
Faster Transit Routing by Hyper Partitioning

Daniel Delling
Thomas Pajor

Julian Dibbelt
Tobias Zündorf

ATMOS · September 7th, 2017

� Public transportation network

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Public Transit Routing

1

Given:

� Stops
� Routes / Trips
� Footpaths

Goal:
� Find optimal s-t-journeys

� Travel time
� Number of transfers

� Public transportation network

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Public Transit Routing

1

Given:

Goal:
� Find optimal s-t-journeys

� Travel time
� Number of transfers

� Stops
� Routes / Trips
� Footpaths

� Public transportation network

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Public Transit Routing

1

Given:

Goal:
� Find optimal s-t-journeys

� Travel time
� Number of transfers

� Stops
� Routes / Trips
� Footpaths 9:00

9:20

9:50
10:00 10:20

� Public transportation network

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Public Transit Routing

1

Given:

Goal:
� Find optimal s-t-journeys

� Travel time
� Number of transfers

� Stops
� Routes / Trips
� Footpaths

� Public transportation network

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Public Transit Routing

1

Given:

Goal:
� Find optimal s-t-journeys

� Travel time
� Number of transfers

� Stops
� Routes / Trips
� Footpaths

� Public transportation network

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Public Transit Routing

1

Given:

Goal:
� Find optimal s-t-journeys

� Travel time
� Number of transfers

� Stops
� Routes / Trips
� Footpaths

� Very successful on road networks

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Related Work

2

Partitioning-based Approaches:

Connection Scan Accelerated [Strasser et al. ’14]
� Partition of the stops
� Has not been evaluated for full multi-criteria optimization

� Have already been adapted for common public transit algorithms

Scalable Transfer Patterns [Bast et al. ’16]
� Partition of the stops
� Preprocessing takes several hours

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Related Work – RAPTOR [Delling et al. ’12/’14]

3

Overview:
� Round based algorithm
� Operates on routes as fundamental object

� Has not yet been accelerated through preprocessing

� Easily adapted to additional criteria
Properties:

� One round =∧ Using one vehicle

rRAPTOR: (for profile queries)
� Collect all possible departures at the source
� Run RAPTOR once for each departure

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Related Work – RAPTOR [Delling et al. ’12/’14]

3

Overview:

� Does not require transitively closed footpath graph

� Round based algorithm
� Operates on routes as fundamental object

� Has not yet been accelerated through preprocessing

� Easily adapted to additional criteria
Properties:

� One round =∧ Using one vehicle

rRAPTOR: (for profile queries)
� Collect all possible departures at the source
� Run RAPTOR once for each departure

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Our Approach

4

� Restrict RAPTOR to a subset of the routes
Basic Idea:

� Therefore, use a partition of the routes
� For every cell of the partition:

� Identify routes required for traversing the cell (fill-in)

Required Steps:
� Construct the route graph
� Partition the graph
� Compute the fill-in
� Use partition + fill-in to accelerate query

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Create a Vertex for every Route in the network

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Create a Vertex for every Route in the network

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Vertices are connected by an edge, if they share a stop

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Vertices are connected by an edge, if they share a stop

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Stops with more than two routes result in hyperedges

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Stops with more than two routes result in hyperedges

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Footpaths are treated like routes (and become vertices)

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Vertices are connected by an edge, if they share a stop

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Vertices are connected by an edge, if they share a stop

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

5

Construction:
� Finally, multi-edges can be replaced by weighted edges

2

2

2

1

1

1

1
1

1

1

1

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

6

Partitioning:
� Find a minimal edge cut with balanced cells

2

2

2

1

1

1

1
1

1

1

1

2

1

2

2

1

1

1

1

1

1
1

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

6

Partitioning:
� Find a minimal edge cut with balanced cells

2

1

2

2

1

1

1

1

1

1
1

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

6

Partitioning:
� Find a minimal edge cut with balanced cells

2

1

2

2

1

1

1

1

1

1
1

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

6

Partitioning:
� Cells of the partition correspond to sets of routes

2

1

2

2

1

1

1

1

1

1
1

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Route graph and Partitioning

6

Partitioning:
� Cut edges correspond to cut stops

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Query Algorithm

7

Idea: s

t

� RAPTOR restricted to:
� Source cell
� Target cell

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Query Algorithm

7

Idea: s

t

� RAPTOR restricted to:
� Source cell
� Target cell

Problem:
� Other cells have to be traversed

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Fill-In Computation

8

Goal:
� Find routes required for

traveling between cut stops

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Fill-In Computation

8

Goal:
� Find routes required for

traveling between cut stops

� Run rRAPTOR once for
every cut stop

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Fill-In Computation

8

Goal:
� Find routes required for

traveling between cut stops

Approaches:
� Trade off between preprocessing

time and fill-in size:
� 1.

� Run rRAPTOR for every cut stop,
restricted to adjacent cells

� 2.

� Run rRAPTOR for every pair
of cell and cut stop

� 3.

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Fill-In Representation

9

Problem:
� Not all trips of a route have

to be part of the fill-in
� Not all stops of a route have

to be part of the fill-in
� How can the essential parts

of the route be represented?

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Fill-In Representation

9

Problem:
� Not all trips of a route have

to be part of the fill-in
� Not all stops of a route have

to be part of the fill-in
� How can the essential parts

of the route be represented?

Approaches:
� Mark important events with flags
� Precompute offsets between

important events
� Create compressed fill-in routes

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning10

Query Algorithm

s

t

Idea:
� RAPTOR restricted to:

� Source cell
� Target cell

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning10

Query Algorithm

s

t

Idea:
� RAPTOR restricted to:

� Source cell
� Target cell

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning10

Query Algorithm

s

t

Idea:
� RAPTOR restricted to:

� Source cell
� Target cell
� Fill-in

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning10

Query Algorithm

s

t

Idea:
� RAPTOR restricted to:

� Source cell
� Target cell
� Fill-in

Special Case:
� Source or target is a cut stop

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning10

Query Algorithm

s

t

Idea:
� RAPTOR restricted to:

� Source cell
� Target cell
� Fill-in

Special Case:
� Source or target is a cut stop
� Cut stops are not part of any cell

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning10

Query Algorithm

s

t

Idea:
� RAPTOR restricted to:

� Source cell
� Target cell
� Fill-in

Special Case:
� Source or target is a cut stop
� Cut stops are not part of any cell
� Fill-in is sufficient to reach cut stops

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning11

Experiments – Instances

Structure:

Networks:
� Netherlands and Switzerland

[datahub.io/dataset/gtfs-nl]
[gtfs.geops.ch]

Instance Netherlands Switzerland

Stops 54 500 25 607
Routes 12 989 16 122
Trips 618 961 1 076 662
Stop events 13 231 954 12 733 856
Footpaths 65 018 14 717

� Footpaths up to 200 meters

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning12

Experiments – Preprocessing

Partition with 8 cells:

Netherlands Switzerland

cells # cut % fn. rts % fn. se [m:s] # cut % fn. rts % fn. se [m:s]

2 365 31.5 5.3 67:32 155 19.1 1.5 13:02
4 589 40.7 7.3 82:53 345 32.0 3.5 20:58
8 1,072 54.7 13.0 113:45 545 42.6 6.1 27:19

16 1,980 68.2 22.1 203:34 907 52.5 14.4 36:51

Preprocessing (partition by hmetis):

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning13

Experiments – Queries

Netherlands Switzerland

Algorithm # cells # rnd # rts % fn. rts [ms] # rnd # rts # fn. rts [ms]

RAPTOR — 10.0 28,021 — 29.3 9.1 29,090 — 19.3

HypRAPTOR 2 9.8 24,666 7.8 25.0 9.1 25,306 4.4 16.8
HypRAPTOR 4 9.6 21,313 30.4 19.3 8.9 19,654 24.1 11.8
HypRAPTOR 8 9.7 20,278 57.3 17.5 8.8 17,405 49.1 9.3
HypRAPTOR 16 9.9 21,085 77.3 18.2 8.7 17,799 73.0 10.1

Query Performance:
� Average over 10,000 random queries

[C++ using LLVM 8.1, on a 2015 15-inch MacBook Pro, Core i7, 16 GiB of 1600 MHz DDR-3 RAM]

� Number of rounds (#rnd)
� Number of scanned routes (#rts)
� Percentage of scanned fill-in routes (#fn.rts)

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Conclusion

14

Future work:

Our Algorithm:

� Find better partitions
� Use multi-level partitions

� Optimize more criteria

� First partition based speedup technique for RAPTOR
� Based on route-partition instead of stop-partition
� Based on route-partition instead of stop-partition

� Evaluate for unrestricted walking

Tobias Zündorf – Faster Transit Routing by Hyper Partitioning

Conclusion

14

Future work:

Our Algorithm:

� Find better partitions
� Use multi-level partitions

� Optimize more criteria

� First partition based speedup technique for RAPTOR
� Based on route-partition instead of stop-partition
� Based on route-partition instead of stop-partition

� Evaluate for unrestricted walking

Thank you for your attention!

