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Slope Number - Definition

6 slopes 4 slopes

Slope Number
Given a graph G. The slope number is
the minimum number of slopes needed
in a straight-line drawing of G.

Planar Slope Number
; only consider planar drawings
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6 slopes 4 slopes

Slope Number
Given a graph G. The slope number is
the minimum number of slopes needed
in a straight-line drawing of G.

Planar Slope Number
; only consider planar drawings

Complete Graphs
Kn requires exactly n slopes.
Wade, Chu ’94
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Slope Number - Definition

6 slopes 4 slopes

Slope Number
Given a graph G. The slope number is
the minimum number of slopes needed
in a straight-line drawing of G.

Planar Slope Number
; only consider planar drawings

Maximum Degree ∆
Lower bound: ∆2
At most two edges incident to each vertex
can have the same slope.

∆ = 3: 4 slopes are enough.
Mukkamala, Szegedy ’09

∆ = 5: unbounded
Barát, Matoušek, Wood ’06
Pach, Pálvölgyi ’06

∆ = 4: unknown
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Slope Number - Definition

6 slopes 4 slopes

Slope Number
Given a graph G. The slope number is
the minimum number of slopes needed
in a straight-line drawing of G.

Planar Slope Number
; only consider planar drawings

Planar Graphs
Exponential in the maximum
degree ∆.
Keszegh, Pach, Pálvölgyi ’11

Decision problem ∃R-complete.
Hoffmann ’17
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Overview

Theorem: (Hoffmann ’17)
Deciding whther a graph G has a planar k -slope
drawing is in NP for each fixed k .

Theorem: (Hoffmann ’17)
Deciding whether the planar slope number is
exactly ∆2 is ∃R-complete.

Theorem: (Hoffmann ’17)
Deciding whether a graph G has planar slope
number k is in NP for each fixed k .
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Complexity Class ∃R

Definition: Existential Theory of the Reals
The existential theory of the reals (ETR)
consists of all true sentences of the form

∃X1, . . . ∃Xn : Φ(X1, . . . , Xn)

where Φ is a quantifier free formular of
polynomial (in)equalities with integer
coefficients.

∃X1∃X2 : X 2
1 + 3 · X2 = 7 ∧ X1 > X2

Solutions: (X1, X2) = (2, 1), (−5,−6), . . .
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Complexity Class ∃R

NP ⊆ ∃R ⊆ PSPACE

Definition: Existential Theory of the Reals
The existential theory of the reals (ETR)
consists of all true sentences of the form

∃X1, . . . ∃Xn : Φ(X1, . . . , Xn)

where Φ is a quantifier free formular of
polynomial (in)equalities with integer
coefficients.

Definition: ∃R
The class ∃R contains all decision
problems that can be reduced to ETR
in polynomial time.

∃X1∃X2 : X 2
1 + 3 · X2 = 7 ∧ X1 > X2

Solutions: (X1, X2) = (2, 1), (−5,−6), . . .

4



Complexity of the Planar Slope Number Problem
Paul Jungeblut

Institute of Theoretical Informatics
Algorithmics Group

Stretchability

Problem: STRETCHABILITY

Input: Arrangement of pseudolines L.
Question: Is L stretchable? I.e. is there a line arrangement
with the same intersection pattern?

;
stretchable
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Stretchability

Problem: STRETCHABILITY

Input: Arrangement of pseudolines L.
Question: Is L stretchable? I.e. is there a line arrangement
with the same intersection pattern?

not stretchable
(by Pappu’s Hexagon Theorem)

Theorem: (Mnëv ’88)
STRETCHABILITY is ∃R-complete.
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k -Slope Drawings - Fixed k

Theorem: (Hoffmann ’17)
Deciding whether a graph G has a
planar k -slope drawing is in NP for
each fixed k .
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Theorem: (Hoffmann ’17)
Deciding whether a graph G has a
planar k -slope drawing is in NP for
each fixed k .

;

guess
embedding
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k -Slope Drawings - Fixed k

Theorem: (Hoffmann ’17)
Deciding whether a graph G has a
planar k -slope drawing is in NP for
each fixed k .

;

guess
embedding

guess equal
slopes

; ;

pseudosegment
arrangement

Theorem: (Kratochvı́l, Matoušek ’94)
STRETCHABILITY of a pseudosegment
arrangement with at most k slopes is
in NP. (k fixed)
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k = ∆/2 Slopes - Reduction

Theorem: (Hoffmann ’17)
Deciding whether the planar slope
number is ∆2 is ∃R-complete.
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k = ∆/2 Slopes - Reduction

Theorem: (Hoffmann ’17)
Deciding whether the planar slope
number is ∆2 is ∃R-complete.

∃R-Membership:

Poly-time verification algorithm in the real RAM model.
Erickson, Hoog, Miltzow 2020

Given a drawing (coordinates of the vertices):
Compute and count slopes.
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k = ∆/2 Slopes - Reduction

Theorem: (Hoffmann ’17)
Deciding whether the planar slope
number is ∆2 is ∃R-complete.

GL

arrangement of
n pseudolines

L:

∃R-Hardness:
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k = ∆/2 Slopes - Reduction

L strechtable⇒ n = ∆
2 slopes

Theorem: (Hoffmann ’17)
Deciding whether the planar slope
number is ∆2 is ∃R-complete.

GL

arrangement of
n pseudolines

L:

6⇐
Only if we fix
the planar
embedding!∃R-Hardness:
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k = ∆/2 Slopes - Reduction

L strechtable⇒ n = ∆
2 slopes

3-connected
⇒ unique embedding (Tutte)

Theorem: (Hoffmann ’17)
Deciding whether the planar slope
number is ∆2 is ∃R-complete.

GL
L stretchable !⇔ ∆

2 slopes

arrangement of
n pseudolines

L:

6⇐
Only if we fix
the planar
embedding!∃R-Hardness:
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Drawing⇒ Stretchable

GL
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Drawing⇒ Stretchable

GL

Straight-line drawing of GL

with ∆
2 slopes.

D:
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Drawing⇒ Stretchable

GL

GL (almost) 3-connected
⇒ same embedding as L

Straight-line drawing of GL

with ∆
2 slopes.

D:
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Drawing⇒ Stretchable

GL

GL (almost) 3-connected
⇒ same embedding as L

for v ∈ V with deg(v ) = ∆:
⇒ opposite edges have equal slopes
⇒ L is stretched

Straight-line drawing of GL

with ∆
2 slopes.

D:

8



Complexity of the Planar Slope Number Problem
Paul Jungeblut

Institute of Theoretical Informatics
Algorithmics Group

Stretchable⇒ Drawing
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Stretchable⇒ Drawing

straight-line drawing with
exactly ∆2 slopes
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Open Problems

Non-planar Graphs:
What is the complexity of the slope number problem for non-planar graphs?

Directed Graphs:
What is the (planar) slope number of directed/upward planar graphs?

Bounded Degree:
What is the slope number of graphs with ∆ = 4?

Thank you very much!
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Stretchability with k Slopes, k fixed

Question: Can we realize a pseudoline arragnement L = {`1, . . . , `n} with k slopes?
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Which lines should be parallel.

Ordering of the slopes.

Ordering of the intersections.
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unknown slope
unknown offset

From the combinatorial description of L we get:
Which lines should be parallel.

Ordering of the slopes.
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`i ‖ `j ; identify(ai , aj )
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Stretchability with k Slopes, k fixed

Question: Can we realize a pseudoline arragnement L = {`1, . . . , `n} with k slopes?

Line `i : yi = ai · x + bi

unknown slope
unknown offset

From the combinatorial description of L we get:
Which lines should be parallel.

Ordering of the slopes.

Ordering of the intersections.

`i ‖ `j ; identify(ai , aj )

w.l.o.g a1 < . . . < ak

On pseudoline `p:
Intersection
with `q left of `p.

;
bq−bp

ap−aq
<

br−bp

ap−ar
;

(Because we know the signs of the denominators.)

polynomial inequality
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Stretchability with k Slopes, k fixed

Write system of inequalities (fixing the order of intersections) in matrix form:

A ·

b1

...
bn

 > 0

Matrix where each entry
is a linear polynomial
in a1, . . . , ak .
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A ·
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is a linear polynomial
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If system has a solution, it has a basic solution:
Regular square submatrix C of A, such that C · b− = ε · 1.

Components of b
corresponding to
colums of C.
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A ·
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...
bn

 > 0

Matrix where each entry
is a linear polynomial
in a1, . . . , ak .

≥ ε · 1 for some ε > 0

If system has a solution, it has a basic solution:
Regular square submatrix C of A, such that C · b− = ε · 1.

Components of b
corresponding to
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Cramer’s Rule:

Components of b− can be expressed as:

b−
i = det Ai

det A
where Ai is A with the i-th
colum replaced by ε · 1.
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Stretchability with k Slopes, k fixed

Write system of inequalities (fixing the order of intersections) in matrix form:

A ·

b1

...
bn

 > 0

Matrix where each entry
is a linear polynomial
in a1, . . . , ak .

≥ ε · 1 for some ε > 0

If system has a solution, it has a basic solution:
Regular square submatrix C of A, such that C · b− = ε · 1.

Components of b
corresponding to
colums of C.

Cramer’s Rule:

Components of b− can be expressed as:

b−
i = det Ai

det A
where Ai is A with the i-th
colum replaced by ε · 1.

det A = p0(a1, . . . , ak , ε) w.l.o.g. positive at solution
det Ai = pi (a1, . . . , ak , ε)
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Stretchability with k Slopes, k fixed

Summarizing:

A · b > 0 solvable⇔ ∃ polynomials p0(a1, . . . , ak , ε), p1(a1, . . . , ak , ε) . . . , pn(a1, . . . , ak , ε)
with {p0, p1, . . . , pn} bounded by a fixed polynomial in n
and
real numbers ε > 0, a1, . . . , ak such that

p0(a1, . . . , ak , ε) > 0
b with bi = pi (a1,...,ak ,ε)

p0(a1,...,ak ,ε) is a solution
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Stretchability with k Slopes, k fixed

Summarizing:

A · b > 0 solvable⇔ ∃ polynomials p0(a1, . . . , ak , ε), p1(a1, . . . , ak , ε) . . . , pn(a1, . . . , ak , ε)
with {p0, p1, . . . , pn} bounded by a fixed polynomial in n
and
real numbers ε > 0, a1, . . . , ak such that

p0(a1, . . . , ak , ε) > 0
b with bi = pi (a1,...,ak ,ε)

p0(a1,...,ak ,ε) is a solution︸ ︷︷ ︸
guess non-deterministicly;

Now A · b > 0 is a system of polynomial
inequalities with a fixed number of variables.
Can be solved in polynomial time.
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