Complexity of the Planar Slope Number Problem

Utrecht Seminar • 8th June 2021
Paul Jungeblut

Main Reference

Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 21, no. 2, pp. 183-193 (2017) DOI: 10.7155/jgaa. 00411

On the Complexity of the
 Planar Slope Number Problem

Udo Hoffmann

Université libre de Bruxelles (ULB)

Abstract

The planar slope number of a planar graph G is defined as the minimum number of slopes that is required for a crossing-free straight-line drawing of G. We show that determining the planar slope number is hard in the existential theory of the reals. We discuss consequences for drawings that minimize the planar slope number.

[^0]Institute of Theoretical Informatics

Slope Number - Definition

Slope Number

Given a graph G. The slope number is the minimum number of slopes needed in a straight-line drawing of G.

6 slopes

4 slopes

Planar Slope Number

\leadsto only consider planar drawings

Slope Number - Definition

Slope Number

Given a graph G. The slope number is the minimum number of slopes needed in a straight-line drawing of G.

6 slopes

4 slopes

Complete Graphs

- K_{n} requires exactly n slopes.

Wade, Chu '94

Slope Number - Definition

Slope Number

Given a graph G. The slope number is the minimum number of slopes needed in a straight-line drawing of G.

6 slopes

4 slopes

Planar Slope Number

\leadsto only consider planar drawings

Maximum Degree Δ

- Lower bound: $\frac{\Delta}{2}$

At most two edges incident to each vertex can have the same slope.

- $\Delta=3$: 4 slopes are enough. Mukkamala, Szegedy '09
- $\Delta=5$: unbounded

Barát, Matoušek, Wood '06
Pach, Pálvölgyi '06

- $\Delta=4$: unknown

Slope Number - Definition

Slope Number

Given a graph G. The slope number is the minimum number of slopes needed in a straight-line drawing of G.

6 slopes

4 slopes

Planar Slope Number

\leadsto only consider planar drawings

Planar Graphs

- Exponential in the maximum degree Δ.

Keszegh, Pach, Pálvölgyi '11

- Decision problem $\exists \mathbb{R}$-complete. Hoffmann '17

Overview

Theorem: (Hoffmann '17)

Deciding whether a graph G has planar slope number k is in NP for each fixed k.

Theorem: (Hoffmann '17)

Deciding whether the planar slope number is exactly $\frac{\Delta}{2}$ is $\exists \mathbb{R}$-complete.

Complexity Class $\exists \mathbb{R}$

Definition: Existential Theory of the Reals

The existential theory of the reals (ETR) consists of all true sentences of the form

$$
\exists X_{1}, \ldots \exists X_{n}: \Phi\left(X_{1}, \ldots, X_{n}\right)
$$

where Φ is a quantifier free formular of polynomial (in)equalities with integer coefficients.

$$
\exists X_{1} \exists X_{2}: X_{1}^{2}+3 \cdot X_{2}=7 \wedge X_{1}>X_{2}
$$

Solutions: $\left(X_{1}, X_{2}\right)=(2,1),(-5,-6), \ldots$

Complexity Class $\exists \mathbb{R}$

Definition: Existential Theory of the Reals

The existential theory of the reals (ETR) consists of all true sentences of the form

$$
\exists X_{1}, \ldots \exists X_{n}: \Phi\left(X_{1}, \ldots, X_{n}\right)
$$

where Φ is a quantifier free formular of polynomial (in)equalities with integer coefficients.

Definition: $\exists \mathbb{R}$

The class $\exists \mathbb{R}$ contains all decision problems that can be reduced to ETR in polynomial time.

$$
\exists X_{1} \exists X_{2}: X_{1}^{2}+3 \cdot X_{2}=7 \wedge X_{1}>X_{2}
$$

$$
\mathrm{NP} \subseteq \exists \mathbb{R} \subseteq \mathrm{PSPACE}
$$

$$
\text { Solutions: }\left(X_{1}, X_{2}\right)=(2,1),(-5,-6), \ldots
$$

Stretchability

Problem: Stretchability

Input: Arrangement of pseudolines L.
Question: Is L stretchable? I.e. is there a line arrangement with the same intersection pattern?

Stretchability

Problem: Stretchability

Input: Arrangement of pseudolines L.
Question: Is L stretchable? I.e. is there a line arrangement with the same intersection pattern?

not stretchable
(by Pappu's Hexagon Theorem)

Stretchability

Problem: Stretchability

Input: Arrangement of pseudolines L.
Question: Is L stretchable? I.e. is there a line arrangement with the same intersection pattern?

not stretchable
(by Pappu's Hexagon Theorem)

Theorem: (Mnëv '88)

Stretchability is $\exists \mathbb{R}$-complete.

k-Slope Drawings - Fixed k

Theorem: (Hoffmann '17)
Deciding whether a graph G has a planar k-slope drawing is in NP for each fixed k.

k-Slope Drawings - Fixed k

Theorem: (Hoffmann '17)
Deciding whether a graph G has a planar k-slope drawing is in NP for each fixed k.

k-Slope Drawings - Fixed k

Theorem: (Hoffmann '17)

Deciding whether a graph G has a planar k-slope drawing is in NP for each fixed k.

k-Slope Drawings - Fixed k

Theorem: (Hoffmann '17)

Deciding whether a graph G has a planar k-slope drawing is in NP for each fixed k.

k-Slope Drawings - Fixed k

Theorem: (Hoffmann '17)

Deciding whether a graph G has a planar k-slope drawing is in NP for each fixed k.

Theorem: (Kratochvíl, Matoušek '94)
STRETCHABILITY of a pseudosegment arrangement with at most k slopes is in NP. (k fixed)
pseudosegment arrangement

$k=\Delta / 2$ Slopes - Reduction

Theorem: (Hoffmann '17)
Deciding whether the planar slope number is $\frac{\Delta}{2}$ is $\exists \mathbb{R}$-complete.

$k=\Delta / 2$ Slopes - Reduction

Theorem: (Hoffmann '17)

Deciding whether the planar slope number is $\frac{\Delta}{2}$ is $\exists \mathbb{R}$-complete.

$\exists \mathbb{R}$-Membership:

- Poly-time verification algorithm in the real RAM model. Erickson, Hoog, Miltzow 2020
- Given a drawing (coordinates of the vertices):

Compute and count slopes.

$k=\Delta / 2$ Slopes - Reduction

Theorem: (Hoffmann '17)

Deciding whether the planar slope number is $\frac{\Delta}{2}$ is $\exists \mathbb{R}$-complete.

$k=\Delta / 2$ Slopes - Reduction

Theorem: (Hoffmann '17)

Deciding whether the planar slope number is $\frac{\Delta}{2}$ is $\exists \mathbb{R}$-complete.

$\exists \mathbb{R}$-Hardness:

L : arrangement of n pseudolines

$k=\Delta / 2$ Slopes - Reduction

Theorem: (Hoffmann '17)

Deciding whether the planar slope number is $\frac{\Delta}{2}$ is $\exists \mathbb{R}$-complete.
$\exists \mathbb{R}$-Hardness:
L : arrangement of n pseudolines

L strechtable $\Rightarrow n=\frac{\Delta}{2}$ slopes \neq

Only if we fix the planar embedding!

$k=\Delta / 2$ Slopes - Reduction

Theorem: (Hoffmann '17)

Deciding whether the planar slope number is $\frac{\Delta}{2}$ is $\exists \mathbb{R}$-complete.

L strechtable $\Rightarrow n=\frac{\Delta}{2}$ slopes

Only if we fix the planar embedding!

[^1]
$k=\Delta / 2$ Slopes - Reduction

Theorem: (Hoffmann '17)

Deciding whether the planar slope

L strechtable $\Rightarrow n=\frac{\Delta}{2}$ slopes \nLeftarrow

Only if we fix the planar embedding!

$k=\Delta / 2$ Slopes - Reduction

Theorem: (Hoffmann '17)

Deciding whether the planar slope number is $\frac{\Delta}{2}$ is $\exists \mathbb{R}$-complete.

L strechtable $\Rightarrow n=\frac{\Delta}{2}$ slopes

L stretchable $\stackrel{\prime}{\Leftrightarrow} \frac{\Delta}{2}$ slopes

Drawing \Rightarrow Stretchable

Drawing \Rightarrow Stretchable

D : Straight-line drawing of G_{L} with $\frac{\Delta}{2}$ slopes.

Drawing \Rightarrow Stretchable

D : Straight-line drawing of G_{L} with $\frac{\Delta}{2}$ slopes.

G_{L} (almost) 3-connected
\Rightarrow same embedding as L

Drawing \Rightarrow Stretchable

D : Straight-line drawing of G_{L} with $\frac{\Delta}{2}$ slopes.
G_{L} (almost) 3-connected
\Rightarrow same embedding as L
for $v \in V$ with $\operatorname{deg}(v)=\Delta$:
\Rightarrow opposite edges have equal slopes
$\Rightarrow L$ is stretched

Stretchable \Rightarrow Drawing

Stretchable \Rightarrow Drawing

straight-line drawing with exactly $\frac{\Delta}{2}$ slopes Algorithmics Group

Open Problems

Non-planar Graphs:

What is the complexity of the slope number problem for non-planar graphs?

Directed Graphs:

What is the (planar) slope number of directed/upward planar graphs?

Bounded Degree:

What is the slope number of graphs with $\Delta=4$?

Thank you very much!

Stretchability with k Slopes, k fixed

Question: Can we realize a pseudoline arragnement $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ with k slopes?

Stretchability with k Slopes, k fixed

Question: Can we realize a pseudoline arragnement $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ with k slopes?
Line $\ell_{i}: y_{i}=a_{i} \cdot x+b_{i}$
L unknown offset

- unknown slope

Stretchability with k Slopes, k fixed

Question: Can we realize a pseudoline arragnement $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ with k slopes?
Line $\ell_{i}: y_{i}=a_{i} \cdot x+b_{i}$
L unknown offset
\boxed{u} unknown slope
From the combinatorial description of L we get:

- Which lines should be parallel.
- Ordering of the slopes.
- Ordering of the intersections.

Stretchability with k Slopes, k fixed

Question: Can we realize a pseudoline arragnement $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ with k slopes?
Line $\ell_{i}: y_{i}=a_{i} \cdot x+b_{i}$
L unknown offset

- unknown slope

From the combinatorial description of L we get:

- Which lines should be parallel.

$$
\ell_{i} \| \ell_{j} \leadsto \operatorname{identify}\left(a_{i}, a_{j}\right)
$$

- Ordering of the slopes.
- Ordering of the intersections.

Stretchability with k Slopes, k fixed

Question: Can we realize a pseudoline arragnement $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ with k slopes?
Line $\ell_{i}: y_{i}=a_{i} \cdot x+b_{i}$
Lunknown offset
\boxed{u} unknown slope
From the combinatorial description of L we get:

- Which lines should be parallel.
- Ordering of the slopes.

$$
\begin{aligned}
& \ell_{i} \| \ell_{j} \leadsto \operatorname{identify}\left(a_{i}, a_{j}\right) \\
& \text { w.l.o.g } a_{1}<\ldots<a_{k}
\end{aligned}
$$

- Ordering of the intersections.

Stretchability with k Slopes, k fixed

Question: Can we realize a pseudoline arragnement $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ with k slopes?
Line $\ell_{i}: y_{i}=a_{i} \cdot x+b_{i}$
L unknown offset
\boxed{u} unknown slope
From the combinatorial description of L we get:

- Which lines should be parallel.
- Ordering of the slopes.

$$
\begin{aligned}
& \ell_{i} \| \ell_{j} \leadsto \operatorname{identify}\left(a_{i}, a_{j}\right) \\
& \text { w.l.o.g } a_{1}<\ldots<a_{k}
\end{aligned}
$$

- Ordering of the intersections.

On pseudoline ℓ_{p} : $\begin{aligned} & \text { Intersection } \\ & \text { with } \ell_{q} \text { left of } \ell_{p}\end{aligned} \sim \frac{b_{q}-b_{p}}{a_{p}-a_{q}}<\frac{b_{r}-b_{p}}{a_{p}-a_{r}} \quad \leadsto$ polynomial inequality with ℓ_{q} left of ℓ_{p}.

Stretchability with k Slopes, k fixed

Write system of inequalities (fixing the order of intersections) in matrix form:

$$
A \cdot\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)>0
$$

Matrix where each entry
is a linear polynomial
in a_{1}, \ldots, a_{k}.

Stretchability with k Slopes, k fixed

Write system of inequalities (fixing the order of intersections) in matrix form:

$$
\begin{aligned}
& A \cdot\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \geqslant \sigma \geq \varepsilon \cdot 1 \text { for some } \varepsilon>0 \\
& \\
& \text { here each entry } \\
& \text { r polynomial } \\
& , a_{k} \text {. }
\end{aligned}
$$

Stretchability with k Slopes, k fixed

Write system of inequalities (fixing the order of intersections) in matrix form:

$$
A \cdot\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \geq \sigma \geq \varepsilon \cdot 1 \quad \text { for some } \varepsilon>0
$$

Components of b corresponding to colums of C.

Matrix where each entry is a linear polynomial in a_{1}, \ldots, a_{k}.

If system has a solution, it has a basic solution: Regular square submatrix C of A, such that $C \cdot b^{-}=\varepsilon \cdot 1$.

Stretchability with k Slopes, k fixed

Write system of inequalities (fixing the order of intersections) in matrix form:

$$
A \cdot\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \geq \sigma \geq \varepsilon \cdot 1 \quad \text { for some } \varepsilon>0
$$

Components of b corresponding to colums of C.

Matrix where each entry is a linear polynomial in a_{1}, \ldots, a_{k}.

If system has a solution, it has a basic solution: Regular square submatrix C of A, such that $C \cdot b^{-}=\varepsilon \cdot 1$.

Cramer's Rule:

Components of b^{-}can be expressed as:

$$
b_{i}^{-}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A} \quad \begin{aligned}
& \text { where } A_{i} \text { is } A \text { with the } i \text {-th } \\
& \text { colum replaced by } \varepsilon \cdot 1 .
\end{aligned}
$$

Stretchability with k Slopes, k fixed

Write system of inequalities (fixing the order of intersections) in matrix form:

$$
A \cdot\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \geq \sigma \geq \varepsilon \cdot 1 \quad \text { for some } \varepsilon>0
$$

Components of b corresponding to colums of C.

Matrix where each entry is a linear polynomial in a_{1}, \ldots, a_{k}.

If system has a solution, it has a basic solution: Regular square submatrix C of A, such that $C \cdot b^{-}=\varepsilon \cdot 1$.

Cramer's Rule:

Components of b^{-}can be expressed as:

$$
b_{i}^{-}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A} \quad \begin{array}{ll}
\text { where } A_{i} \text { is } A \text { with the } i \text {-th } & \operatorname{det} A=p_{0}\left(a_{1}, \ldots, a_{k}, \varepsilon\right) \quad \text { w.l.o.g. positive at solution } \\
\text { colum replaced by } \varepsilon \cdot 1 . & \operatorname{det} A_{i}=p_{i}\left(a_{1}, \ldots, a_{k}, \varepsilon\right)
\end{array}
$$

Stretchability with k Slopes, k fixed

Summarizing:

$A \cdot b>0$ solvable $\Leftrightarrow \exists$ polynomials $p_{0}\left(a_{1}, \ldots, a_{k}, \varepsilon\right), p_{1}\left(a_{1}, \ldots, a_{k}, \varepsilon\right) \ldots, p_{n}\left(a_{1}, \ldots, a_{k}, \varepsilon\right)$ with $\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$ bounded by a fixed polynomial in n and
real numbers $\varepsilon>0, a_{1}, \ldots, a_{k}$ such that

- $p_{0}\left(a_{1}, \ldots, a_{k}, \varepsilon\right)>0$
- b with $b_{i}=\frac{p_{i}\left(a_{1}, \ldots, a_{k}, \varepsilon\right)}{p_{0}\left(a_{1}, \ldots, a_{k}, \varepsilon\right)}$ is a solution

Stretchability with k Slopes, k fixed

Summarizing:

$A \cdot b>0$ solvable $\Leftrightarrow \exists$ polynomials $p_{0}\left(a_{1}, \ldots, a_{k}, \varepsilon\right), p_{1}\left(a_{1}, \ldots, a_{k}, \varepsilon\right) \ldots, p_{n}\left(a_{1}, \ldots, a_{k}, \varepsilon\right)$ with $\left\{p_{0}, p_{1}, \ldots, p_{n}\right\}$ bounded by a fixed polynomial in n and
real numbers $\varepsilon>0, a_{1}, \ldots, a_{k}$ such that

- $p_{0}\left(a_{1}, \ldots, a_{k}, \varepsilon\right)>0$
- b with $b_{i}=\frac{p_{i}\left(a_{1}, \ldots, a_{k}, \varepsilon\right)}{p_{0}\left(a_{1}, \ldots, a_{k}, \varepsilon\right)}$ is a solution
guess non-deterministicly
\}
Now $A \cdot b>0$ is a system of polynomial inequalities with a fixed number of variables. Can be solved in polynomial time.

[^0]: 1 Complexity of the Planar Slope Number Problem Paul Jungeblut

[^1]: 7 Complexity of the Planar Slope Number Problem Paul Jungeblut

