

Efficient Traffic Assignment for Public Transit Networks

Lars Briem, Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser, Peter Vortisch, Dorothea Wagner, and Tobias Zündorf

SEA · July 22nd, 2017

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Overview

Introduction:

- Public Transit Network
- Demand
- Problem Statement

Our Algorithm:

- Perceived Arrival Time
- Assignment
- Decision Model

Evaluation:

- Performance
- Result Quality

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Timetable components:

- A set of stops S (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Connection:

- departure stop $s_{dep} \in \mathcal{S}$
- arrival stop $oldsymbol{s}_{\mathsf{arr}} \in \mathcal{S}$

• trip
$$t \in \mathcal{T}$$

- departure time $\tau_{dep} \in \mathbb{R}$
- arrival time $\tau_{arr} \in \mathbb{R}$

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Connection:

- departure stop $s_{dep} \in S$
- arrival stop $s_{\mathsf{arr}} \in \mathcal{S}$

• trip
$$t \in \mathcal{T}$$

- departure time $\tau_{dep} \in \mathbb{R}$
- arrival time $au_{\mathsf{arr}} \in \mathbb{R}$

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Trip:

Subsequent connections served by the same vehicle

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Trip:

Subsequent connections served by the same vehicle

Timetable components:

- A set of stops S (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Transfer graph:

Describes possible transfers between stops

Demand

Definition:

Demand is a list of passengers, each with:

- An origin stop
- A destination stop
- A desired departure time

Example:

_			
	Origin	Destination	Departure Time
	Paddington	King's Cross	8:00 am
	King's Cross	Temple	9:00 am
	Paddington	Embankment	9:30 am
	Piccadilly Circus	Westminster	9:30 am

• • •

Problem Statement: Assignment

Given:

- A public transit network (timetable & transfer graph)
- Demand

Problem:

- Compute the utilization of every vehicle, at every given time
- Assign all passengers to journeys

Problem Statement: Assignment

Given:

- A public transit network (timetable & transfer graph)
- Demand

Problem:

- Compute the utilization of every vehicle, at every given time
- Assign all passengers to journeys

Note:

- A passenger may be assigned proportionally to multiple journeys
- Assigned journeys are not necessarily optimal

Perceived Arrival Time (PAT)

Purpose:

- Associated with a connection c and a specific destination d
- Measures how useful c is for reaching d
- Depends on four parameters:
 - Cost for changing between vehicles λ_{trans}
 - Cost factor for waiting λ_{wait}
 - Cost factor for walking λ_{walk}
 - The maximum delay of a connection Δ_{τ}^{\max}

Assumption:

Passengers try to optimize their PAT

Perceived Arrival Time (PAT)

$$\begin{aligned} & \mathsf{Formal definition:} \\ & \tau^{\mathsf{p}}_{\operatorname{arr}}(c,c',d) \coloneqq \tau^{\mathsf{p}}_{\operatorname{trans}}(c,c') + \tau^{\mathsf{p}}_{\operatorname{walt}}(c,c') + \tau^{\mathsf{p}}_{\operatorname{arr}}(c',d) \\ & \tau^{\mathsf{p}}_{\operatorname{arr}}(c,d \mid \operatorname{walk}) \coloneqq \left\{ \begin{array}{l} \tau_{\operatorname{arr}}(c) & \text{if } v_{\operatorname{arr}}(c) = d \\ \tau_{\operatorname{arr}}(c) + \lambda_{\operatorname{walk}} \cdot \tau_{\operatorname{trans}}(v_{\operatorname{arr}}(c),d) & \text{otherwise} \end{array} \right. \\ & \mathcal{T}(c) \coloneqq \{c' \in \mathcal{C} \mid \operatorname{trip}(c') = \operatorname{trip}(c) \wedge \tau_{\operatorname{dep}}(c') \geq \tau_{\operatorname{arr}}(c)\} \\ & \tau^{\mathsf{p}}_{\operatorname{arr}}(c,d \mid \operatorname{trip}) \coloneqq \left\{ \begin{array}{l} \min\{\tau^{\mathsf{p}}_{\operatorname{arr}}(c',d) \mid c' \in \mathcal{T}(c)\} & \text{if } \mathcal{T}(c) \neq \emptyset \\ \infty & \text{otherwise} \end{array} \right. \\ & \tau^{\mathsf{p}}_{\operatorname{arr}}(c,d \mid \operatorname{trip}) \coloneqq \left\{ \begin{array}{l} \min\{\tau^{\mathsf{p}}_{\operatorname{arr}}(c',d) \mid c' \in \mathcal{T}(c)\} & \text{if } \mathcal{T}(c) \neq \emptyset \\ \infty & \text{otherwise} \end{array} \right. \\ & \tau^{\mathsf{p}}_{\operatorname{arr}}(c,c',d) \coloneqq \tau^{\mathsf{p}}_{\operatorname{trans}}(c,c') + \tau^{\mathsf{p}}_{\operatorname{wait}}(c,c') + \tau^{\mathsf{p}}_{\operatorname{arr}}(c',d) \\ & \mathcal{R}(c) \coloneqq \{c' \in \mathcal{C} \mid \tau_{\operatorname{wait}}(c,c') \geq 0\} \\ & \mathcal{R}_{\operatorname{opt}}(c) \coloneqq \{c' \in \mathcal{R}(c) \mid \forall \bar{c} \in \mathcal{R}(c) \colon \tau_{\operatorname{wait}}(c,\bar{c}) \geq \tau_{\operatorname{wait}}(c,c') \Rightarrow \tau^{\mathsf{p}}_{\operatorname{arr}}(c,\bar{c},d) \geq \tau^{\mathsf{p}}_{\operatorname{arr}}(c,c',d)\} \\ & \langle c_{1}, \ldots, c_{k} \rangle \text{ with } \forall i \in [1,k] \colon c_{i} \in \mathcal{R}_{\operatorname{opt}}(c) \land \forall i \in [2,k] \colon \tau_{\operatorname{wait}}(c,c_{i}) \geq \tau_{\operatorname{wait}}(c,c_{i-1}) \\ & \tau^{\mathsf{c}}_{\operatorname{wait}}(i) \coloneqq \left\{ \begin{array}{l} \tau_{\operatorname{wait}}(c,c_{i}) & \text{if } i \in [1,k] \\ -\infty & \text{otherwise} \end{array} \right. \\ & \tau^{\mathsf{p}}_{\operatorname{arr}}(c,d \mid \operatorname{trans}) \coloneqq \left\{ \begin{array}{l} \sum_{i=1}^{k} \left(\frac{P[\tau^{\mathsf{c}}_{\operatorname{wait}}(i-1) < \Delta^{\mathsf{c}}_{\tau} \leq \tau^{\mathsf{c}}_{\operatorname{wait}}(i)] \\ & P[\Delta^{\mathsf{c}}_{\tau} \leq \tau^{\mathsf{c}}_{\operatorname{wait}}(k)] & \cdot \tau^{\mathsf{p}}_{\operatorname{arr}}(c,c_{i},d) \end{array} \right\} \right. \\ & \text{otherwise} \end{array} \right. \end{aligned}$$

Institute of Theoretical Informatics Algorithmics Group

Example:

Perceived Arrival Time (PAT)

$$\lambda_{walk} = 3, \ \lambda_{wait} = 2, \ \lambda_{trans} = 5 \min$$

Perceived Arrival Time (PAT)

Example:

- $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5 \text{ min}$
- **Case 1:** Connection *c* reaches destination

 \Rightarrow PAT = arrival time $\tau_{arr}(c)$

 C_1 c₂: <u>9:40 − 10:30</u>

Perceived Arrival Time (PAT)

Example:

- $\lambda_{walk} = 3, \ \lambda_{wait} = 2, \ \lambda_{trans} = 5 \min$
- **Case 2:** Walk from connection *c* to destination

$$\Rightarrow$$
 PAT = $\tau_{arr}(c)$ + ($\lambda_{walk} \cdot \tau_{walking}$)

1000

$$\begin{array}{c|c} \hline Connection & PAT \\ \hline C_4 & 11:00 \\ \hline C_3 & 11:10 \\ \hline C_2 \\ \hline C_1 \\ \end{array}$$

Institute of Theoretical Informatics

Algorithmics Group

• $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5 \text{ min}$ **Case 3:** Continue with con. c' of same trip

 \Rightarrow PAT = PAT c'

Example:

<i>C</i> ₄	11:00
<i>C</i> ₃	11:10
<i>C</i> ₂	11:00
<i>C</i> ₁	

Connoction

DAT

Example:

- $\lambda_{\text{walk}} = 3, \quad \lambda_{\text{wait}} = 2, \quad \lambda_{\text{trans}} = 5 \text{ min}$
- **Case 4:** Continue with con. c' of different trip

Example:

Perceived Arrival Time (PAT)

- $\lambda_{\text{walk}} = 3, \quad \lambda_{\text{wait}} = 2, \quad \lambda_{\text{trans}} = 5 \text{ min}$
- Case 4: Continue with con. c' of different trip

$\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5 \text{ min}$

Example:

Case 4: Continue with some option *o_i* \Rightarrow PAT = \sum_{i} (transfer probability(o_i) $\cdot o_i$)

Perceived Arrival Time (PAT)

PAT

11:00

11:10

11:00

Connection

C₄

 C_3

 C_{2}

 C_1

Example:

$$\lambda_{walk} = 3$$
, $\lambda_{wait} = 2$, $\lambda_{trans} = 5$ min
Case 4: Continue with some option o_i
⇒ PAT = $\sum_i (transfer probability(o_i) \cdot o_i)$

 $0.5 \cdot 11:30 + 0.5 \cdot 12:50 = 12:10$ $o_{1}: 11:00 + 5 + 3.5 + 2.5 = 11:30$ $c_{2}: 9:40 - 10:30$ $c_{3}: 10:10 - 10:40$ 10 min $c_{3}: 10:10 - 10:40$ 10 min $c_{3}: 10:10 - 10:40$ 10 min $c_{3}: 11:10 + 5 + 3.15 + 2.25 = 12:50$

Perceived Arrival Time (PAT)

PAT

11:00

11:10

11:00

12:10

Connection

 C_4

*C*₃

 C_2

 C_1

021 11110 1 0 1 0

Our Algorithm

Concept:

- Simulate passengers movement through the network
- Decide per connection *c*, which passengers use *c*
- Passengers with same destination meet
 - \Rightarrow Have to make the same decisions
 - \Rightarrow Algorithm can benefit from synergy effects

Our Algorithm

Concept:

- Simulate passengers movement through the network
- Decide per connection *c*, which passengers use *c*
- Passengers with same destination meet
 - \Rightarrow Have to make the same decisions
 - \Rightarrow Algorithm can benefit from synergy effects

Overview:

- Sort passengers by destination
- Compute assignment for each destination in 3 steps:
 - Compute PATs for every connection
 - Simulate passenger movement based on PATs
 - Remove unwanted cycles from journeys (optional)

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 1. Generate passengers from demand

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 2. Decide which passengers enter the connection

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 3. Decide which passengers leave the trip

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 4. Move disembarking passengers to their next stop

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 1. Generate passengers from demand

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 2. Decide which passengers enter the connection

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 3. Decide which passengers leave the trip

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 4. Move disembarking passengers to their next stop

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 1. Generate passengers from demand

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 2. Decide which passengers enter the connection

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not
- 3. ..

Assignment Computation – Decision Graph

Decision Model

Purpose:

- Determines which connections a passenger takes
- Depends on the passenger's delay tolerance $\lambda_{\Delta max}$

Decision Model

Purpose:

- Determines which connections a passenger takes
- Depends on the passenger's delay tolerance $\lambda_{\Delta max}$

Definition:

• Given the options o_1, \ldots, o_k and their PATs

• Assign a gain g(i) to every option:

$$g(i) := \max\left(0, \min_{j \neq i}(PAT(o_j)) - PAT(o_i) + \lambda_{\Delta \max}\right)$$

The probability P[i] that a passenger chooses option i is:

$$P[i] := \frac{g(i)}{\sum_{j=1}^{k} g(j)}$$

Cycles

Cycle definition:

- Visiting a stop more than once
- Assigning cycles might be undesirable
- Journey with cycle can have minimum PAT
- High waiting cost leads to cycles

Karlsruhe Institute of Technology

Cycles

Cycle definition:

- Visiting a stop more than once
- Assigning cycles might be undesirable
- Journey with cycle can have minimum PAT
- High waiting cost leads to cycles

Cycles

Cycle definition:

- Visiting a stop more than once
- Assigning cycles might be undesirable
- Journey with cycle can have minimum PAT
- High waiting cost leads to cycles

12 Tobias Zündorf – Efficient Traffic Assignment for Public Transit Networks

Evaluation

Instance:

- Greater region of Stuttgart
- Reaching as far as Frankfurt, Basel or Munich
- Comprises the traffic of one day

Number of vertices	15 115
Number of stops	13941
Number of edges	33 890
Number of edges without loops	18775
Number of connections	780 042
Number of trips	47 844
Number of passenger	1249910

Evaluation – Running Time

Used parameters:

- Walking cost factor $\lambda_{walk} = 2$
- Waiting cost factor $\lambda_{wait} = 0.5$
- Transfer cost $\lambda_{trans} = 5 \text{ min}$
- Delay tolerance $\lambda_{\Delta max} = 5 \min$
- Max delay $\Delta_{\tau}^{\max} = 1 \min$

Running time comparison:

- VISUM running time \approx 30 min (using 8 threads)
- Our algorithm: (passenger multiplier = 10)

Number of threads	1	2	4
Running time [sec]	108.92	65.57	38.41

Evaluation – Running Time

Used parameters:

- Walking cost factor $\lambda_{walk} = 2$
- Waiting cost factor $\lambda_{wait} = 0.5$
- Transfer cost $\lambda_{trans} = 5 \text{ min}$
- Delay tolerance $\lambda_{\Delta max} = 5 \text{ min}$
- Max delay $\Delta_{\tau}^{\max} = 1 \min$

No measurable influence on the running time

Influence the running time

Running time comparison:

- VISUM running time \approx 30 min (using 8 threads)
- Our algorithm: (passenger multiplier = 10)

Number of threads	1	2	4
Running time [sec]	108.92	65.57	38.41

Evaluation – Running Time

- Both assignments look similar
- VISUM produces a slightly lower travel time
- Our algorithm produces a slightly lower number of trips

	VISUM			Our Algorithm		
Quantity	min	mean	max	min	mean	max
Total travel time [min]	2.98	46.885	429.00	2.98	47.199	429.00
Time spent in vehicle [min]	0.02	21.059	380.00	0.02	21.231	323.97
Time spent walking [min]	2.00	22.394	149.00	2.00	22.476	149.00
Time spent waiting [min]	0.00	3.432	217.02	0.00	3.492	217.02
Trips per passenger	1.00	1.771	6.00	1.00	1.746	8.00
Connections per passenger	1.00	9.396	109.00	1.00	9.474	97.00
Passengers per connection	0.00	12.740	1 290.10	0.00	12.847	1 233.60

- Both assignments look similar
- VISUM produces a slightly lower travel time
- Our algorithm produces a slightly lower number of trips

		VISUM		Our Algorithm		
Quantity	min	mean	max	min	mean	max
Total travel time [min]	2.98	46.885	429.00	2.98	47.199	429.00
Time spent in vehicle [min]	0.02	21.059	380.00	0.02	21.231	323.97
Time spent walking [min]	2.00	22.394	149.00	2.00	22.476	149.00
Time spent waiting [min]	0.00	3.432	217.02	0.00	3.492	217.02
Trips per passenger	1.00	1.771	6.00	1.00	1.746	8.00
Connections per passenger	1.00	9.396	109.00	1.00	9.474	97.00
Passengers per connection	0.00	12.740	1 290.10	0.00	12.847	1 233.60

- Both assignments look similar
- VISUM produces a slightly lower travel time
- Our algorithm produces a slightly lower number of trips

	VISUM			Our Algorithm		
Quantity	min	mean	max	min	mean	max
Total travel time [min]	2.98	46.885	429.00	2.98	47.199	429.00
Time spent in vehicle [min]	0.02	21.059	380.00	0.02	21.231	323.97
Time spent walking [min]	2.00	22.394	149.00	2.00	22.476	149.00
Time spent waiting [min]	0.00	3.432	217.02	0.00	3.492	217.02
Trips per passenger	1.00	1.771	6.00	1.00	1.746	8.00
Connections per passenger	1.00	9.396	109.00	1.00	9.474	97.00
Passengers per connection	0.00	12.740	1 290.10	0.00	12.847	1 233.60

- Both assignments look similar
- VISUM produces a slightly lower travel time
- Our algorithm produces a slightly lower number of trips

	VISUM			Our Algorithm		
Quantity	min	mean	max	min	mean	max
Total travel time [min]	2.98	46.885	429.00	2.98	47.199	429.00
Time spent in vehicle [min]	0.02	21.059	380.00	0.02	21.231	323.97
Time spent walking [min]	2.00	22.394	149.00	2.00	22.476	149.00
Time spent waiting [min]	0.00	3.432	217.02	0.00	3.492	217.02
Trips per passenger	1.00	1.771	6.00	1.00	1.746	8.00
Connections per passenger	1.00	9.396	109.00	1.00	9.474	97.00
Passengers per connection	0.00	12.740	1 290.10	0.00	12.847	1 233.60

Thank you for your attention!

