

Guarding Quadrangulations and Stacked Triangulations with Edges

June 24, 2020 Paul Jungeblut, Torsten Ueckerdt

Institute of Theoretical Informatics · Algorithmics Group

- G = (V, E) plane graph.
- vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

- G = (V, E) plane graph.
- \blacksquare vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

- G = (V, E) plane graph.
- vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

- \blacksquare G = (V, E) plane graph.
- vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

- \blacksquare G = (V, E) plane graph.
- \blacksquare vw guards face f if at least one from $\{v, w\}$ is on the boundary of f.

Question

For all n-vertex graphs of a planar graph class C: How many guards are sometimes necessary and always sufficient?

Previous Results

	Lower	Upper
Planar	$\lfloor \frac{n}{3} \rfloor^{1}$	$\min\left\{\left\lfloor\frac{3n}{8}\right\rfloor,\left\lfloor\frac{n}{3}+\frac{\alpha}{9}\right\rfloor\right\}^2$
Triangulation	$\left\lfloor \frac{4n-8}{13} \right\rfloor^1$	$\left\lfloor \frac{n}{3} \right\rfloor^3$
Outerplanar	$\lfloor \frac{n}{3} \rfloor^1$	$\left\lfloor \frac{n}{3} \right\rfloor^4$
Max. Outerplanar	$\left\lfloor \frac{n}{4} \right\rfloor^5$	$\left\lfloor \frac{n}{4} \right\rfloor^5$

 α : number of quadrilateral faces

¹ Bose, Shermer, Toussaint, Zhu 1997

² Biniaz, Bose, Ooms, Verdonschot 2019

³ Everett, Rivera-Campo 1997

⁴ Chvátal 1975

⁵ O'Rourke 1983

Our Results

	Lower	Upper
Stacked Triangulations	$\lfloor \frac{2n-4}{7} \rfloor$	$\lfloor \frac{2n}{7} \rfloor$
Quadrangulations	$\lfloor \frac{n-2}{4} \rfloor$	$\lfloor \frac{n}{3} \rfloor$
2-Degenerate Quadrangulations	$\lfloor \frac{n-2}{4} \rfloor$	$\lfloor \frac{n}{4} \rfloor$

Our Results

	Lower	Upper
Stacked Triangulations	$\lfloor \frac{2n-4}{7} \rfloor$	$\lfloor \frac{2n}{7} \rfloor$ Today!
Quadrangulations	$\lfloor \frac{n-2}{4} \rfloor$	$\lfloor \frac{n}{3} \rfloor$
2-Degenerate Quadrangulations	$\lfloor \frac{n-2}{4} \rfloor$	$\lfloor \frac{n}{4} \rfloor$

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

- A triangle is a stacked triangulation.
- Let f be an inner face of a stacked triangulation: Adding a new vertex into f and subdividing it into three new faces gives a stacked triangulation.

Theorem [J. 2019]

For *n*-vertex stacked triangulations $\lfloor \frac{2n}{7} \rfloor$ edge guards are sometimes necessary and always sufficient.

About $\frac{2n}{7}$ guards are sometimes necessary.

■ S: v-vertex stacked triangulation ("skeleton")

- S: *v*-vertex stacked triangulation ("skeleton")
- \bullet S \sim G: Add 3 vertices per face such that:
 - G is a stacked triangulation.
 - The new vertices form a triangular face.

- S: *v*-vertex stacked triangulation ("skeleton")
- \bullet S \sim G: Add 3 vertices per face such that:
 - G is a stacked triangulation.
 - The new vertices form a triangular face.

- S: v-vertex stacked triangulation ("skeleton")
- \blacksquare $S \leadsto G$: Add 3 vertices per face such that:
 - G is a stacked triangulation.
 - The new vertices form a triangular face.

- S: v-vertex stacked triangulation ("skeleton")
- \blacksquare $S \leadsto G$: Add 3 vertices per face such that:
 - G is a stacked triangulation.
 - The new vertices form a triangular face.

- S: *v*-vertex stacked triangulation ("skeleton")
- lacksquare $S \sim G$: Add 3 vertices per face such that:
 - G is a stacked triangulation.
 - The new vertices form a triangular face.

$$n = |V(G)| = v + 3 \cdot (2v - 4) = 7v - 12$$

About $\frac{2n}{7}$ guards are sometimes necessary.

- S: v-vertex stacked triangulation ("skeleton")
- \blacksquare $S \rightsquigarrow G$: Add 3 vertices per face such that:
 - G is a stacked triangulation.
 - The new vertices form a triangular face.

$$n = |V(G)| = v + 3 \cdot (2v - 4) = 7v - 12$$

No two "green" triangles can share a guard.

$$v = \frac{n+12}{7}$$

$$|\text{guards}| \ge 2v - 4 = \frac{2n-4}{7}$$

- 1. Create smaller graph G' of size |G'| = |G| k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for G.

- 1. Create smaller graph G' of size |G'| = |G| k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for G.

- 1. Create smaller graph G' of size |G'| = |G| k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for G.

- 1. Create smaller graph G' of size |G'| = |G| k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for G.

- 1. Create smaller graph G' of size |G'| = |G| k.
- 2. Apply induction hypothesis on G' to get edge guard set Γ' .
- 3. Reinsert old vertices.
- 4. Use ℓ additional edges to augment Γ' into Γ for G.

- Use induction on the number n of vertices:
 - 1. Create smaller graph G' of size |G'| = |G| k.
 - 2. Apply induction hypothesis on G' to get edge guard set Γ' .
 - 3. Reinsert old vertices.
 - 4. Use ℓ additional edges to augment Γ' into Γ for G.

 $\frac{\ell}{k} \leq \frac{2}{7}$ in all cases \Rightarrow edge guard set of size $\left\lfloor \frac{2n}{7} \right\rfloor$

- Use induction on the number n of vertices:
 - 1. Create smaller graph G' of size |G'| = |G| k.
 - 2. Apply induction hypothesis on G' to get edge guard set Γ' .
 - 3. Reinsert old vertices.
 - 4. Use ℓ additional edges to augment Γ' into Γ for G.

- $\frac{\ell}{k} \leq \frac{2}{7}$ in all cases \Rightarrow edge guard set of size $\left\lfloor \frac{2n}{7} \right\rfloor$
- Also applied successfully for 2-degenerate quadrangulations $(\frac{\ell}{k} \leq \frac{1}{4})$.

Remove inner vertices (k = 6).

- Remove inner vertices (k = 6).
- Apply induction.

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.
- Add addtional edge ($\ell = 1$), so $\frac{\ell}{k} = \frac{1}{6} \le \frac{2}{7}$.

- Remove inner vertices (k = 6).
- Apply induction.

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.

Induction: Examples

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.

somewhere in a stacked triangulation

Lemma

 Γ : minimum size edge guard set

Case 0: $x, y \in V(\Gamma)$

somewhere in a stacked triangulation

Lemma

 Γ : minimum size edge guard set

somewhere in a stacked triangulation

Lemma

 Γ : minimum size edge guard set

Case 0: $x, y \in V(\Gamma)$

Case 1: $b \in V(\Gamma)$

somewhere in a stacked triangulation

Lemma

 Γ : minimum size edge guard set

Case 0: $x, y \in V(\Gamma)$

Case 1: $b \in V(\Gamma)$

somewhere in a stacked triangulation

Lemma

 Γ : minimum size edge guard set

Case 0: $x, y \in V(\Gamma)$

Case 1: $b \in V(\Gamma)$

somewhere in a stacked triangulation

Lemma

 Γ : minimum size edge guard set

Case 0: $x, y \in V(\Gamma)$

Case 1: $b \in V(\Gamma)$

Case 2: $b \notin V(\Gamma)$

somewhere in a stacked triangulation

Lemma

 Γ : minimum size edge guard set

Case 0: $x, y \in V(\Gamma)$

Case 1: $b \in V(\Gamma)$

Case 2: $b \notin V(\Gamma)$

w.l.o.g. $\rightsquigarrow x \in V(\Gamma)$

somewhere in a stacked triangulation

Lemma

 Γ : minimum size edge guard set

Case 0: $x, y \in V(\Gamma)$

Case 1: $b \in V(\Gamma)$

Case 2: $b \notin V(\Gamma)$

w.l.o.g. $\rightsquigarrow x \in V(\Gamma)$

 $\rightarrow a \in V(\Gamma)$

somewhere in a stacked triangulation

Lemma

 Γ : minimum size edge guard set

Case 0: $x, y \in V(\Gamma)$

Case 1: $b \in V(\Gamma)$

Case 2: $b \notin V(\Gamma)$

w.l.o.g. $\rightsquigarrow x \in V(\Gamma)$

 $\rightarrow a \in V(\Gamma)$

somewhere in a stacked triangulation

Lemma

Lemma

- Remove inner vertices (k = 6).
- Apply induction.
- Reinsert inner vertices.

Remove inner vertices (k = 6).

- Remove inner vertices (k = 6).
- Add two new vertices $(k = 6 \rightsquigarrow k = 4)$.

- Remove inner vertices (k = 6).
- Add two new vertices $(k = 6 \rightsquigarrow k = 4)$.
- Apply lemma from last slide.

- Remove inner vertices (k = 6).
- Add two new vertices $(k = 6 \rightsquigarrow k = 4)$.
- Apply lemma from last slide.
- Reinsert old vertices.

- Remove inner vertices (k = 6).
- Add two new vertices $(k = 6 \rightsquigarrow k = 4)$.
- Apply lemma from last slide.
- Reinsert old vertices. One more edge suffices ($\ell = 1$), so $\frac{\ell}{k} = \frac{1}{4} \le \frac{2}{7}$.

Addtitional Challenges

What are the key steps in the proof?

Which *k* vertices to remove?

Three different "tricks".

Grouping of different hundreds of configurations.

Open Problems

How many edge guards are sometimes necessary and always sufficient for...

...plane graphs?

...triangulations? (4-connected)

...quadrangulations?

Open Problems

How many edge guards are sometimes necessary and always sufficient for...

...plane graphs?

...triangulations? (4-connected)

...quadrangulations?

Thank you! Questions?