Cops and Robber:

When Capturing is not Surrounding

WG 2023 • 29.6.2023
Paul Jungeblut, Samuel Schneider, Torsten Ueckerdt

Cops and Robber

2-Players: k Cops
1 Robber

승, 숭… 숭

Rules:

Cops and Robber

2-Players: k Cops
1 Robber

승, 숭… 숭

Rules:

- Cops go first.

Cops and Robber

2-Players: k Cops
1 Robber

Rules:

- Cops go first.
- Robber is second.

Cops and Robber

2-Players: k Cops
1 Robber

Rules:

- Cops go first.
- Robber is second.
- Moves are between adjacent vertices.

Cops and Robber

2-Players: k Cops
1 Robber

Rules:

- Cops go first.
- Robber is second.
- Moves are between adjacent vertices.
- Robber tries to flee indefinitely.

Cops and Robber

2-Players: k Cops
1 Robber

Rules:

- Cops go first.
- Robber is second.
- Moves are between adjacent vertices.
- Robber tries to flee indefinitely.
- Cops win by capturing the robber.

Cops and Robber

2-Players: k Cops
1 Robber

Rules:

- Cops go first.
- Robber is second.
- Moves are between adjacent vertices.
- Robber tries to flee indefinitely.
- Cops win by capturing the robber.

Cop number $\mathbf{c}(\mathbf{G})$:
How many cops are necessary to capture the robber?

Surrounding Variants

vertex surround

Surrounding Variants

vertex surround

edge surround

Surrounding Variants

vertex surround

edge surround
$\mathbf{c}_{V}(\mathbf{G})$
$c_{E}(\mathbf{G})$

How many cops are necessary to
vertex/edge surround the robber?

Surrounding Variants

vertex surround

edge surround
$c_{V}(\mathbf{G})$ $\mathbf{c}_{\mathrm{E}}(\mathbf{G})$
How many cops are necessary to vertex/edge surround the robber?

Restrictive variants:

$\mathbf{c}_{\mathrm{V}, \mathrm{r}}(\mathbf{G})$:
Robber must not end his move on a cop.
$\mathbf{c}_{\mathrm{E}, \mathrm{r}}(\mathbf{G})$:
Robber must not move through a cop.

A Little Bit of History

$c(\mathbf{G}):$
Quilliot '78
Nowakowski, Winkler '83
Aigner, Fromme '84

A Little Bit of History

$c(\mathbf{G}):$
Quilliot '78
Nowakowski, Winkler '83
Aigner, Fromme '84

$\mathrm{c}_{\mathrm{V}, \mathrm{r}}(\mathbf{G})$:
Burgess et al. '20

A Little Bit of History

$$
c(\mathbf{G}):
$$

Quilliot '78
Nowakowski, Winkler '83
Aigner, Fromme '84

Burgess et al. '20

$\mathrm{c}_{\mathrm{E}, \mathrm{r}}(\mathbf{G}):$
Crytser et al. '20

A Little Bit of History

$c(\mathbf{G}):$
Quilliot '78
Nowakowski, Winkler '83
Aigner, Fromme '84

$c_{V}(\mathbf{G}):$ new

$\mathrm{c}_{\mathrm{E}, \mathrm{r}}(\mathbf{G}):$
Crytser et al. '20
$c_{E}(\mathbf{G})$: new

Our Results

Unification

of the four surrounding variants

Theorem: (informal)
Strategy for k cops in some variant gives a strategy for $\leqslant k \cdot 2 \Delta$ cops in any other variant.
max. degree

Our Results

Unification

of the four surrounding variants

Theorem: (informal)
Strategy for k cops in some variant gives a strategy for $\leqslant k \cdot 2 \Delta$ cops in any other variant.
max. degree

Separation

from classical variant
Conjecture: (Crytser et al.)
$c_{\mathrm{E}, \mathrm{r}}(\mathrm{G}) \leqslant \mathrm{c}(\mathrm{G}) \cdot \Delta(\mathrm{G})$

Our Results

Unification

of the four surrounding variants

Theorem: (informal)
Strategy for k cops in some variant gives a strategy for $\leqslant k \cdot 2 \Delta$ cops in any other variant.
max. degree

Separation

from classical variant
Conjecture: (Crytser et al.)
$c_{\mathrm{E}, \mathrm{r}}(\mathrm{G}) \leqslant \mathrm{c}(\mathrm{G}) \cdot \Delta(\mathrm{G})$

Theorem:

There are infinitely many G with:

- $c(G)=2$ and $\Delta(G)=3$
- $c_{V}(G), c_{V, r}(G), c_{E}(G)$ and $c_{\mathrm{E}, \mathrm{r}}(\mathrm{G})$ are unbounded

Unifying the Surrounding Variants

Upper bounds: Simulation

	not not restricted	restricted
vertices	$\mathbf{c}_{\mathbf{V}}(\mathbf{G})$	$\mathbf{c}_{\mathbf{V}, \mathbf{r}}(\mathbf{G})$
en edges	$\mathbf{c}_{\mathbf{E}}(\mathbf{G})$	

Unifying the Surrounding Variants

Upper bounds: Simulation

	not not restricted	restricted
cer vertices	$\mathbf{c}_{\mathbf{V}}(\mathbf{G})$	
en edges	$\mathbf{c}_{\mathbf{C}}(\mathbf{G})$	

A restricted robber is a weaker robber.

Unifying the Surrounding Variants

Upper bounds: Simulation

	not restricted	restricted
vertices	$c_{V}(\mathbf{G})$	$\pm \mathrm{c}_{\mathrm{V}, \mathrm{r}}(\mathrm{G})$
edges	$\mathrm{c}_{\mathrm{E}}(\mathrm{G})$	$\pm c_{E, r}(\mathbf{G})$

Replace each cop by a group of $\Delta(\mathrm{G})$ cops.

Unifying the Surrounding Variants

Upper bounds: Simulation

Replace edge cop by two vertex cops.

Unifying the Surrounding Variants

Upper bounds: Simulation

Replace vertex cop by a group of $\Delta(\mathrm{G})$ edge cops.

follow original cop

Unifying the Surrounding Variants

Upper bounds: Simulation

Lower bounds:

Constructions

Tight examples for all claimed inequalities:

- complete (bipartite) graphs
- regular graphs (with "leaves")
- based on "MOLS"
(mutually orthogonal
Latin squares)
- line graphs of complete graphs

Separating "Capturing" and "Surrounding"

Observation:
surrounding \Longrightarrow capturing
$\leadsto \mathrm{c}_{\mathrm{X}(\mathrm{r})}(\mathrm{G}) \geqslant \mathrm{c}(\mathrm{G})$
Question: other direction?

Separating "Capturing" and "Surrounding"

Observation:
surrounding \Longrightarrow capturing
$\leadsto \mathrm{c}_{\mathrm{X}(\mathrm{r})}(\mathrm{G}) \geqslant \mathrm{c}(\mathrm{G})$

Question: other direction?

Conjecture: (Crytser et al.)
$c_{\mathrm{E}, \mathrm{r}}(\mathrm{G}) \leqslant \mathrm{c}(\mathrm{G}) \cdot \Delta(\mathrm{G})$

Separating "Capturing" and "Surrounding"

Observation:
 surrounding \Longrightarrow capturing $\leadsto \mathrm{c}_{\mathrm{X}(\mathrm{r})}(\mathrm{G}) \geqslant \mathrm{c}(\mathrm{G})$

Question: other direction?

Conjecture: (Crytser et al.) $c_{\mathrm{E}, \mathrm{r}}(\mathrm{G}) \leqslant \mathrm{c}(\mathrm{G}) \cdot \Delta(\mathrm{G})$

Theorem:

There are infinitely many G with:

- $c(G)=2$ and $\Delta(G)=3$
- $c_{V}(G), c_{V, r}(G), c_{E}(G)$ and $c_{E, r}(G)$ are unbounded

Separating "Capturing" and "Surrounding"

