Efficient Traffic Assignment for Public Transit Networks

Lars Briem, Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser,

 Peter Vortisch, Dorothea Wagner, and Tobias ZündorfSEA • July 22nd, 2017

INSTITUTE OF THEORETICAL INFORMATICS • ALGORITHMICS GROUP

KIT - University of the State of Baden-Wuertemberg and
National Laboratory of the Helmholtz Association
WWWkit,edu

Overview

Introduction:

- Public Transit Network
- Demand
- Problem Statement

Our Algorithm:

- Perceived Arrival Time
- Assignment
- Decision Model

Evaluation:

- Performance
- Result Quality

Public Transit Network

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Public Transit Network

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Public Transit Network

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Connection:

- departure stop $s_{\text {dep }} \in \mathcal{S}$
- arrival stop $S_{\text {arr }} \in \mathcal{S}$
- trip $t \in \mathcal{T}$

Public Transit Network

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Connection:

- departure stop $s_{\text {dep }} \in \mathcal{S}$
- arrival stop $s_{\text {arr }} \in \mathcal{S}$
- trip $t \in \mathcal{T}$
- departure time $\tau_{\text {dep }} \in \mathbb{R}$
- arrival time $\tau_{\text {arr }} \in \mathbb{R}$

Public Transit Network

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Trip:

- Subsequent connections served by the same vehicle

Public Transit Network

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Trip:

- Subsequent connections served by the same vehicle

Trip 2:

Public Transit Network

Timetable components:

- A set of stops \mathcal{S} (stops, platforms)
- A set of connections \mathcal{C}
- A set of trips \mathcal{T} (minimum change times, walking)
- A set of transfer edges $\mathcal{E} \subseteq \mathcal{S} \times \mathcal{S}$ (vehicles)

Transfer graph:

- Describes possible transfers between stops

0 min

Demand

Definition:

- Demand is a list of passengers, each with:
- An origin stop
- A destination stop
- A desired departure time

Example:

Origin	Destination	Departure Time
Paddington	King's Cross	$8: 00 \mathrm{am}$
King's Cross	Temple	$9: 00 \mathrm{am}$
Paddington	Embankment	$9: 30 \mathrm{am}$
Piccadilly Circus	Westminster	$9: 30 \mathrm{am}$

Problem Statement: Assignment

Given:

- A public transit network (timetable \& transfer graph)
- Demand

Problem:

- Compute the utilization of every vehicle, at every given time
- Assign all passengers to journeys

Problem Statement: Assignment

Given:

- A public transit network (timetable \& transfer graph)
- Demand

Problem:

- Compute the utilization of every vehicle, at every given time
- Assign all passengers to journeys

Note:

- A passenger may be assigned proportionally to multiple journeys
- Assigned journeys are not necessarily optimal

Perceived Arrival Time (PAT)

Purpose:

- Associated with a connection c and a specific destination d
- Measures how useful c is for reaching d
- Depends on four parameters:
- Cost for changing between vehicles $\lambda_{\text {trans }}$
- Cost factor for waiting $\lambda_{\text {wait }}$
- Cost factor for walking $\lambda_{\text {walk }}$
- The maximum delay of a connection $\Delta_{\tau}^{\max }$

Assumption:

- Passengers try to optimize their PAT

Perceived Arrival Time (PAT)

Formal definition:

$$
\begin{aligned}
& \tau_{\mathrm{arr}}^{\mathrm{p}}\left(c, c^{\prime}, d\right):=\tau_{\text {trans }}^{\mathrm{p}}\left(c, c^{\prime}\right)+\tau_{\text {wait }}^{\mathrm{p}}\left(c, c^{\prime}\right)+\tau_{\mathrm{arr}}^{\mathrm{p}}\left(c^{\prime}, d\right) \\
& \tau_{\text {arr }}^{\mathrm{p}}(c, d \mid \text { walk }):= \begin{cases}\tau_{\operatorname{arr}}(c) & \text { if } v_{\operatorname{arr}}(c)=d \\
\tau_{\operatorname{arr}}(c)+\lambda_{\text {walk }} \cdot \tau_{\text {trans }}\left(v_{\text {arr }}(c), d\right) & \text { otherwise }\end{cases} \\
& \mathcal{T}(c):=\left\{c^{\prime} \in \mathcal{C} \mid \operatorname{trip}\left(c^{\prime}\right)=\operatorname{trip}(c) \wedge \tau_{\operatorname{dep}}\left(c^{\prime}\right) \geq \tau_{\operatorname{arr}}(c)\right\} \\
& \tau_{\text {arr }}^{\mathrm{p}}(c, d \mid \text { trip }):= \begin{cases}\min \left\{\tau_{\mathrm{arr}}^{\mathrm{p}}\left(c^{\prime}, d\right) \mid c^{\prime} \in \mathcal{T}(c)\right\} & \text { if } \mathcal{T}(c) \neq \emptyset \\
\infty & \text { otherwise }\end{cases} \\
& \tau_{\mathrm{arr}}^{\mathrm{p}}\left(c, c^{\prime}, d\right):=\tau_{\text {trans }}^{\mathrm{p}}\left(c, c^{\prime}\right)+\tau_{\text {wait }}^{\mathrm{p}}\left(c, c^{\prime}\right)+\tau_{\mathrm{arr}}^{\mathrm{p}}\left(c^{\prime}, d\right) \\
& \mathcal{R}(c):=\left\{c^{\prime} \in \mathcal{C} \mid \tau_{\text {wait }}\left(c, c^{\prime}\right) \geq 0\right\} \\
& \mathcal{R}_{\mathrm{opt}}(c):=\left\{c^{\prime} \in \mathcal{R}(c) \mid \forall \bar{c} \in \mathcal{R}(c): \tau_{\text {wait }}(c, \bar{c}) \geq \tau_{\text {wait }}\left(c, c^{\prime}\right) \Rightarrow \tau_{\mathrm{arr}}^{\mathrm{p}}(c, \bar{c}, d) \geq \tau_{\mathrm{arr}}^{\mathrm{p}}\left(c, c^{\prime}, d\right)\right\} \\
& \left\langle c_{1}, \ldots, c_{k}\right\rangle \text { with } \forall i \in[1, k]: c_{i} \in \mathcal{R}_{\text {opt }}(c) \wedge \forall i \in[2, k]: \tau_{\text {wait }}\left(c, c_{j}\right) \geq \tau_{\text {wait }}\left(c, c_{i-1}\right) \\
& \tau_{\text {wait }}^{c}(i):= \begin{cases}\tau_{\text {wait }}\left(c, c_{i}\right) & \text { if } i \in[1, k] \\
-\infty & \text { otherwise }\end{cases} \\
& \tau_{\text {arr }}^{\mathrm{p}}(c, d \mid \text { trans }):= \begin{cases}\sum_{i=1}^{k}\left(\frac{P\left[\tau_{\text {wait }}^{c}(i-1)<\Delta_{\tau}^{c} \leq \tau_{\text {wait }}^{c}(i)\right]}{P\left[\Delta_{\tau}^{c} \leq \tau_{\text {wait }}^{c}(k)\right]} \cdot \tau_{\text {arr }}^{\mathrm{p}}\left(c, c_{i}, d\right)\right) & \text { if } k>0 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Perceived Arrival Time (PAT)

Example:

- $\lambda_{\text {walk }}=3, \quad \lambda_{\text {wait }}=2, \quad \lambda_{\text {trans }}=5 \mathrm{~min}$

Connection PAT	
c_{4}	
c_{3}	
c_{2}	
c_{1}	

Perceived Arrival Time (PAT)

Example:

- $\lambda_{\text {walk }}=3, \quad \lambda_{\text {wait }}=2, \quad \lambda_{\text {trans }}=5 \mathrm{~min}$
- Case 1: Connection c reaches destination
\Rightarrow PAT $=$ arrival time $\tau_{\text {arr }}(c)$

Connection	PAT
C_{4}	$11: 00$
c_{3}	
c_{2}	
c_{1}	

Perceived Arrival Time (PAT)

Example:

- $\lambda_{\text {walk }}=3, \quad \lambda_{\text {wait }}=2, \lambda_{\text {trans }}=5 \mathrm{~min}$
- Case 2: Walk from connection c to destination
\Rightarrow PAT $=\tau_{\text {arr }}(c)+\left(\lambda_{\text {walk }} \cdot \tau_{\text {walking }}\right)$

Connection	PAT
C_{4}	$11: 00$
C_{3}	$11: 10$
C_{2}	
c_{1}	

Perceived Arrival Time (PAT)

Example:

- $\lambda_{\text {walk }}=3, \quad \lambda_{\text {wait }}=2, \lambda_{\text {trans }}=5 \mathrm{~min}$
- Case 3: Continue with con. c^{\prime} of same trip
$\Rightarrow \mathrm{PAT}=\mathrm{PAT} c^{\prime}$

Connection	PAT
C_{4}	$11: 00$
c_{3}	$11: 10$
c_{2}	$11: 00$
c_{1}	

Perceived Arrival Time (PAT)

Example:

- $\lambda_{\text {walk }}=3, \quad \lambda_{\text {wait }}=2, \quad \lambda_{\text {trans }}=5 \mathrm{~min}$
- Case 4: Continue with con. c^{\prime} of different trip

Connection	PAT
C_{4}	$11: 00$
C_{3}	$11: 10$
C_{2}	$11: 00$
c_{1}	

Perceived Arrival Time (PAT)

Example:

- $\lambda_{\text {walk }}=3, \quad \lambda_{\text {wait }}=2, \quad \lambda_{\text {trans }}=5 \mathrm{~min}$
- Case 4: Continue with con. c^{\prime} of different trip

Connection	PAT
C_{4}	$11: 00$
C_{3}	$11: 10$
C_{2}	$11: 00$
c_{1}	

Perceived Arrival Time (PAT)

Example:

- $\lambda_{\text {walk }}=3, \quad \lambda_{\text {wait }}=2, \lambda_{\text {trans }}=5 \mathrm{~min}$
- Case 4: Continue with some option o_{i}
\Rightarrow PAT $=\sum_{i}\left(\right.$ transfer probability $\left.\left(o_{i}\right) \cdot o_{i}\right)$

Connection	PAT
c_{4}	$11: 00$
c_{3}	$11: 10$
c_{2}	$11: 00$

$$
P[1] \cdot o_{1}+(P[2]-P[1]) \cdot o_{2} \quad o_{1}: 11: 00+5+3 \cdot 5+2 \cdot 5=11: 30
$$

Perceived Arrival Time (PAT)

Example:

- $\lambda_{\text {walk }}=3, \quad \lambda_{\text {wait }}=2, \quad \lambda_{\text {trans }}=5 \mathrm{~min}$
- Case 4: Continue with some option o_{i}
\Rightarrow PAT $=\sum_{i}\left(\right.$ transfer probability $\left.\left(o_{i}\right) \cdot o_{i}\right)$

Connection	PAT
C_{4}	$11: 00$
C_{3}	$11: 10$
c_{2}	$11: 00$
c_{1}	$12: 10$

Our Algorithm

Concept:

- Simulate passengers movement through the network
- Decide per connection c, which passengers use c
- Passengers with same destination meet
\Rightarrow Have to make the same decisions
\Rightarrow Algorithm can benefit from synergy effects

Our Algorithm

Concept:

- Simulate passengers movement through the network
- Decide per connection c, which passengers use c
- Passengers with same destination meet
\Rightarrow Have to make the same decisions
\Rightarrow Algorithm can benefit from synergy effects

Overview:

- Sort passengers by destination
- Compute assignment for each destination in 3 steps:
- Compute PATs for every connection
- Simulate passenger movement based on PATs
- Remove unwanted cycles from journeys (optional)

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

Time: 0:00

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

1. Generate passengers from demand

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

2. Decide which passengers enter the connection

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

3. Decide which passengers leave the trip

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

4. Move disembarking passengers to their next stop

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

1. Generate passengers from demand

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

2. Decide which passengers enter the connection

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

3. Decide which passengers leave the trip

Time: 9:35

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

4. Move disembarking passengers to their next stop

Time: 9:35

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

1. Generate passengers from demand

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

2. Decide which passengers enter the connection

Assignment Computation - Example

- Process connections in ascending order by departure time
- Decide whether passengers use a connection or not

3. ...

Time: 9:40

Assignment Computation - Decision Graph

Decision Model

Purpose:

- Determines which connections a passenger takes
- Depends on the passenger's delay tolerance $\lambda_{\Delta \max }$

Decision Model

Purpose:

- Determines which connections a passenger takes
- Depends on the passenger's delay tolerance $\lambda_{\Delta \max }$

Definition:

- Given the options o_{1}, \ldots, o_{k} and their PATs
- Assign a gain $g(i)$ to every option:

$$
g(i):=\max \left(0, \min _{j \neq i}\left(P A T\left(o_{j}\right)\right)-P A T\left(o_{i}\right)+\lambda_{\Delta \max }\right)
$$

- The probability $P[i]$ that a passenger chooses option i is:

$$
P[i]:=\frac{g(i)}{\sum_{j=1}^{k} g(j)}
$$

Cycles

Cycle definition:

- Visiting a stop more than once
- Assigning cycles might be undesirable
- Journey with cycle can have minimum PAT
- High waiting cost leads to cycles

Cycles

Cycle definition:

- Visiting a stop more than once
- Assigning cycles might be undesirable
- Journey with cycle can have minimum PAT
- High waiting cost leads to cycles

Cycles

Cycle definition:

- Visiting a stop more than once
- Assigning cycles might be undesirable
- Journey with cycle can have minimum PAT
- High waiting cost leads to cycles

Evaluation

Instance:

- Greater region of Stuttgart
- Reaching as far as Frankfurt, Basel or Munich
- Comprises the traffic of one day

Number of vertices	15115
Number of stops	13941
Number of edges	33890
Number of edges without loops	18775
Number of connections	780042
Number of trips	47844
Number of passenger	1249910

Evaluation - Running Time

Used parameters:

- Walking cost factor $\lambda_{\text {walk }}=2$
- Waiting cost factor $\lambda_{\text {wait }}=0.5$
- Transfer cost $\lambda_{\text {trans }}=5 \mathrm{~min}$
- Delay tolerance $\lambda_{\Delta \max }=5 \mathrm{~min}$
- Max delay $\Delta_{\tau}^{\max }=1 \mathrm{~min}$

Running time comparison:

- VISUM running time $\approx 30 \mathrm{~min}$ (using 8 threads)
- Our algorithm: (passenger multiplier = 10)

Number of threads	1	2	4
Running time [sec]	108.92	65.57	38.41

Evaluation - Running Time

Used parameters:

- Walking cost factor $\lambda_{\text {walk }}=2$
- Waiting cost factor $\lambda_{\text {wait }}=0.5$
- Transfer cost $\lambda_{\text {trans }}=5 \mathrm{~min}$
- Delay tolerance $\lambda_{\Delta \max }=5 \mathrm{~min}$
- Max delay $\Delta_{\tau}^{\max }=1 \mathrm{~min}$

No measurable influence on the running time

Running time comparison:

- VISUM running time $\approx 30 \mathrm{~min}$ (using 8 threads)
- Our algorithm: (passenger multiplier = 10)

Number of threads	1	2	4
Running time [sec]	108.92	65.57	38.41

Evaluation - Running Time

Evaluation - Assignment Quality

- Both assignments look similar
- VISUM produces a slightly lower travel time
- Our algorithm produces a slightly lower number of trips

	VISUM					Our Algorithm		
Quantity	\min	mean	\max		\min	mean	\max	
Total travel time [min]	2.98	46.885	429.00		2.98	47.199	429.00	
Time spent in vehicle [min]	0.02	21.059	380.00		0.02	21.231	323.97	
Time spent walking [min]	2.00	22.394	149.00		2.00	22.476	149.00	
Time spent waiting [min]	0.00	3.432	217.02		0.00	3.492	217.02	
Trips per passenger	1.00	1.771	6.00		1.00	1.746	8.00	
Connections per passenger	1.00	9.396	109.00		1.00	9.474	97.00	
Passengers per connection	0.00	12.740	1290.10		0.00	12.847	1233.60	

Evaluation - Assignment Quality

- Both assignments look similar
- VISUM produces a slightly lower travel time
- Our algorithm produces a slightly lower number of trips

	VISUM					Our Algorithm		
Quantity	\min	mean	\max		\min	mean	\max	
Total travel time [min]	2.98	46.885	429.00		2.98	47.199	429.00	
Time spent in vehicle [min]	0.02	21.059	380.00		0.02	21.231	323.97	
Time spent walking [min]	2.00	22.394	149.00		2.00	22.476	149.00	
Time spent waiting [min]	0.00	3.432	217.02		0.00	3.492	217.02	
Trips per passenger	1.00	1.771	6.00		1.00	1.746	8.00	
Connections per passenger	1.00	9.396	109.00		1.00	9.474	97.00	
Passengers per connection	0.00	12.740	1290.10		0.00	12.847	1233.60	

Evaluation - Assignment Quality

- Both assignments look similar
- VISUM produces a slightly lower travel time
- Our algorithm produces a slightly lower number of trips

	VISUM					Our Algorithm		
Quantity	\min	mean	\max		\min	mean	\max	
Total travel time [min]	2.98	46.885	429.00		2.98	47.199	429.00	
Time spent in vehicle [min]	0.02	21.059	380.00		0.02	21.231	323.97	
Time spent walking [min]	2.00	22.394	149.00		2.00	22.476	149.00	
Time spent waiting [min]	0.00	3.432	217.02		0.00	3.492	217.02	
Trips per passenger	1.00	1.771	6.00		1.00	1.746	8.00	
Connections per passenger	1.00	9.396	109.00		1.00	9.474	97.00	
Passengers per connection	0.00	12.740	1290.10		0.00	12.847	1233.60	

Evaluation - Assignment Quality

- Both assignments look similar
- VISUM produces a slightly lower travel time
- Our algorithm produces a slightly lower number of trips

	VISUM					Our Algorithm		
Quantity	\min	mean	\max		\min	mean	\max	
Total travel time [min]	2.98	46.885	429.00		2.98	47.199	429.00	
Time spent in vehicle [min]	0.02	21.059	380.00		0.02	21.231	323.97	
Time spent walking [min]	2.00	22.394	149.00		2.00	22.476	149.00	
Time spent waiting [min]	0.00	3.432	217.02		0.00	3.492	217.02	
Trips per passenger	1.00	1.771	6.00		1.00	1.746	8.00	
Connections per passenger	1.00	9.396	109.00		1.00	9.474	97.00	
Passengers per connection	0.00	12.740	1290.10		0.00	12.847	1233.60	

Thank you for your attention!

Institute of Theoretical Informatics
Algorithmics Group

