ,d)

) − τ p
arr(ci ,d) + λ∆max

)
,

where λ∆max ∈ R+
0 is a parameter that determines how much worse an option can be

compared to the best option before its utility is zero. In other words, the utility of
a connection is zero if the PAT of the connection di�ers by more than λ∆max from
the best possible PAT. For all other options ci , the utility correlates linearly to the
di�erence between τ p

arr(ci ,d) and the PAT of the best connection (or second best
connection in the case that ci itself is the best connection). The set CS B {c1, . . . , ck }
of all available options is commonly called the choice set in this context.

Given a choice set CS and a utility function u : CS → R, a decision model is sim-
ply a probability distribution P[c | CS] ∈ [0, 1] that establishes the likelihood of a
passenger choosing the option c given the choice set CS . This of course implies
that

∑
c ∈CS P[c | CS] = 1 has to hold , since one of the available options has to be cho-

sen. In the case that CS is a �nite set, which is always the case for a �nite transporta-
tion network, a discrete choice model can be used as decision model. In the following,
we brie�y introduce the discrete choice models that we consider in this chapter.

Logit. The Logit model is one of the most widely used discrete choice models for
solving tra�c assignment problems. It is a Random Utility Model (RUM), which
means that it models the utility of a travel option as a random variable U and it
assumes that passengers always use the option with the maximum utility. Given
the deterministic utility u(c) of a travel option c , the corresponding random utility
is de�ned as U (c) B u(c) + E(c), where E(c) is an independent random variable that
captures the error of the deterministic utility (e.g., properties of the travel option
that are not covered by the network model). Using this approach, the likelihood of
choosing a travel option c is de�ned as Plogit[c | CS] B P[U (c) > U (c̄) ∀c̄ ∈ CS\{c }].
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The Logit model is based on the assumption that the random error E(c) of the
utility obeys a Type-I Extreme Value distribution [DM75]. Taking into account the
parameter β of this distribution, the probability of choosing the option c from a
choice set CS in the Logit model can be expressed as

Plogit[c | CS] = eβ ·u(c)∑
c̄ ∈CS

(
eβ ·u(c̄)

) .
Kirchho�. In contrast to the Logit model, the Kirchho� model is not rooted in
discrete choice theory, but borrows ideas from Kirchho�’s circuit laws [GN16]. The
probability function Pkirchhoff again depends on a tuning parameter β and is de�ned as

Pkirchhoff[c | CS] B u(c)β∑
c̄ ∈CS

(
u(c̄)β ) .

Linear. Finally, we propose a new and simple discrete choice model, which is
tailored to our PAT-based utility de�nition. For this purpose, let ĉ be the travel option
with maximal utility and δ the di�erence between the utilities of the two best options
in CS . Based on this we de�ne the probability function Plinear as

Plinear[c | CS] B max
(
u(c), 2u(c) − u(ĉ) + δ )
δ +

∑
c̄ ∈CS

u(c̄) .

We call our new discrete choice model linear since it yields probabilities that depends
linearly on the PATs of the travel options. As an example for this, consider the choice
set CS = {c1, c2 } with |τ p

arr(c1,d) − τ p
arr(c2,d)| ≤ λ∆max. Here the probability of the op-

tion c1 is Plinear[c1 | CS] = (τ p
arr(c2,d) − τ p

arr(c1,d) + λ∆max)/(2λ∆max) and the probability
of the option c2 is Plinear[c2 | CS] = (τ p

arr(c1,d) − τ p
arr(c2,d) + λ∆max)/(2λ∆max).

8.1.3 Problem Statement
The public transit tra�c assignment problem takes as input a public transit networkN ,
a transfer graph G, and some demand D, which is a set of origin-destination pairs.
Each origin-destination pair p = (o,d) ∈ D is also associated with a desired departure
time τdep(p). The pair p = (o,d) represents a passenger who wants to travel from the
origin vertex o ∈ V to the destination vertex d ∈ V , starting at τdep(p). The objective of
the tra�c assignment problem is to assign each origin-destination pair p = (o,d) ∈ D
to a probability space consisting of journeys that satis�es the demand. The demand
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is satis�ed if each journey in the probability space departs at o no earlier than τdep(p)
and ends at d . The probabilities associated with each journey in the probability space
should re�ect the likelihood of a real passenger using the journey, as speci�ed by a
decision model. Summing the probabilities of all journeys containing a connection c
yields the utilization µ(c), which is the expected number of passengers using c .

8.2 Public Transit Assignment
We continue with the description of our assignment algorithms. At �rst, we only
consider the assignment problem for pure public transit networks, i.e., networks with
a transitively closed transfer graph, since recent results on e�cient public transit
journey planning have not yet been applied to this problem. In order to solve this
problem we propose the CSA-Based Assignment (CBA) algorithm, which enables
a fast assignment algorithm through the use of the state-of-the-art public transit
journey planning algorithm CSA.

Algorithm Outline. Our assignment algorithm is based on a microscopic Monte
Carlo simulation of individual passengers represented by a unique integer identi�er.
For each vertex of the network we maintain a list containing all the passengers,
who currently reside at the vertex. We then use a sequential route choice model, as
proposed in [GP06], to move the passengers gradually from one vertex to the next,
until they reach their destination. Within this process we can use an arbitrary discrete
choice model in combination with our PAT-based utility in order to determine the
vertices visited next by the passengers. In particular, we use the decision model to
assign a probability to every possible travel option the passengers could in theory
use. Next, we choose one of these options at random for every passenger, following
the probability distribution provided by the choice model. In order to increase the
accuracy of the simulation, we generate λmul times as many passengers as speci�ed
by the demand. After the simulation �nished, the results are divided by λmul, in order
to obtain a stochastic distribution of the passengers speci�ed by the demand.

We observe that passengers with the same destination d and roughly the same time
of travel will eventually encounter each other on their journeys (at least at d). If they
meet before d at a vertex v , then they have the same options for continuing their jour-
ney from v to d . Our algorithm exploits this by evaluating the options and computing
the decisions for all passengers at v at once. To this end, we partition the passengers
based on their destination. We proceed with showing how the tra�c assignment
for passengers with a common destination can be computed. A complete tra�c
assignment can be obtained by doing this for every destination and aggregating the
results. For the remainder of this chapter we assume d to be a �xed destination vertex.
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We compute the tra�c assignment for passengers with destinationd in three phases.
First, we compute two PATs for every connection, one for taking the connection
and one for avoiding it. Next, we simulate the movement of the passengers through
the network. Every time a passenger could use a connection c without producing
an invalid transfer, we decide based on the previously computed PATs whether the
passenger takes the connection c . Connections that are used by a passenger are then
added to the passenger’s journey. Finally, we simplify the journeys by removing
unwanted cycles. Within this procedure we use CSA for the �rst and the second phase.

8.2.1 Perceived Arrival Time Computation
In the �rst phase we compute all information required to build the journeys for
the passengers one connection at a time. We identi�ed three situations that can
occur during the simulation of a passenger’s movement and require a decision about
the journey’s continuation (see Figure 8.1).

Waiting at a Stop. The �rst of these situations arises when a passenger is waiting
at a stop v , while a connection c departs from the stop v . In this case, it has to be
decided if the passenger boards the vehicle serving c or keeps waiting at the stop. In
order to make this decision, we need the PATs for both alternatives. The PAT for using
the connection c (i.e., boarding the vehicle) is given by τ p

arr(c,d). On the other hand,
skipping the connection c and waiting at the stop implies that some later connection
departing from the stop has to be taken. Transferring to another stop is not an option,
as we assume that the passenger transferred to his current stop v with the intention
of boarding some vehicle at v . The set of all alternative connections departing from
the same stop is given by Calt(c) B {c ′ ∈ C | vdep(c ′) = vdep(c), τdep(c ′) > τdep(c)}. We
use this set of alternative connections to obtain the PAT τ p

arr(c,d | skip c) for skipping
the connection c , which is the sum of the additional perceived waiting time and
the perceived arrival time of the best alternative connection. Formally, we de�ne it
as: τ p

arr(c,d | skip c) B min{τ p
wait(vdep(c), τdep(c), c ′) + τ p

arr(c ′,d) | c ′ ∈ Calt(c)}.

Si�ing in a Connection. The second situation a�ects passengers using a con-
nection that is not the last connection of its trip. These passengers again have to
make a binary decision. Either they leave the vehicle at the arrival stop of the
current connection or they use another connection of the trip. As before, making
this decision requires the perceived arrival times of both alternatives. The PAT for
continuing with the same trip is given by τ p

arr(c,d | trip). When disembarking the
vehicle, a passenger can continue his journey by either walking to his destination
or transferring to another vehicle. Therefore, the PAT for disembarking is given
by τ p

arr(c,d | disembark) B min{τ p
arr(c,d | walk), τ p

arr(c,d | trans)}.
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Figure 8.1: A �owchart describing the movement of a passenger through the network.
Passengers are generated according to the demand. If their destination di�ers from
their origin, then they enter the main cycle (colored part, with red arrows) of the
simulation. Passengers traverse the main cycle until they reach their destination.
During this they can be in one of three situations (yellow). The situation a passenger
is in changes depending on his decisions (blue).

Arriving at a Stop. The last situation where a decision has to be made occurs
when a passenger leaves a vehicle, but has not yet reached his destination. In this
case, it has to be decided to which stop the passenger transfers, in order to wait for
another connection. This decision requires a perceived arrival time for every stop v
that can be reached by a transfer. Similar to the de�nition of τ p

arr(c,d | skip c), the
PAT for such a stop v is given by the PAT of the best connection c departing from v
plus the additional perceived waiting time between the arrival time τ at v and the
departure of c . As this value is required for every possible arrival time τ at v , we
simply compute a pro�le function fwait

v ,d for every vertex, which we de�ne as:

fwait
v ,d (τ ) B min{τ p

wait(v, τ , c) + τ p
arr(c,d) | c ∈ C, τdep(c) ≥ τ , vdep(c) = v}.
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Actual PAT Computation. In summary, we require three values per connection
for decision making: τ p

arr(c,d | trip), τ p
arr(c,d | skip c), and τ p

arr(c,d | disembark). Addi-
tionally we need a pro�le function fwait

v ,d for every vertex in the network. We now
show how these values can be computed in a single sweep over the connection array.
As basis for our algorithm, we use the MEAT algorithm [DSW14], which is a variant
of CSA and allows for e�cient all-to-one pro�le queries. Instead of computing mini-
mum expected arrival time pro�les, as the original MEAT algorithm does, we compute
minimum perceived arrival time pro�les. In addition to the pro�le fwait

v ,d (τ ), we com-
pute a second pro�le ftrans

v ,d (τ ), which we use in order to determine the three PAT
values needed per connection. The di�erence between the two pro�les is that ftransv ,d (τ )
requires an initial transfer to another stop. Formally, we de�ne:

ftrans
v ,d (τ ) B min

{
τ p
tra(v, vdep(c)) + τ p

wait(v, τ , c) + τ p
arr(c,d)

�� c ∈ C, τwait(v, τ , c) ≥ 0
}
.

Our algorithm maintains for every vertex the two initially incomplete pro�les fwaitv ,d
and ftrans

v ,d . Additionally we store for every trip T a value τ p
arr(T ) that keeps track

of the current value of τ p
arr(c,d) for the connection c with T (c) = T that was most

recently processed by the algorithm. Initially, we set τ p
arr(T ) ← ∞ for all trips T

in the network. We scan the connection array in decreasing order of their de-
parture time. For every connection c we can then directly determine the three
required values as follows. Since we store the arrival time for continuing with
the same trip separately, we can set τ p

arr(c,d) ← τ p
arr(T (c)). The PAT for ignoring

the connection c is given by the pro�le that describes waiting at the departure
stop of c . Thus, we set τ p

arr(c,d) ← fwait
vdep(c),d (τdep(c)). Similarly, the PAT for dis-

embarking at the arrival stop of c is given by the pro�le that requires an initial
transfer. Accordingly, we set τ p

arr(c,d | disembark) ← ftrans
varr(c),d (τarr(c)). For the spe-

cial case that a transfer edge from the arrival stop of c to the destination exists,
we have to consider the possibility of walking to the destination. Therefore, we
set τ p

arr(c,d | disembark) ← τarr(c) + τtra(varr(c),d), if this is smaller than the previous
value of τ p

arr(c,d | disembark). Afterwards, we temporarily compute the PAT of the con-
nection c: τ p

arr(c,d) ← min(τ p
arr(c,d | trip), τ p

arr(c,d | disembark)). We use this value in
order to update the pro�les and the value τ p

arr(T (c)). First, we set τ p
arr(T (c)) ← τ p

arr(c,d).
Next, we add the point (τdep(c), τ p

arr(c,d)) as a breakpoint to the pro�le fwait
vdep(c),d, un-

less this pro�le already contains a breakpoint with a smaller PAT. Finally, we it-
erate over all vertices v with (v, vdep(c)) ∈ E . For each such vertex v we add the
point (τdep(c) − τtra(v, vdep(c)), τ p

arr(c,d) + λwalk · τtra(v, vdep(c))) as a breakpoint to the pro-
�le ftrans

v ,d , unless the pro�le already contains a breakpoint with a smaller PAT. We
repeat this process for every connection. Afterwards, we have computed all values
required for decision making and can continue with the actual assignment.
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8.2.2 Passenger Assignment
The second phase of our algorithm uses the previously computed perceived arrival
times to compute the journeys for all the passengers with destination d . For this
purpose, we maintain for every passenger a list of connections used by the passenger.
Additionally, we maintain a list of passengers for every vertex and trip, representing
the passengers currently waiting at the vertex and sitting in the vehicle serving the
trip, respectively. Furthermore, we use a queue sorted by arrival time for every vertex,
containing the passengers that are currently transferring to the stop. The transfer
queue of each vertex v is initialized with passengers created from the demand with
origin v , using their desired departure time as keys.

Passenger Movement Simulation. We now describe how the passengers’ move-
ment through the network is simulated, using a single scan over the connection array
in ascending order of departure time, similar to CSA. During this scan, we decide for
each connection, which passengers use the connection. When scanning a connec-
tion c , we �rst determine the set of passengers that could enter the vehicle. We do this
by removing all the passengers from the transfer queue of vdep(c) that arrive at vdep(c)
before τdep(c). These passengers are then added to the list of passengers waiting
at vdep(c). Afterwards, the list of passengers waiting at vdep(c) comprises exactly the
passengers that could enter c . These passengers then have exactly two travel options:
Option a is to use the connection c and optionb is to not use the connection. The PATs
of these two options are given by τ p

arr(a) = min(τ p
arr(c,d | trip), τ p

arr(c,d | disembark))
and τ p

arr(b) = τ p
arr(c,d | skip c), respectively.

Using our linear decision model, the probabilities of the two options are given
by P[a | {a,b }] = (τ p

arr(b) − τ p
arr(1) + λ∆max)/2λ∆max and P[b | {a,b }] = 1 − P[a | {a,b }].

Based on these probabilities, we make a random decision for every passenger waiting
at the departure stop of the connection c . If a passenger happens to enter the
connection, then he is �rst removed from the list of passengers waiting at vdep(c) and
secondly added to the list of passengers sitting in the trip T (c). Furthermore, the
connection c is added to the journey of the passenger.

Next, we decide for every passenger sitting in the trip (i.e., sitting in the connec-
tion c that is currently being processed), if he disembarks at the arrival stop of the
connection. As before, this is a discrete choice problem with two options. Option a is
to leave the vehicle at the stop varr(c), which has a PAT of τ p

arr(a) = τ p
arr(c,d | disembark).

Option b is to continue with the same trip, which has a PAT of τ p
arr(c,d | trip). Given

these two options, we once again use the discrete choice model to compute the
probability of each option. Afterwards, we make a random decision for every
passenger sitting in the trip, based on these probabilities. We collect all passen-
gers that disembarked from the vehicle in a temporary list. If the arrival stop
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of the connection happens to be the destination vertex, then the journeys of all
passengers in the temporary list are complete and we simply continue with the
next connection. Otherwise, we have to decide for all passengers in the tempo-
rary list, to which vertex they transfer (or if they simply wait at the current
stop). Let v1, . . . , vk be all the vertices for which τtra(varr(c), vi ) < ∞ holds. In
this case we have to decide between k options for all passengers in the temporary
list. The perceived arrival time of the i-th option (i.e., transferring to vi ) is given
by τ p

arr(vi ) B τ p
tra(varr(c), vi ) + fwait

vi ,d (τarr(c) + τtra(varr(c), vi )). Based on these PATs, we
compute the probability of a passenger transferring to vertex vi , using the discrete
choice model. As before, we determine randomly for every passenger, which option
he chooses. Finally, passengers transferring to vertex vi are added to the queue of
transferring passengers of the vertex vi , with an arrival time of τarr(c) + τtra(varr(c), vi ).

We repeat this process for every connection c ∈ C. After processing every connec-
tion, we have assigned journeys to all passengers except the ones where no valid jour-
ney exists. Note that our algorithm can be used with an arbitrary decision model. We
only used our linear discrete choice model as an example in the algorithm description.

8.2.3 Cycle Elimination
During the second phase, we assigned a journey to every passenger which might not
necessarily be an optimal journey. Therefore, it is possible that the assigned journey
contains cycles. In fact, it is even possible that a journey that is optimal with respect
to perceived arrival time can contain cycles. This could be the case if the waiting
cost λwait is very high, such that driving in a circle instead of waiting reduces the
perceived arrival time. However, for some applications it might be undesirable or
inadmissible to assign journeys containing cycles. Thus, we now describe an optional
third phase of our algorithm, which removes all cycles from the assigned journeys.

In order to detect and remove cycles from a journey J = 〈P0,T
i j

0 , . . . ,T
mn
k−1, Pk 〉,

which satis�es some demand p = (o,d), we �rst convert the journey J into a se-
quence 〈(v1, τ 1), . . . , (v`, τ `)〉 of (vertex, time)-pairs. We do this by adding for
every trip leg Tmn

i and for every j ∈ {m, . . . ,n} the two pairs (v(T [j]), τarr(T [j]))
and (v(T [j]), τdep(T [j])) to the sequence. Furthermore, we add (o, τdep(p)) as the �rst
element of the sequence and (d, τarr(J )) as the last element of the sequence. Given the
sequence 〈(v1, τ 1), . . . , (v`, τ `)〉, we say that the journey contains a cycle, if indices i
and j > i + 1 exist, such that the part of the journey between vertices vi and v j can
be replaced by a transfer. This is the case if τ i + τtra(vi , v j ) ≤ τ j holds. Since we
assume that the transfer graph is transitively closed, it consists of disjoint cliques.
Thus, a journey can only contain a cycle if it contains two vertices vi , v j of the same
clique. We can check this e�ciently while iterating through the sequence of (vertex,
time)-pairs. For every i ∈ {1, . . . , `}, we add i to a set, which we associated with the



Chapter 8 Assignments

142

clique that contains vi . Afterwards, we check for each of these sets, if it contains
indices i, j such that τ i + τtra(vi , v j ) ≤ τ j holds. If we �nd such indices i, j, then we
have also found a cycle, which we then remove from the journey.

8.2.4 Implementation Details
We conclude the description of the CBA algorithm with some remarks on implemen-
tation details that are essential for the e�ciency of the algorithm. We start with a
description of the data structures that we use in our implementation. Afterwards, we
show how the algorithm can be parallelized. Finally, we describe how our network
model can be adapted for zone-based input data.

Data Structures. In order to represent the two pro�les ftrans
v ,d and fwait

v ,d , which we
need for every vertex v , we use dynamic arrays. Within these arrays we keep the
breakpoints of the pro�le functions sorted in descending order with respect to the
departure time. Since the pro�les are created in the �rst phase of our algorithm, which
scans connections in reverse chronological order, this assures the new breakpoints
only have to be added at the end of the dynamic array.

Our algorithm maintains two queues for every stop of the network: one for
passengers that are currently transferring to the stop and one for passengers that are
already waiting at the stop. For the queue of transferring passengers it is important
that we can e�ciently extract all passengers that arrive before a certain point in time.
Therefore, we use a min-heap (which we implemented as a binary heap) to represent
this queue. In contrast, all passengers in the waiting queue are processed at the same
time. Thus, a simple dynamic array can be used for this queue.

Finally, we note that we keep two copies of the transfer graph. During the PAT
computation phase we have to iterate over all edges (v,w) ∈ E for a �xed vertex w .
For this purpose we use an array that stores the incoming edges for every vertex. In
contrast, we have to iterate over all outgoing edges of a vertex in the assignment
phase. Thus, we use a second array that stores the outgoing edges for every vertex.

Parallelization. CBA begins with a short setup phase, during which the connec-
tions are sorted and the passengers are divided by their destination. Afterwards, a sep-
arate assignment is computed for every destination. Finally, the results are aggregated
and the algorithm terminates. The assignment computation for the di�erent destina-
tions is by far the most complex part of the algorithm and can be performed indepen-
dently for every destination. Therefore, it is quite easy to parallelize this part of the al-
gorithm. First, the destinations are distributed among the available cores. Afterwards
each core computes an independent assignment for the corresponding destinations.
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Figure 8.2: An example of a zone
violating the triangle inequality.
The vertices v and w are connected
to the zone drawn in blue, but the
distances are calculated based on
di�erent endpoints within the zone.
Adding the zone directly as a ver-
tex would create an v-w-path of
length 7, whereas the actual dis-
tance between v and w is 10.
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Preprocessing for Zone Based Demand. The input to the assignment algorithm
consists of a public transit network with a transfer graph and some demand. Often, the
demand data has a lower spatial resolution than the network. Origins and destinations
are not supplied as precise locations, but rather as zones, which represent larger
areas such as city districts. In this case, distances between zones and nearby stops
are supplied in addition to the demand data. Before the assignment algorithm can be
executed, the zones have to be integrated into the public transit network. However,
simply adding vertices and edges for these zones to the transfer graph may create
new paths between stops that are too short and violate the triangle inequality. This
is because the zones represent regions with a non-zero expanse and the distances to
nearby stops may be measured from any point within the region, not necessarily the
center. Two edges whose distances are measured from di�erent endpoints within
the region may form a path between stops that is too short, since it does not include
the time needed to travel between the two endpoints. An example of this is shown
in Figure 8.2. To prevent this, we create two vertices for each zone: a source vertex
that only has outgoing edges to stops of the zone and a sink vertex that only has
incoming edges from stops of the zone. By not connecting the source and sink vertex,
we prevent unwanted paths through zones from forming.

8.3 Multimodal Assignment
In this section we show how our assignment algorithm from the previous chapter
can be combined with ULTRA, such that we can compute multimodal assignments.
In particular, we explain how departure bu�er times and unrestricted walking can be
integrated into CBA. Furthermore, we demonstrate how passengers representing the
same origin-destination pair can be grouped to improve the running time and the
accuracy of the results. We present pseudo-code for our approach in Algorithm 8.1.
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8.3.1 Departure Bu�er Times
A consequence of using ULTRA is that we must switch from the minimum transfer
time model to the departure bu�er time model. Accordingly, passengers must observe
the departure bu�er time whenever a connection is entered, regardless of how it was
reached. In the original CSA-based assignment algorithm, the minimum transfer time
was considered part of the waiting time and therefore the waiting penalty λwait was
applied to it. However, since the departure bu�er time must always be observed, it
may not be desirable to penalize it to the same degree as waiting, or at all. Therefore,
we introduce a new bu�er time penalty λbuf ∈ R+

0 that may be di�erent from the
waiting penalty λwait. Whenever a connection is entered, the departure bu�er time is
multiplied by λbuf and added to the PAT. Any time spent waiting before that (excluding
the departure bu�er time itself) is multiplied by λwait and added to the PAT.

8.3.2 ULTRA-Based Passenger Assignment
Our basic assignment algorithm uses CSA variants with restricted walking in both
the PAT computation phase and the assignment phase. We extend the algorithm
to unrestricted walking by replacing CSA with ULTRA-CSA in both phases. This
requires several changes. The original PAT computation phase computed two PAT
pro�les at every stop with a backward CSA search. We replace this with a backward
ULTRA-CSA search (line 11 of Algorithm 8.1), using the shortcut graph for inter-
mediate transfers and a backward Bucket-CH search from the destination d for the
�nal transfers. However, these pro�les exclude the initial transfers from the origin
vertices, which have to be evaluated at the start of the assignment phase, when the
passengers are generated and choose which stop they transfer to.

Initial Transfer Challenges. Evaluating the initial transfers constitutes the main
algorithmic challenge when integrating ULTRA into our assignment algorithm. The
ULTRA technique was designed for one-to-one queries, where initial transfers can
be computed with a single Bucket-CH query from the origin vertex. However, when
solving an assignment problem, there typically exists demand from multiple origins
for a single destination. Thus, we have to perform one Bucket-CH search for each of
these origin vertices. Once the initial transfers are computed, a further challenge is
the e�cient evaluation of the resulting transfer options. In the restricted walking
scenario, the choice set for initial and intermediate transfers was fairly small because
passengers could only transfer to stops which were reachable via a direct edge. This
made it feasible to simply iterate over all outgoing edges, compute the PAT, utility,
and probability for each reached stop, and then make a decision. For the intermediate
transfers, we can retain this approach in the unrestricted case by using the shortcut
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Algorithm 8.1: ULTRA-CBA.
Input: Public transit network N = (C,S, T ) with transfer graph G = (V, E),

ULTRA shortcut graph G s
= (S, E s), and demand D

Output: Utilization µ : C → R+
0 of every connection and

a set of journeys J for each origin-destination pair
1 Let Vorig be the set of all origins with demand in D
2 Let Vdest be the set of all destinations with demand in D
3 for each o ∈ Vorig do
4 N (o) ← {(v, τtra(o, v)) | v ∈ S } // Using Bucket-CH

5 Sort N (o) in ascending order of distance τtra(o, ·)
6 Sort D by destination
7 Sort C ascending by departure time
8 for each d ∈ Vdest do
9 Let Dd be the subset of D with destination d

10 Sort Dd by origin
11 Compute PAT pro�les from every stop to d
12 for each p = (o,d) ∈ Dd do
13 Generate passenger group д of size λmul for p
14 J ← J ∪ {Jд = {}}
15 Let CS be an empty choice set for p
16 for each (v, τtra(o, v)) ∈ N (o) do
17 τdep ← τdep(p) + τtra(o, v)
18 τ p

walk ← λwalk · τtra(o, v)
19 τ̄ p

arr ← min{τ p
arr | (τ p

arr, ·, ·) ∈ CS} + λ∆max

20 if τdep + τ p
walk > τ̄

p
arr then break

21 τ p
arr ← fwait

v ,d (τdep + τbuf(v)) + τ p
walk + λbuf · τbuf(v)

22 CS ← CS ∪ {(τ p
arr, v, τdep)}

23 Evaluate which choice from CS the passengers use
24 for each c ∈ C do // In chronological order

25 Evaluate if passengers waiting at vdep(c) enter c
26 µ(c) ← Number of passengers in c
27 Add c to journeys Jд of groups д in c
28 Evaluate if passengers using c disembark at varr(c)
29 Evaluate if passengers at varr(c) can transfer to d
30 Evaluate to which stop passengers at varr(c) transfer
31 for each Jд ∈ J do
32 Remove cycles from Jд
33 return µ,J
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edges computed by ULTRA. However, the shortcuts do not cover initial transfers.
When walking is unrestricted, almost all stops are reachable by initial walking from
most origins. Therefore, it is no longer practical to explicitly collect all choices
and compute their probabilities before making a decision. In practice, however, the
probability for the vast majority of options will be 0 because the required footpath is
so long that the resulting PAT will exceed the delay tolerance λ∆max.

Initial Transfer Choice Set. For an e�cient evaluation of the initial transfers, we
precompute the distances between the origin vertices and stops. For each origin o
that occurs in the demand, we perform a Bucket-CH search from o to all stops (line 4).
We store the distances from o to all reachable stops in a list of stop-distance tu-
ples (v, τtra(o, v)), sorted in ascending order of distance (line 5). After generating the
passengers for an origin-destination pair p = (o,d) (line 13), we iterate over the
stop-distance tuples (line 16), compute the corresponding PATs and add them to the
choice set CS . For each tuple (v, τtra(o, v)), we can compute the corresponding PAT by
evaluating the pro�le fwait

v ,d via binary search and adding the penalties for walking and
the bu�er time (line 21). Note that an option only has a non-zero gain and probability
if its PAT does not exceed the PAT of the best option by more than λ∆max. To avoid
iterating through the entire list of stop-distance tuples, we compute a lower bound
for the PAT that increases monotonically with each tuple. The lower bound consists
of the earliest possible departure time τdep at v (line 17) plus the perceived walking
time τ p

walk (line 18). Once this lower bound exceeds the best PAT found so far by more
than λ∆max , we can stop iterating through the list since all further options will have a
probability of 0 (line 20).

Assignment. After we have collected all relevant options, we evaluate the choice
set CS . This involves computing the utility of each option, using a decision model to
compute the probabilities, and distributing the passengers to the stops according to
the probabilities (line 23). The rest of the assignment phase (lines 24–30) then contin-
ues as usual, except that we use the shortcut graph for intermediate transfers and a
Bucket-CH search from d for the �nal transfers. For each connection c , four decisions
are made: First it is decided which passengers waiting at vdep(c) enter c (line 25). The
utilization of c is then calculated as the number of passengers using c , including
those that entered at vdep(c) and those that used a previous connection on the trip
and remained seated (line 26). Then, c is added to the journey of each passenger
using it (line 27). Passengers in c either decide to disembark at varr(c) or remain
in T (c) (line 28). Those that disembark evaluate if they transfer directly to d (line 29).
If they do not, they choose a stop to which they transfer next (line 30). Each decision is
made by using a decision model to compute the probabilities and distributing the pas-
sengers accordingly. The cycle elimination phase (lines 31 and 32) remains unchanged.
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8.3.3 Improved Passenger Grouping

The CBA algorithm only approximates the solution de�ned by the decision model,
as the algorithm is based on a Monte Carlo method. The accuracy of this approx-
imation is primarily in�uenced by the number of journeys that are sampled per
origin-destination pair, which is controlled by the passenger multiplier λmul. The
original assignment algorithm generates λmul copies of each passenger in the demand
and then simulates the movement of all these copies independently. While the gain
computation and evaluation of the decision model can be shared among all passengers
in the same location, each passenger still has to make an individual random decision
and move accordingly. This approach leads to redundant work because di�erent
copies of the same passenger will often make the same choices. We solve this problem
by grouping passengers that make the same choices together.

Groups and Decision Making. Instead of individual passengers, we now route
passenger groups д through the public transit network. The number of passengers in
a group is indicated by the group size |д |. At the start of the assignment phase, we
generate one group of size λmul for each origin-destination pair. Previously, whenever
we had to make a choice between options with probabilities P1, . . . , Pk , we made an
individual decision for each passenger by randomly picking an option according to
the probabilities. Now, when making a decision for a group д of size |д |, we split it
into k smaller groups of sizes bP1 ·|д |c, . . . , bPk ·|д |c and route each group according
to the corresponding option. Because the group sizes are rounded down, some of the
original |д | passengers may still be left over afterwards. These passengers are still
handled individually. As before, we randomly choose an option for each passenger
according to the probabilities and add the passenger to the corresponding group. If
the probability of an option is lower than 1/|д | and none of the leftover passengers
are assigned to it, the corresponding group has a size of 0 and will be removed.

When groups that represent di�erent origin-destination pairs encounter each other
at a stop, we do not merge them into a single large group. While doing so would
further reduce the computational e�ort, it would not allow us to reconstruct the
journey that is assigned to each group in a straightforward manner.

The expected value for the share of passengers that are assigned to a travel option i
is exactly Pi , regardless of whether the passengers are grouped or not. However, by
grouping the passengers and splitting the groups according to the probabilities, a large
portion of the assignment becomes deterministic. Only the assignment of the leftover
passengers created by rounding errors is still randomized. Therefore, the computed
utilization will not vary as strongly between di�erent executions of the algorithm.

Instead of interpreting each unit in the simulation as a group of |д | passengers, we
can also view it as a single passenger and interpret the group size as a �xed-point
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representation of the probability that the passenger will reach the current location,
with λmul representing a probability of 1. In this view, λmul is a parameter controlling
the precision of the �xed-point representation and thereby the accuracy of the results.
If the precision was unlimited, rounding errors would no longer occur and the
computed group sizes would conform exactly to the probabilities. In this case, our
algorithm would no longer be a Monte Carlo simulation but rather compute an exact
solution of the assignment problem.

When decisions are made for each passenger individually, the computational e�ort
of the algorithm is proportional to λmul. With the grouped approach, the e�ort does
not depend directly on λmul, but only on the number of group splits that are performed
during the simulation. This is limited by the number of feasible options. Once the
precision becomes high enough that each option with a non-zero probability is
represented by a non-empty group, increasing the precision further may still improve
the accuracy of the results, but it will not impact the running time.

8.4 Experiments
All algorithms presented in this chapter were implemented in C++17 and compiled
with GCC version 8.2.1 and optimization �ag -O3. All experiments were conducted
on a machine with two 8-core Intel Xeon Skylake SP Gold 6144 CPUs, which are
clocked at 3.50 GHz, with a boost frequency of up to 4.2 GHz, 192 GiB of DDR4-2666
RAM, and 24.75 MiB of L3 cache.

Network and Demand Data. Unfortunately, demand data is only available for
the Stuttgart network. Thus, we only consider this network for the evaluation of
our assignment algorithms. The demand model for the Stuttgart network, which
we use for our experiments, was introduced in [SHP11]. Within this model the
greater region of Stuttgart is partitioned into 1 174 zones. These zones are smallest
in the center of Stuttgart, where a zone covers a few blocks at most. Zones become
larger with increasing distance to the city. Finally, surrounding major cities, such as
Frankfurt, Munich, or Zürich, are each represented with a single zone. The demand
data contains 1 249 910 origin-destination pairs, which represents a typical amount
of travel for one business day.

Tuning Parameters. We have introduced several tuning parameters that in�uence
the accuracy of the assignment and the performance of our algorithms. For our
experiments, we chose the following values: the walking cost is set to λwalk = 2.0, the
waiting cost is set to λwait = λbuf = 0.5, the transfer cost as well as the delay tolerance
are set to λtrans = λ∆max = 300 sec, and the maximum delay is set to λdelay = 60 sec.
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Table 8.1: Running time of CBA depending on the maximum delay λdelay.
λdelay [min] 1 2 4 8 16 32 64
Time [sec] 101.9 103.3 105.2 110.1 118.3 129.5 141.7

8.4.1 Public Transit Assignment
We begin with the evaluation of the CBA algorithm on the original version of the
Stuttgart network, i.e., the network without additional transfers from OSM. We
perform our experiments on the original network since it is also supported by VISUM8

8 A commercial software from PTV (https://www.ptvgroup.com/en/solutions/products/ptv-visum)

,
which we use as baseline for the evaluation of our approach.

Delay Tolerance. In our �rst experiments we evaluate the performance of CBA,
depending on the various tuning parameters. Most of the parameters are primar-
ily intended to model di�erent passenger preferences. As such they do not directly
in�uence the computational complexity of the algorithm. In fact, when we vary the pa-
rameters λwalk, λwait, and λtrans the runtime does not change more than in does between
repeated passes with unchanged parameters. However, increasing the maximum de-
lay λdelay of the connections slightly increases the running time, as stated in Table 8.1.
For every column in the table we used a passenger multiplier of λmul = 10, repeated the
assignment computation ten times, and report the mean of the resulting running times.
The increase in running time is caused by the computation of τ p

arr(c,d | trans), since
more connections have a non-zero probability of being the successor connection for c .

Passenger Multiplier. Another important tuning parameter is the passenger mul-
tiplier λmul. Changing λmul directly in�uences the amount of work that has to be done,
since more passengers have to be simulated. Figure 8.3 shows the running time of our
algorithm dependent on λmul. In addition to the total running time we also report the
time required for the individual phases of our algorithm. As expected, the running
time increases with an increasing passenger multiplier. The additional running time
is mostly due to the assignment phase, which is the phase that handles the simulated
passengers. However, the running time of the assignment phase is not doubled when
the number of passengers is doubled. The reason for this is that an increased number
of passengers also leads to more passengers making the same decisions. Thus, the
assignment computation can bene�t from synergy e�ects. The PAT computation is
completely independent from the number of passengers, which leads to a constant
running time as indicated by the red curve. The time required for the cycle elimina-
tion and the setup phase (i.e., sorting the connections and distributing the passengers
by destination) increases only slightly with an increased passenger multiplier.

https://www.ptvgroup.com/en/solutions/products/ptv-visum
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Figure 8.3: The running time of our algorithm depending on the passenger multiplier,
di�erentiated by the phases of the algorithm. Changing the passenger multiplier
primarily a�ects the assignment phase. Every measurement is the mean over the
running times of ten repetitions of our algorithm.

Parallelization. Next, we evaluate the performance of the parallelized version
of our algorithm. For the following experiment we use a passenger multiplier
of λmul = 10, since this is in most cases su�cient for an accurate result. As before, we
report the mean running time of executing our algorithm ten times. The serial version
of the algorithm has a running time of 101.94 sec. Using the parallelized version with
only one thread results in a slightly increased running time of 102.31 sec. Using two
threads, we achieve a running time of 61.04 sec, four threads achieve 35.16 sec, eight
threads achieve 18.37 sec, and 16 threads achieve 10.09 sec. For the case that we use all
16 available cores of our machine, this corresponds to a speed-up of 10.1. We observe
that we do not achieve a perfect speed-up, despite the fact that the computations
performed by the di�erent threads are complete independent of each other. A likely
reason for this is the fact that our algorithm primarily consists of scans through
arrays. Thus, memory bandwidth could be a limiting factor.

We also compared the running time of our algorithm to VISUM, which is a commer-
cial tool from PTV AG. For the Stuttgart network the VISUM computation took just
above 30 minutes (in parallel with 8 threads). The VISUM assignment was computed
on an Intel Core i7-6700 clocked at 3.4 GHz with 64 GiB of RAM, running Windows 10.
Thus, CBA outperforms VISUM by a factor of almost 100 (for 8 parallel threads).
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Table 8.2: Comparison between an assignment computed by VISUM and our algo-
rithm. We report for every quantity the minimum (min), mean, standard deviation (sd),
and maximum (max) over all journeys. The �gures for both assignments are quite
similar. However, our assignment slightly favors journeys with fewer trips (transfers),
at the disadvantage of marginally increased travel time.

VISUM CBA
min mean sd max min mean sd max

Total travel time [min] 2.98 46.89 23.75 429.00 2.98 47.20 23.44 429.00
Time spent in vehicle [min] 0.02 21.06 18.80 380.00 0.02 21.23 18.75 323.97
Time spent walking [min] 2.00 22.39 5.20 149.00 2.00 22.48 5.26 149.00
Time spent waiting [min] 0.00 3.43 5.72 217.02 0.00 3.49 5.68 217.02
Trips per passenger 1.00 1.77 0.83 6.00 1.00 1.75 0.84 8.00
Connections per passenger 1.00 9.40 7.44 109.00 1.00 9.47 7.33 97.00
Passengers per connection 0.00 12.74 37.79 1 290.10 0.00 12.85 37.58 1 233.60

�alitative Evaluation. Finally, we compare the quality of the assignment com-
puted by our algorithm to the one computed by VISUM. Table 8.2 summarizes the
results. Overall, the assignments computed by our algorithm and VISUM are quite
similar. Our algorithm assigns journeys with slightly longer mean travel time, in favor
of a slightly decreased number of transfers. At the same time, our algorithm assigns
journeys with a higher maximum number of trips. The reason for this is that VISUM
prunes all journeys with more than 6 trips, while our algorithm has no hard limit on
the number of transfers. It is noticeable, that both techniques assign about 1200 pas-
sengers to a single vehicle, since both are not capable of handling vehicle capacities.

8.4.2 Multimodal Assignment
We continue with the experimental evaluation of the ULTRA-CBA algorithm. For
this we used the multimodal variant of the Stuttgart network, i.e., we added the
unrestricted transfer graph that we extracted from OSM (assuming a walking speed
of 4.5 km/h). We compare our results to the plain version of CBA with the same
con�guration as in the previous section. We use the same demand data that was
already used in the previous section for both algorithms.

Preprocessing. Before the ULTRA-CBA algorithm can be executed, we have to
compute the required data structures in a preprocessing step. As our query algorithm
utilizes Bucket-CH queries, we have to compute a CH. Additionally we need the
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Table 8.3: Comparison of assignments computed with CBA on the original network
and assignments computed with ULTRA-CBA on the multimodal network. We report
sequential and parallel execution times, where we used 16 threads for the parallel
variant. Figures concerning the quality of the computed assignment are averaged
over all origin-destination pairs that were assigned to valid journeys in both network
variants, with and without unrestricted transfers.

Real demand Random demand
ULTRA-CBA CBA ULTRA-CBA CBA

Execution time (seq.) [sec] 181.9 278.8 258.8 494.8
Execution time (par.) [sec] 16.8 34.1 19.7 52.9
Travel time [min] 46.8 49.1 82.2 91.2
Walking time [min] 22.2 22.2 24.0 23.7
Time in vehicle [min] 20.7 21.8 48.5 53.5
Connections per passenger 10.19 10.76 19.16 22.02
Trips per passenger 1.85 1.88 2.88 3.06
Journeys per passenger 12.79 9.27 17.85 13.43

ULTRA transfer shortcuts, which in turn require a core graph for their computation.
The CH was computed in 2:44 min using a single thread and introduced 5 469 298 short-
cuts. The core graph was computed using a Core-CH approach with a limit of 16
for the average vertex degree within the core. This resulted in a preprocessing
time of 2:30 min (using one thread) and a core graph that contains 25 477 vertices
and 407 664 edges. The core graph was then used for the ULTRA preprocessing, which
took another 2:03 min (using 16 threads) and resulted in 74 038 transfer shortcuts.

Comparison of CBA and ULTRA-CBA. The preprocessing, i.e., computing the
ULTRA shortcuts and CH, has to be repeated every time the network changes. How-
ever, the precomputed data structures can be reused for di�erent demands. In our
evaluation of the two algorithms we used two demand sets: the real demand data
from [SHP11] and a demand of the same size but with origin and destination zones
picked uniformly at random. An overview of the results is given in Table 8.3.

In order to achieve reasonable precision in the result, we use a passenger multiplier
of 100 for all experiments, unless stated otherwise. Recall that this means that we
record 100 journeys for every origin-destination pair in the demand and thus compute
the probability space of possible journeys for the demand pairs with two decimal
places. Furthermore, when comparing qualitative �gures of the assignment (such as
average travel time or number of used vehicles), we only consider origin-destination
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pairs that could be assigned to at least one journey in both networks, with and
without the multimodal transfer graph. Using the original network, only 1 209 761 of
the 1 249 910 origin-destination pairs could be assigned. For all other pairs no feasible
journey exists. Using the unrestricted transfer graph, the number of assignable pairs
increases to 1 246 337. In both cases some origin-destination pairs that could not be
assigned to any journey exist, because the desired departure time is too late for the
last possible journey contained in our network data.

Comparing the e�ciency of ULTRA-CBA with CBA, we observe that despite
solving a more di�cult problem, ULTRA-CBA outperforms CBA by a factor of about
two regarding execution time (compare row 1 and 2 of Table 8.3). For both demand
sets, the parallel version of ULTRA-CBA �nishes in below 20 seconds. We also
observe that assigning a random demand takes signi�cantly longer than assigning
the real demand. A possible reason for this is that picking origin and destination
zones uniformly at random tends to produce long-distance demand pairs, while real
demand contains more short-distance origin-destination pairs. This assumption is
backed by the di�erent average travel times for both demands. While a journey
for a real origin-destination pair takes about 48 minutes, a journey for the random
demand takes almost twice as long at about 80 to 90 minutes. Additionally, a longer
distance between origin and destination vertices tends to lead to a larger set of
possible journeys. Our measurements also con�rm this correlation, with the number
of assigned journeys increasing by about 50% when switching from real demand to
random demand. A larger number of assigned journeys implies that more groups
have to be split during the assignment phase, which directly a�ects the execution time
of the algorithm and thus explains why the assignment for random demand takes
longer. For the real demand our algorithm assigns 12.79 journeys on average to each
origin-destination pair. Since the demand contains 1 209 761 pairs, this means that
our algorithm computes over 15 million individual journeys in less than 17 seconds.

Impact of Unrestricted Walking. In contrast to the results that we presented
in Chapter 5, which were already con�rmed in [PV19], we observe that adding
unrestricted transfers to a network only has a small e�ect on the average travel times
in the assignment. For the real demand, average travel times are only reduced by 4.6%
when switching from the original network to the unrestricted network. However,
results in Chapter 5 and in [PV19] were obtained by using random queries between
vertices of the network. In contrast, we used a zone-based demand for the assignment
computation. Furthermore, it can be assumed that the network was designed to
match a demand that is similar to our real demand data. When considering random
demand, the e�ect of unrestricted transfers already becomes more pronounced, as it
reduces travel times by 9.8% in this case.
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Figure 8.4: Sequential running times of our assignment algorithms depending on
the passenger multiplier. We compare ULTRA-CBA to the results for CBA from
Figure 8.3. For ULTRA-CBA we also report the running times of its sub-phases. The
measured running times are averaged over ten executions of the algorithm.

Passenger Multiplier. The most important tuning parameter of the ULTRA-CBA
algorithm is the passenger multiplier λmul, which in�uences both the execution time
of the algorithm and the accuracy of the computed assignment. As stated before,
the e�ect of λmul on the result is quite direct, as the logarithm of λmul corresponds to
the number of decimal places in the probability space that are computed. However,
the e�ect of λmul on the execution time is not as clear. Therefore, we evaluate the
performance of our algorithm depending on the passenger multiplier in Figure 8.3.
The plot shows that the total execution time increases with increasing λmul. However,
the impact of λmul on the total execution time decreases notably for high λmul. The
reason for this �attening of the curve is that the execution time of our algorithm does
not depend directly on the passenger multiplier, but only on the number of group
splits. As more passengers are added, new groups are created less frequently since
they represent options with increasingly small probabilities. This result demonstrates
the usefulness of our new grouping approach during the assignment phase.

For comparison we also include the execution time of CBA on the original network
in Figure 8.4. The direct comparison of our two algorithms shows that CBA outper-
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Figure 8.5: Variation in the number of journeys per passenger and the execution time
for di�erent discrete choice models. We compare the Linear, Logit, and Kirchho�
models, each with di�erent parameter settings. The used parameter values are
annotated at the corresponding marker. For comparison we include the results
of an optimal decision model, where the journey with optimal utility is chosen
deterministically. Running times are averaged over ten executions.

forms ULTRA-CBA for passenger multipliers below 50. However, this is expected
since our algorithm operates on a more complex network with unrestricted transfers.
On the other hand, for higher passenger multipliers ULTRA-CBA outperforms the
previous approach, due to the grouping of the passengers.

We also report running times for the four sub-phases of ULTRA-CBA in Figure 8.3.
Note that the colors of the four sub-phase curves correspond to the colors of the
line numbers in Algorithm 8.1. The plot shows that the most costly phase of our
algorithm is the PAT computation phase. This observation matches our expectations,
as the PAT computation phase has to scan the complete multimodal transportation
network, including �nal transfers.

Decision Models. With our last experiment we demonstrate the versatility of our
assignment algorithm by showing that our approach is compatible with a multitude
of decision models. Therefore, we evaluate the performance of the ULTRA-CBA algo-
rithm combined with the Logit, Kirchho�, and Linear decision model. Furthermore,
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we test each decision model with di�erent parameter settings. The resulting running
times (using the parallelized algorithm with 16 threads) are shown in Figure 8.5.
Depending on the used decision model and its parameter settings, the execution time
varies between 11 seconds and 26 seconds. As before, the reason for this is primarily
the number of di�erent journeys that are assigned to each origin-destination pair,
which correspond to the number of times that groups have to be split during the assign-
ment phase. To demonstrate this, we plotted the running time of the di�erent models
against the number of paths per passenger. This plot clearly shows the linear correla-
tion between the number of journeys per passenger and the execution time, con�rm-
ing that our algorithm achieves the same e�ciency for all tested decision models.

Besides execution time and number of assigned journeys, all decision models yield
similar assignments. The average travel time, for example, ranges from 46:28 minutes
for the optimal assignment to 47:10 minutes for the Kirchho� model with β = 0.5. The
reason for this is that additional suboptimal paths found by the algorithm are either
only slight variations of the optimal path or have only a small probability and thus
do not contribute much to the average. Similar observations can be made for other
quality metrics such as average number of vehicles used or average walking time.

8.5 Final Remarks
In this chapter we developed e�cient tra�c assignment algorithms for both, public
transportation networks and multimodal networks. We achieved this by adapting
CSA and the MEAT technique for e�cient evaluation of a sequential route choice
model. As a result we presented the highly e�cient CBA algorithm, which is com-
patible with a wide range of discrete choice models that are commonly used in tra�c
assignments. In an experimental evaluation we demonstrated that our approach
computes assignments that are comparable to those found by a state-of-the-art com-
mercial tra�c assignment software. However, our approach is about two orders of
magnitude faster than the commercial tool.

We proceeded by combining our assignment algorithm with ULTRA, in order to
enable multimodal assignments. Furthermore, we presented an improved represen-
tation of passenger groups, which resulted in a signi�cantly reduced running time
of our algorithm. Because of this, the running time of ULTRA-CBA is comparable
to the running time of CBA, despite the fact that ULTRA-CBA operates on a much
larger network. Moreover, for large passenger multipliers (i.e., increased result ac-
curacy) ULTRA-CBA is even faster than CBA. Overall, the parallelized version of
our multimodal assignment algorithm is capable of computing an assignment for
over 1.2 million origin-destination pairs in less than 17 seconds.
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Future Work. For future work, we would like to improve the overall quality of the
computed assignments by integrating more complex journey choice models. More
sophisticated models could for example consider vehicle capacities and reduce the
likelihood of assigning passengers to overcrowded vehicles. Furthermore, it would
be interesting to correlate the probabilities of journeys that overlap partially, for
example if both use the same vehicle as a leg of the journey. Finally, we would like to
incorporate the cycle elimination phase into the assignment phase, such that journeys
containing cycles are not assigned in the �rst place.
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9 Conclusion

In this thesis, we developed novel algorithms for e�cient multimodal journey plan-
ning as well as the computation of multimodal tra�c assignments. During the design
of these algorithms we focused especially on the combination of schedule-based pub-
lic transit with non-schedule-based private modes of transportation, which has been
a big challenge for previous journey planning algorithms. In order to �nd practicable
solutions for this and other challenges that arise in the context of multimodal journey
planning we followed the principles of Algorithm Engineering methodology. Thus,
we placed special emphasis on the performance of our algorithms on real world data.
In the following, we present a summary of our main contributions. Afterwards, we
conclude this work with an outlook on problems that are still open and propose some
interesting topics for future work.

9.1 Summary

The �rst problem that we considered in this work was the e�cient computation of
multimodal pro�les, i.e., �nding all optimal journeys in multimodal networks that de-
part within a given interval. In order to solve this problem we proposed an algorithm
that iteratively reduces the departure time interval by cleverly applying preexisting
journey planning algorithms for �xed departure times. We demonstrated the feasibil-
ity of our approach through an experimental evaluation on four real world networks.
Since no multimodal pro�le algorithms existed prior to our work, we compared our
approach to the pro�le variant of CSA, which can only handle transitively closed
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graphs. While our new algorithm is not as fast as CSA, which is not surprising as the
multimodal network is signi�cantly larger than the transitive network, running times
are still comparable. Overall, our algorithm only needs a few minutes to compute full
24 hour pro�les. Furthermore, our e�cient pro�le algorithm enabled us to compare
journeys with and without unrestricted walking in depth. As a result, we found that
considering multimodal journeys can improve travel times signi�cantly. Moreover,
we observed that walking is particularly important at the begin and the end of a
journey, while walking between two public transit trips is less often required.

Based on this observation we developed ULTRA, a preprocessing technique that
can be combined with various preexisting public transit journey planning algorithms
in order to enable e�cient multimodal journey planning. Our approach is based on
the idea of �nding a small set of shortcuts that is su�cient to represent all necessary
transfers of Pareto-optimal journeys. For the computation of these shortcuts, we
presented an e�cient preprocessing algorithm that can easily be parallelized and
only takes a few minutes to process smaller networks. Even for the largest network
available to us the shortcuts could be computed in two and a half hours. As query
algorithms for our ULTRA approach we implemented an evaluated RAPTOR, CSA, and
Trip-Based Routing. Notably, this means that we have developed the �rst multimodal
variant of CSA and Trip-Based Routing. In an extensive experimental evaluation
we have demonstrated that all three query algorithms have running times that are
comparable to their basic variants for public transit networks, despite the fact that
the multimodal network is signi�cantly larger. The fastest approach of the three is
ULTRA-Trip-Based, which is an order of magnitude faster than MR-∞, the fastest
previously known multi-modal algorithm for bi-criteria optimization. Furthermore,
we demonstrated that the ULTRA approach does not only work if walking is used as
transfer mode, but is in fact feasible independently of the speed of the transfer mode.

We continued with adapting ULTRA for a more complex scenario that considers
bike sharing as an additional transportation mode, besides public transit and walking.
In particular, we developed two novel approaches for modeling networks that contain
bike sharing stations of competing bike sharing operators: the operator-dependent
and operator-expanded model. Additionally, we developed a fast preprocessing step
called operator pruning, which can be used to accelerate queries in both models. We
demonstrated with an experimental evaluation that ULTRA-RAPTOR in combination
with our operator pruning approach can compute journeys more than an order of
magnitude faster than a variant of MCR, which we used as baseline. Moreover, we
showed that the running time improvement achieved by operator running has an
even greater e�ect on the preprocessing phase of ULTRA. For metropolitan networks
operator pruning yields a speed-up factor of 10 for the shortcut computation and for
the country sized networks the shortcut computation is more than 20 times faster
than without operator pruning.
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The last problem that we addressed in this work is the assignment problem. We
presented the CBA algorithm that e�ciently solves the assignment problem for public
transit networks by evaluating a sequential route choice model using algorithmic
approaches that are based on CSA. This algorithm is capable of computing high
quality assignments 100 times faster than state-of-the-art commercial tools. We
further improved our algorithm by combining it with ULTRA, which enabled us to
compute assignments for multimodal networks. In combination with some general
improvements to our assignment algorithm, ULTRA-CBA is capable of computing an
assignment for over 1.2 million origin-destination pairs in less than 17 seconds, which
is orders of magnitude faster than existing solutions. Moreover, we demonstrated that
our assignment algorithm is compatible with several well-known decision models.

In summary, the main contribution of this thesis is ULTRA, a versatile framework
for multimodal journey planning. We demonstrated the e�ciency and feasibility of
our approach for multimodal networks with various transfer modes. Furthermore,
we adapted our approach to more complex applications, such as journey planning
with bike sharing or the computation of tra�c assignments.

9.2 Outlook
For future work, it would be interesting to adapt ULTRA to some advanced scenarios.
One such scenario is the multicriteria optimization. Currently ULTRA guarantees
that all Pareto-optimal journeys with respect to travel time and number of used trips
can be found. However, there exist many other important properties of a journey
that a passenger might want to optimize, such as the price of the journey or the total
length of all walking transfers. Thus, it would be interesting to compute a small set of
transfer shortcuts that cover all Pareto-optimal journeys with respect to these criteria.

Another important scenario is journey planning in networks where some of the
trips are delayed. Most public transit journey planning algorithms handle delays by
repeating the preprocessing steps once the delay is known. However, for ULTRA
this approach is only feasible on small networks, since the preprocessing phase
takes several hours for large networks like Germany. Thus, it would be interest-
ing to compute an extended set of transfer shortcuts that are su�cient for the
computation of optimal journeys if small or anticipated delays occur.

Regarding the tra�c assignment problem it would be interesting to consider vehicle
capacities. A common approach for this within the literature are iterative techniques,
where the utility of a journey depends on the utilization of the vehicles from previous
iterations. However, these techniques are often not practicable, as they take several
hours or even days to converge. Since our assignment algorithm is signi�cantly faster
than preexisting algorithms it could be used to make iterative approaches viable.
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C Deutsche Zusammenfassung

Fahrplanauskunftssysteme (wie der DB Navigator) und Routenplanungssysteme für
den Straßenverkehr (wie zum Beispiel Google Maps) sind aus unserem Alltag nicht
mehr wegzudenken. Die weite Verbreitung derartiger Routenplanungsanwendungen
liegt dabei nicht zuletzt an den algorithmischen Entwicklungen der letzten Jahrzehnte.
Für Straßennetze lässt sich zum Beispiel eine kürzeste Strecke quer durch Europa
in etwa einer Millisekunde berechnen. Und auch in der Fahrplanauskunft können
Verbindungen innerhalb Deutschlands in weniger als 50 Millisekunden gefunden
werden. Betrachtet man aber ein kombiniertes (multimodales) Netzwerk, in dem das
Fortbewegungsmittel beliebig gewechselt werden kann, so steigt die zur Berechnung
einer optimalen Reiseverbindung benötigte Zeit deutlich an.

In meiner Arbeit betrachte ich verschiedene Variationen des Kürzeste-Wege-
Problems in multimodalen Verkehrsnetzwerken. Dabei betrachte ich das Problem
nicht nur aus der Sicht eines Fahrgastes, sondern auch aus Sicht der Verkehrsunter-
nehmen. Für einen Fahrgast sind vor allem Algorithmen relevant, welche die beste
Verbindung zwischen zwei gegebenen Orten im Netzwerk berechnen. Verkehrsunter-
nehmen interessieren sich im Gegensatz dazu oft für sogenannte Traffic Assignments,
welche eine Gesamtsicht auf das Netzwerk geben. Dabei ist eine Liste mit der Nach-
frage für das gesamte Netzwerk gegeben und der daraus resultierende Passagier�uss
gesucht, um zum Beispiel die Auslastung einzelner Züge bestimmen zu können.

Im ersten Teil meiner Arbeit beschäftige ich mich mit multimodalen Routenpla-
nungsalgorithmen für einzelne Paare von Start- und Zielort. Dabei zeigt sich, dass
schon die Verbindung von nur zwei Verkehrsmodi (ö�entlicher Verkehr (ÖV) und
zu Fuß gehen) zu Anfragezeiten im Sekundenbereich führt. Darüber hinaus stellt
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sich die Frage, in welchem Umfang zu Fuß laufen überhaupt relevant für optimale
Reiseverbindungen ist. Um dieser Frage nachzugehen, entwickle ich einen ersten Al-
gorithmus für multimodale Profil-Suchen, bei denen keine konkrete Reisezeit gegeben
ist, sondern alle optimalen Verbindungen in einem Zeitintervall gesucht werden. Die
Grundidee des Algorithmus basiert darauf, das Zeitintervall, für das noch nicht alle
optimalen Verbindungen bekannt sind, sukzessive zu verkleinern, bis das ganze Pro�l
berechnet wurde. Auf diese Weise wird es möglich, Pro�le, welche einen ganzen Tag
umfassen, in wenigen Sekunden zu berechnen.

Die Auswertung einiger Hundert solcher Pro�le (für zufällige Paare von Start- und
Zielort) erlaubt es, die Struktur der gefundenen Lösungen und die Relevanz von langen
Laufwegen genauer zu untersuchen. Dabei zeigt sich, dass langes Laufen zwischen
zwei Fahrten mit ö�entlichen Verkehrsmitteln eher selten vonnöten ist, wohingegen
das Erreichen der ersten Haltestelle oder der Weg von der letzten Haltestelle zum
Zielort durchaus längere Laufstrecken erfordern kann. Diese Erkenntnisse nutze ich,
um eine Beschleunigungstechnik für multimodale Routenplanungsalgorithmen zu
entwickeln. Hierbei ist die Idee, alle Laufwege vorzuberechnen, die zwischen Fahrten
mit dem ÖV liegen, so dass nur noch der Weg zur ersten Haltestelle und der Weg von
der letzten Haltestelle zur Anfragezeit gesucht werden muss. Im Resultat führt dies
zu dem bisher schnellsten bekannten Algorithmus für multimodale Routenplanung.

Darüber hinaus zeige ich, dass dieser Ansatz nicht nur für Laufen, sondern auch
für andere Verkehrsmodi, wie Fahrradfahren oder die Nutzung von Taxis in Kom-
bination mit dem ö�entlichen Verkehr funktioniert. Außerdem zeige ich, wie sich
das Verfahren auf Szenarien mit mehr als zwei Verkehrsmodi (zum Beispiel ÖV +
Laufen + Bike-Sharing) ausweiten lässt.

Im zweiten Teil der Arbeit widme ich mich dem Umlegungsproblem. Hierbei geht
es nicht mehr darum, eine einzelne Anfrage zu beantworten, sondern für Millionen
von Start-Ziel Paaren das Verhalten der Passagiere zu prognostizieren. Da Ergebnisse
zu Beschleunigungstechniken aus der Routenplanung bisher nicht auf dieses Problem
übertragen wurden, betrachte ich es zunächst unimodal. Im Detail zeige ich, wie der
Connection Scan Algorithmus, welcher für Einzelanfragen in reinen ÖV Netzwer-
ken entwickelt wurde, für das Umlegungsproblem angepasst werden kann. Durch
geschicktes Gruppieren der Daten entsteht so ein neuer Algorithmus, der in unter
einer Minute eine Umlegung berechnet, die zuvor etwa eine halbe Stunde benötigte.

Im Anschluss untersuche ich, inwieweit sich die Ansätze und Ergebnisse aus dem
ersten Teil der Arbeit auf das Umlegungsproblem übertragen lassen. Hier zeigt
sich, dass der Grundgedanke der vorberechneten Transfers zwischen Fahrten mit
dem ÖV auch für Umlegungen anwendbar ist. Aufbauend auf dieser Idee zeige ich,
welche weiteren Änderungen am Algorithmus nötig sind, um die beiden Techniken
kombinieren zu können. Als Resultat ergibt sich ein erster e�zienter Algorithmus
für die Umlegungsberechnung in multimodalen Verkehrsnetzwerken.
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