

Shortest Feasible Paths with Charging Stops for Battery Electric Vehicles

ACM SIGSPATIAL 2015 · November 6 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, <u>Tobias Zündorf</u>

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Route Planning for Electric Vehicles

Electric vehicles:

- Future means of transportation
- Run on regenerative energy sources

But:

- Restricted battery capacity
- Long recharging times

Therefore : Route planning applications have to consider:

- Energy consumption
- Charging stops

Route Planning for Electric Vehicles

Electric vehicles:

- Future means of transportation
- Run on regenerative energy sources

But:

- Restricted battery capacity
- Long recharging times

Therefore : Route planning applications have to consider:

- Energy consumption
- Charging stops

... but we would still like to travel fast

Task: Given some source *s* and target *t* in a road network

- Find the fastest route from *s* to *t*
- Such that the battery does not deplete

Task: Given some source *s* and target *t* in a road network

- Find the fastest route from *s* to *t*
- Such that the battery does not deplete

(weakiy) NP-hard

Task: Given some source *s* and target *t* in a road network

- Find the fastest route from *s* to *t*
- Such that the battery does not deplete

- 1. Recuperation
 - Vehicles recuperate energy (braking or going downhill)

(weakiy)

Task: Given some source *s* and target *t* in a road network

- Find the fastest route from *s* to *t*
- Such that the battery does not deplete

- 1. Recuperation
 - Vehicles recuperate energy (braking or going downhill)
- 2. Battery Constraints
 - Battery can neither be depleted nor overcharged

Task: Given some source *s* and target *t* in a road network

- Find the fastest route from *s* to *t*
- Such that the battery does not deplete

- 1. Recuperation
 - Vehicles recuperate energy (braking or going downhill)
- 2. Battery Constraints
 - Battery can neither be depleted nor overcharged
- 3. Energy efficient driving vs. time consuming charging stops
 - Detour for reaching a charging station

Task: Given some source *s* and target *t* in a road network

- Find the fastest route from *s* to *t*
- Such that the battery does not deplete

- 1. Recuperation
 - Vehicles recuperate energy (braking or going downhill)
- 2. Battery Constraints
 - Battery can neither be depleted nor overcharged
- 3. Energy efficient driving vs. time consuming charging stops
 - Detour for reaching a charging station
- 4. Charging is not uniform
 - Interrupt charging and take another station

Find the fastest route from *s* to *t*:

Find the fastest route from *s* to *t*:

Reachable area Horizon Charging station

Find the fastest route from *s* to *t*:

Reachable area That the station

Find the fastest route from *s* to *t*:

Find the fastest route from *s* to *t*:

Reachable area Charging station

Find the fastest route from *s* to *t*:

Find the fastest route from s to t:

Fast charging station / swapping station

Find the fastest route from *s* to *t*:

Find the fastest route from s to t: (t)

Reachable area

5 Tobias Zündorf – Shortest Feasible Paths with Charging Stops for Battery Electric Vehicles

Find the fastest route from *s* to *t*:

Find the fastest route from *s* to *t*:

Find the fastest route from *s* to *t*:

• Larger battery \Rightarrow simpler problem ?

Find the fastest route from *s* to *t*:

• Larger battery \Rightarrow simpler problem ?

Find the fastest route from *s* to *t*:

Related Work

Quick and Energy-Efficient Routes: [Storandt '12] Computing Constrained Shortest Paths for Electric Vehicles

- Supports only battery swapping stations (BSS)
- Computes overlay graph of directly reachable BSS
- **BSS** fully recharges in constant time \Rightarrow simple scalar overlay graph
- \Rightarrow Not applicable / sub-optimal in our scenario

Related Work

Quick and Energy-Efficient Routes: [Storandt '12] Computing Constrained Shortest Paths for Electric Vehicles

- Supports only battery swapping stations (BSS)
- Computes overlay graph of directly reachable BSS
- **BSS** fully recharges in constant time \Rightarrow simple scalar overlay graph
- \Rightarrow Not applicable / sub-optimal in our scenario

Routing of Electric Vehicles: [Merting et al. '15] Constrained Shortest Path with Resource Recovering Nodes

- Theoretical analysis of the problem
- Show missing sub-path property
- Optimal solutions can visit a charging station several times

- Incorporate battery constraints in one single function
 - Maps initial State of Charge (SoC) onto resulting SoC
 - Value $-\infty$ indicates an infeasible SoC

- Incorporate battery constraints in one single function
 - Maps initial State of Charge (SoC) onto resulting SoC
 - Value $-\infty$ indicates an infeasible SoC

- Incorporate battery constraints in one single function
 - Maps initial State of Charge (SoC) onto resulting SoC
 - Value $-\infty$ indicates an infeasible SoC

- Incorporate battery constraints in one single function
 - Maps initial State of Charge (SoC) onto resulting SoC
 - Value $-\infty$ indicates an infeasible SoC

- Incorporate battery constraints in one single function
 - Maps initial State of Charge (SoC) onto resulting SoC
 - Value $-\infty$ indicates an infeasible SoC

- Incorporate battery constraints in one single function
 - Maps initial State of Charge (SoC) onto resulting SoC
 - Value $-\infty$ indicates an infeasible SoC

For a single edge or path:

Representable using maximal 3 values

Formally:

- A function cf: $[0, M] \times \mathbb{R}_{\geq 0} \rightarrow [0, M]$, which maps
 - Initial SoC β_s and
 - Desired charging time τ_c onto
 - Resulting SoC after charging

Formally:

- A function cf: $[0, M] \times \mathbb{R}_{\geq 0} \rightarrow [0, M]$, which maps
 - Initial SoC β_s and
 - Desired charging time τ_c onto
 - Resulting SoC after charging

Observation:

- Realisitc charging functions are simpler
- Reducable to univariate function:

 $\widetilde{c}f: \mathbb{R}_{\geq 0} \to [0, M]$ $cf(\beta, \tau_c) := \widetilde{c}f(\tau_c + \widetilde{c}f^{-1}(\beta))$

Formally:

- A function cf: $[0, M] \times \mathbb{R}_{\geq 0} \rightarrow [0, M]$, which maps
 - Initial SoC β_s and
 - Desired charging time τ_c onto
 - Resulting SoC after charging

Observation:

- Realisitc charging functions are simpler
- Reducable to univariate function:

 $\widetilde{c}f: \mathbb{R}_{\geq 0} \to [0, M]$ $cf(\beta, \tau_c) := \widetilde{c}f(\tau_c + \widetilde{c}f^{-1}(\beta))$

Example:

Charging an 60% full battery for 1 time unit cf(60%, 1)

Formally:

- A function cf: $[0, M] \times \mathbb{R}_{\geq 0} \rightarrow [0, M]$, which maps
 - Initial SoC β_s and
 - Desired charging time τ_c onto
 - Resulting SoC after charging

Observation:

- Realisitc charging functions are simpler
- Reducable to univariate function:

 $\widetilde{c}f: \mathbb{R}_{\geq 0} \to [0, M]$ $cf(\beta, \tau_c) := \widetilde{c}f(\tau_c + \widetilde{c}f^{-1}(\beta))$

Example:

Charging an 60% full battery for 1 time unit $cf(60\%, 1) = \widetilde{c}f(1 + 2)$

Karlsruhe Institute of Technology

Formally:

- A function cf: $[0, M] \times \mathbb{R}_{\geq 0} \rightarrow [0, M]$, which maps
 - Initial SoC β_s and
 - Desired charging time τ_c onto
 - Resulting SoC after charging

Observation:

- Realisitc charging functions are simpler
- Reducable to univariate function:

 $\widetilde{c}f: \mathbb{R}_{\geq 0} \to [0, M]$ $cf(\beta, \tau_c) := \widetilde{c}f(\tau_c + \widetilde{c}f^{-1}(\beta))$

Example:

Charging an 60% full battery for 1 time unit $cf(60\%, 1) = \widetilde{c}f(1 + 2) = 80\%$

Formally:

- A function cf: $[0, M] \times \mathbb{R}_{\geq 0} \rightarrow [0, M]$, which maps
 - Initial SoC β_s and
 - Desired charging time τ_c onto
 - Resulting SoC after charging

Observation:

- Realisitc charging functions are simpler
- Reducable to univariate function:

 $\widetilde{cf}: \mathbb{R}_{\geq 0} \to [0, M]$ $cf(\beta, \tau_c) := \widetilde{cf}(\tau_c + \widetilde{cf}^{-1}(\beta))$

Properties:

- Monotonically increasing (Spending time will not decrease SoC)
- Concave (As SoC rises, the charging rate may only decline)

Algorithm:

- Based on multi-criteria Dijkstra
- If no charging station has been used: label = tuple (trip time, SoC)
- Per vertex: Maintain a set of Pareto-optimal labels

Algorithm:

- Based on multi-criteria Dijkstra
- If no charging station has been used: label = tuple (trip time, SoC)
- Per vertex: Maintain a set of Pareto-optimal labels

Problem: When reaching a charging station: How long to stay?

Algorithm:

- Based on multi-criteria Dijkstra
- If no charging station has been used: label = tuple (trip time, SoC)
- Per vertex: Maintain a set of Pareto-optimal labels

Problem: When reaching a charging station: How long to stay?

- Depends on the remaining path to t
- Optimal SoC for departure is yet unknown

Algorithm:

- Based on multi-criteria Dijkstra
- If no charging station has been used: label = tuple (trip time, SoC)
- Per vertex: Maintain a set of Pareto-optimal labels

Problem: When reaching a charging station: How long to stay?

- Depends on the remaining path to t
- Optimal SoC for departure is yet unknown

Solution:

- Delay this decision!
- Keep track of the last passed charging station

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- SoC β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Label: A label ℓ at vertex v is a quadruple $(\tau_t, u, \beta_u, f_{[u,...,v]})$ with:

- Trip time τ_t from s to v (including charging times except at u)
- The last seen charging station u (initially \perp)
- **SoC** β_u by which the last charging station (u) was reached
- Consumption profile $f_{[u,...,v]}$ of the path from u to v (initially \perp)

Edge relaxation:

- Label propagation along an edge: Constant time operation
- Given a label $\ell_v = (\tau_t, \upsilon, \beta_u, f_{[\upsilon, ..., v]})$ at v and an edge e = (v, w):

 $\ell_w := (\tau_t + \tau_d(e), \, {\scriptstyle \textit{U}}, \, \beta_u, \, f_{[u, \ldots, v]} \circ f_e)$

Edge relaxation:

- Label propagation along an edge: Constant time operation
- Given a label $\ell_v = (\tau_t, \upsilon, \beta_u, f_{[\upsilon, ..., v]})$ at v and an edge e = (v, w):

 $\ell_w := (\tau_t + \tau_d(e), \, \underline{U}, \, \beta_{\underline{U}}, \, f_{[\underline{U}, \dots, v]} \circ f_e)$

Label Pareto-domination:

- Linear in complexity of charging function
- **Our solution:** Check Pareto-domination rarely

(Only for the next label to be settled)

Edge relaxation:

- Label propagation along an edge: Constant time operation
- Given a label $\ell_v = (\tau_t, \upsilon, \beta_u, f_{[\upsilon, ..., v]})$ at v and an edge e = (v, w):

 $\ell_w := (\tau_t + \tau_d(e), \, \underline{U}, \, \beta_{\underline{U}}, \, f_{[\underline{U}, \dots, v]} \circ f_e)$

Label Pareto-domination:

- Linear in complexity of charging function
- **Our solution:** Check Pareto-domination rarely

(Only for the next label to be settled)

Reaching another charging station:

- Our labels can store at most one charging station
- Have to specify the charging time for the second last station
- Theorem 1 in the paper proves that this is easy

Speed Up Techniques

CFP & Contraction Hierarchies:

- Shortcut-based technique
- Shortcuts have to maintain Pareto-sets (w.r.t. travel time & energy consumption)

Problem: Shortcut size grows exponentially \Rightarrow uncontracted core

Speed Up Techniques

CFP & Contraction Hierarchies:

- Shortcut-based technique
- Shortcuts have to maintain Pareto-sets (w.r.t. travel time & energy consumption)

Problem: Shortcut size grows exponentially \Rightarrow uncontracted core

CFP & A*:

- Goal directed technique
- Potential function $\pi(v)$ estimates time from v to target t

Our solution: Use bivariate potential $\pi(v, \beta)$ to account for SoC β

Speed Up Techniques

CFP & Contraction Hierarchies:

- Shortcut-based technique
- Shortcuts have to maintain Pareto-sets (w.r.t. travel time & energy consumption)

Problem: Shortcut size grows exponentially \Rightarrow uncontracted core

CFP & A*:

- Goal directed technique
- Potential function $\pi(v)$ estimates time from v to target t

Our solution: Use bivariate potential $\pi(v, \beta)$ to account for SoC β

CHArge = CH & A* & CFP:

- Stop contraction as mean core degree gets to big
- Combine CH-query with A*-search on core

Road Networks:

Instance	# Vertices	# Arcs	# Arcs with $f_e < 0$	#CS
Ger (PTV)	4 692 091	10805429	1 119 710 (10.36%)	1 966
Eur (PTV)	22 198 628	51 088 095	6 060 648 (11.86%)	13810
Osg (OSM)	5 588 146	11711088	1 142 391 (9.75%)	643

- Elevation data: SRTM, v4.1 (srtm.csi.cgiar.org)
- Energy consumption: [Hausberger et al. 09]
 Micro-scale emission model (PHEM), calibrated to Peugeot iOn
- Charging stations: ChargeMap (chargemap.com) random distributions
- Station Types: Battery swapping stations (BSS)
 - Superchargers (50 % in 20 min, 80 % in 40 min)
 - Regular stations (44 kW; 22 kW; 11 kW)

			Prepro.	Query		[Storandt '12]
Instance	#CS	М	[mm:ss]	Feas.	[ms]	[ms]
တ္ Osg	1 000	100 km	11:37	100 %	122	539
о В Osg	100	150 km	11:10	99%	206	1 150
<u></u> ≥ Osg	643	100 km	11:21	98%	326	
O Osg	643	150 km	11:28	99%	308	
တ္တ Ger	1 966	16 kWh	5:03	100%	1 398	
Ger	1 966	85 kWh	4:59	100%	1013	
<u> </u>	13810	16 kWh	30:32	63%	10786	
Õ Eur	13810	85 kWh	30:16	100%	47 921	
တ္ Ger	1 966	16 kWh	5:03	100%	8629	
Ger	1 966	85 kWh	4:59	100%	2614	
Eur	13810	16 kWh	30:32	63%	24 148	
Eur Eur	13810	85 kWh	30:16	100 %	86 193	

			Prepro.	Query		[Storandt '12]
Instance	#CS	M	[mm:ss]	Feas.	[ms]	[ms]
တ္ Osg	1 000	100 km	11:37	100%	122	539
M Osg	100	150 km	11:10	99%	206	1 1 5 0
<u></u> → Osg	643	100 km	11:21	98%	326	
O Osg	643	150 km	11:28	99%	308	
တ္ Ger	1 966	16 kWh	5:03	100%	1 398	
Ger	1966	85 kWh	4:59	100%	1013	
<u></u> ≻ Eur	13810	16 kWh	30:32	63%	10786	
Õ Eur	13810	85 kWh	30:16	100%	47921	
ပ္ Ger	1 966	16 kWh	5:03	100%	8629	
Ger	1966	85 kWh	4:59	100%	2614	
🖉 Eur	13810	16 kWh	30:32	63%	24 1 48	
Eur Eur	13810	85 kWh	30:16	100%	86 1 93	

			Prepro.	Query		[Storandt '12]
Instance	#CS	М	[mm:ss]	Feas.	[ms]	[ms]
က Osg	1 000	100 km	11:37	100%	122	539
S Osg	100	150 km	11:10	99%	206	1 150
<u></u> ≥ Osg	643	100 km	11:21	98%	326	—
O Osg	643	150 km	11:28	99%	308	
တ္ Ger	1 966	16 kWh	5:03	100%	1 398	
Ger	1 966	85 kWh	4:59	100%	1013	—
<u></u> Eur	13810	16 kWh	30:32	63%	10786	—
Õ Eur	13810	85 kWh	30:16	100%	47921	
ပ္ Ger	1 966	16 kWh	5:03	100 %	8629	
Ger	1 966	85 kWh	4:59	100%	2614	
Eur	13810	16 kWh	30:32	63%	24 1 48	—
Eur Eur	13810	85 kWh	30:16	100%	86 1 9 3	—

			Prepro.	Qu	iery	[Storandt '12]
Instance	#CS	М	[mm:ss]	Feas.	[ms]	[ms]
က Osg	1 000	100 km	11:37	100%	122	539
о М Osg	100	150 km	11:10	99%	206	1 1 5 0
<u></u> → Osg	643	100 km	11:21	98%	326	
O Osg	643	150 km	11:28	99%	308	
တ္ Ger	1 966	16 kWh	5:03	100 %	1 398	
Ger	1 966	85 kWh	4:59	100%	1013	
<u></u> Eur	13810	16 kWh	30:32	63 %	10786	
Ö Eur	13810	85 kWh	30:16	100 %	47 921	
တ္ Ger	1 966	16 kWh	5:03	100 %	8629	
Ger	1 966	85 kWh	4:59	100%	2614	
Eur	13810	16 kWh	30:32	63 %	24 148	
Eur Eur	13810	85 kWh	30:16	100%	86 193	

Final Remarks & Conclusion

- Route planning for EVs raises new challenges
 - Considering energy consumption is essential
 - Charging stops should be planned in advance
 - Results in a (weakly) NP-hard problem
- Our approach **CHArge**:
 - Can handle arbitrary charging station types
 - Moderate preprocessing times
 - Fast queries on continental sized networks: Europe ~1 min; Germany ~1 sec
 - Even better results possible, using heuristics: Europe 0.1 – 1 sec; Germany 20 – 100 ms often optimal solutions, mean error ~1%

