Cops and Robber: When Capturing is not Surrounding

WG 2023 · 29.6.2023

Paul Jungeblut, Samuel Schneider, Torsten Ueckerdt

2-Players: k Cops 1 Robber

Rules:

- Cops go first.
- Robber is second.
- Moves are between adjacent vertices.

2-Players: k Cops 1 Robber

Rules:

- Cops go first.
- Robber is second.
- Moves are between adjacent vertices.
- Robber tries to flee indefinitely.

2-Players: k Cops 1 Robber

Rules:

- Cops go first.
- Robber is second.
- Moves are between adjacent vertices.

- Robber tries to flee indefinitely.
- Cops win by capturing the robber.

¹ Cops and Robber – When Capturing is not Surrounding Paul Jungeblut, Samuel Schneider, Torsten Ueckerdt

2-Players: k Cops 1 Robber

Rules:

- Cops go first.
- Robber is second.
- Moves are between adjacent vertices.

- Robber tries to flee indefinitely.
- Cops win by capturing the robber.

Cop number c(G): How many cops are necessary to capture the robber?

vertex surround

vertex surround

Restrictive variants:

 $c_{V,r}(G)$: Robber must not end his move on a cop.

 $c_{E,r}(G)$: Robber must not move through a cop.

c(G):

Quilliot '78 Nowakowski, Winkler '83 Aigner, Fromme '84

0.0 O c(G): Quilliot '78

> Nowakowski, Winkler '83 Aigner, Fromme '84

 $c_{V,r}(G)$: Burgess et al. '20

. 3 c(G): Quilliot '78 Nowakowski, Winkler '83

Aigner, Fromme '84

 $c_{V,r}(G)$: Burgess et al. '20

3 c(G): Quilliot '78 Nowakowski, Winkler '83 Aigner, Fromme '84

 $c_V(G)$: new

3 $c_{E,r}(G)$: Crytser et al. '20 $\mathbf{c}_{\mathsf{E}}(\mathsf{G})$: new

Our Results

Unification

of the four surrounding variants

Theorem: (informal) Strategy for k cops in some variant gives a strategy for $\leq k \cdot 2\Delta$ cops in any other variant.

Our Results

Unification

of the four surrounding variants

Theorem: (informal) Strategy for k cops in some variant gives a strategy for $\leq k \cdot 2\Delta$ cops in any other variant. Separation

from classical variant

 $\begin{array}{l} \textbf{Conjecture: (Crytser et al.)} \\ c_{\text{E},r}(G) \leqslant c(G) \cdot \Delta(G) \end{array}$

Our Results

Unification

of the four surrounding variants

Theorem: (informal) Strategy for k cops in some variant gives a strategy for $\leq k \cdot 2\Delta$ cops in any other variant.

max. degree

Separation

from classical variant

 $\begin{array}{l} \textbf{Conjecture: (Crytser et al.)} \\ c_{\mathsf{E},\mathsf{r}}(\mathsf{G}) \leqslant c(\mathsf{G}) \cdot \Delta(\mathsf{G}) \end{array}$

Theorem:
There are infinitely many G with:
c(G) = 2 and Δ(G) = 3
c_V(G), c_{V,r}(G), c_E(G) and c_{E,r}(G) are unbounded

Upper bounds: Simulation

	not restricted	restricted
vertices	$c_V(G)$	$c_{V,r}(G)$
edges	$c_{E}(G)$	$c_{E,r}(G)$

Upper bounds: Simulation

A restricted robber is a weaker robber.

Upper bounds: Simulation

Replace each cop by a group of $\Delta(G)$ cops.

Upper bounds: Simulation

Replace edge cop by two vertex cops.

Upper bounds: Simulation

Replace vertex cop by a group of $\Delta(G)$ edge cops.

follow original cop

Upper bounds: Simulation

Lower bounds: Constructions

Tight examples for all claimed inequalities:

complete (bipartite) graphs

regular graphs (with "leaves")

 based on "MOLS" (mutually orthogonal Latin squares)

line graphs of complete graphs

Observation: surrounding \implies capturing $\rightsquigarrow c_{X(,r)}(G) \ge c(G)$

Question: other direction?

Observation: surrounding \implies capturing $\rightsquigarrow c_{X(,r)}(G) \ge c(G)$

Question: other direction?

 $\begin{array}{l} \textbf{Conjecture: (Crytser et al.)} \\ c_{E,r}(G) \leqslant c(G) \cdot \Delta(G) \end{array}$

Observation: surrounding \implies capturing $\rightsquigarrow c_{X(,r)}(G) \ge c(G)$

Question: other direction?

 $\begin{array}{l} \textbf{Conjecture: (Crytser et al.)} \\ c_{E,r}(G) \leqslant c(G) \cdot \Delta(G) \end{array}$

Theorem:

There are infinitely many G with:

•
$$c(G) = 2$$
 and $\Delta(G) = 3$

•
$$c_V(G)$$
, $c_{V,r}(G)$, $c_E(G)$ and $c_{E,r}(G)$ are unbounded

