Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

$\exists X_1, \ldots, X_n \in \mathbb{R} : \Phi(X_1, \ldots, X_n)$
Training Fully Connected Neural Networks is \(\exists R \)-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber
Motivation

Neural Networks: The most successful tool in artificial intelligence.

AlphaGo vs. Lee Sedol, 2016

photorealistic image generation (StyleGAN, 2019)
Neural Networks

inputs

x_1

x_2
Neural Networks

Training Fully Connected Neural Networks is $\exists B$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber
Training Fully Connected Neural Networks is \(\exists R \)-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber
Neural Networks

Architecture: directed acyclic graph
(vertices = neurons)
Neural Networks

Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges
Neural Networks

Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges

Biases: on hidden neurons
Neural Networks

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: $\max\{0, x\}$

ReLU : $\mathbb{R} \rightarrow \mathbb{R}$

$x \mapsto \max\{0, x\}$
Neural Networks

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: \(\circ \) = ReLU

ReLU: \(\mathbb{R} \rightarrow \mathbb{R} \)
\(x \mapsto \max\{0, x\} \)
Neural Networks

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: $\text{ReLU} = \max\{0, x\}$

ReLU : $\mathbb{R} \rightarrow \mathbb{R}$

$x \mapsto \max\{0, x\}$
Neural Networks

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: \(\text{ReLU} = \max\{0, x\} \)

ReLU : \(\mathbb{R} \to \mathbb{R} \)

ReLU(3 \cdot 2 + 4 \cdot 1 + (−3)) = 7

ReLU(3 \cdot 2 + 4 \cdot 1 + (−3)) = 7

Training Fully Connected Neural Networks is \(\exists \mathbb{R} \)-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber
Neural Networks

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function:
\[\text{ReLU}(x) = \max\{0, x\} \]

ReLU : \(\mathbb{R} \rightarrow \mathbb{R} \)

ReLU : \(x \mapsto \max\{0, x\} \)

ReLU : \(\mathbb{R} \rightarrow \mathbb{R} \)

ReLU : \(x \mapsto \max\{0, x\} \)
Neural Networks

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: $\text{ReLU} = \max\{0, x\}

Neural network realizes a function:

$$f(\cdot, \Theta) : \mathbb{R}^2 \to \mathbb{R}^2$$

weights + biases parametrize f

ReLU($3 \cdot 2 + 4 \cdot 1 + (-3)$) = 7

$7 \cdot 1 = 7$

$7 \cdot (-4) = -28$
Training Neural Networks

Question:
- The weights and biases Θ parametrize the function $f(\cdot, \Theta)$.
 ~ What are good values for Θ?
Question:
- The weights and biases Θ parametrize the function $f(\cdot, \Theta)$.
 \Rightarrow What are good values for Θ?

Training Data:
List of points $(x_i; y_i) \in \mathbb{R}^2 \times \mathbb{R}^2$:
- $x_i \in \mathbb{R}^2$: input values
- $y_i \in \mathbb{R}^2$: labels = desired output values
Training Neural Networks

Question:
- The weights and biases Θ parametrize the function $f(\cdot, \Theta)$.
 \rightsquigarrow What are good values for Θ?

Training Data:
List of points $(x_i; y_i) \in \mathbb{R}^2 \times \mathbb{R}^2$:
- $x_i \in \mathbb{R}^2$: input values
- $y_i \in \mathbb{R}^2$: labels = desired output values

Optimize: Choose Θ such that overall fitting error is minimal.
For all i: $y_i \approx f(x_i, \Theta)$
Training Neural Networks

Question:
- The weights and biases Θ parametrize the function $f(\cdot, \Theta)$.
 \rightsquigarrow What are good values for Θ?

Training Data:
List of points $(x_i; y_i) \in \mathbb{R}^2 \times \mathbb{R}^2$:
- $x_i \in \mathbb{R}^2$: input values
- $y_i \in \mathbb{R}^2$: labels = desired output values

Optimize: Choose Θ such that overall fitting error is minimal.
For all i: $y_i \approx f(x_i, \Theta)$

Best case: $y_i = f(x_i, \Theta)$
Training Fully Connected Neural Networks is \(\exists \mathbb{R} \)-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Decision Problem

TRAIN-NN:

Input:
- network architecture
- \(n \) data points \((x_i; y_i)\)

Question: Are there weights and biases \(\Theta \), such that:

\[
y_i = f(x_i, \Theta) \quad \forall i \in \{1, \ldots, n\}
\]
Decision Problem

TRAIN-NN:

Input:
- network architecture
- n data points $(x_i; y_i)$

Question: Are there weights and biases Θ, such that:

$$y_i = f(x_i, \Theta) \quad \forall i \in \{1, \ldots, n\}$$

No optimization, just a yes/no-question.
Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Decision Problem

TRAIN-NN:

Input:
- network architecture
- n data points $(x_i; y_i)$

Question: Are there weights and biases Θ, such that:

$$y_i = f(x_i, \Theta) \quad \forall i \in \{1, \ldots, n\}$$

No optimization, just a yes/no-question.

A little more general:
- a *cost function* $\text{cost}(\cdot)$
- a *threshold* γ

$$\sum_{i=1}^{n} \text{cost}(y_i, f(x_i, \Theta)) \leq \gamma?$$
How hard can it be?

NP-hard in many settings:
- binary classification (Blum, Rivest 1992)
- sigmoid activation function (Jones 1997, ...)
- single hidden neuron with ReLU (Geol et al. 2020)
How hard can it be?

NP-hard in many settings:
- binary classification (Blum, Rivest 1992)
- sigmoid activation function (Jones 1997, . . .)
- single hidden neuron with ReLU (Geol et al. 2020)

NP-membership in simple settings:
- single output neuron, one ReLU layer (Arora et al. 2016)
- step activation functions (Khalife, Basu 2022)
How hard can it be?

∃R-complete for:

- one hidden layer, three outputs, identity activation function
 (Abrahamsen, Kleist, Miltzow 2021)
How hard can it be?

$\exists R$-complete for:

- one hidden layer, three outputs, identity activation function
 (Abrahamsen, Kleist, Miltzow 2021)

Their proof relies on particularly difficult to train network architectures.

\leadsto This is not a practical setting.
Our Result

Theorem: Training neural networks is $\exists R$-complete, for
Our Result

Theorem: Training neural networks is $\exists R$-complete, for
- exactly one hidden layer,
Our Result

Theorem: Training neural networks is $\exists \mathbb{R}$-complete, for

- exactly one hidden layer,
- two inputs, two outputs,

in NP for single output.
Our Result

Theorem: Training neural networks is $\exists \mathbb{R}$-complete, for

- exactly one hidden layer,
- two inputs, two outputs,
- fully connected network architecture,

in NP for single output

often used (as a building block)
in practical architectures
Our Result

Theorem: Training neural networks is \exists^R-complete, for

- exactly one hidden layer,
- two inputs, two outputs,
- fully connected network architecture,
- only 13 different labels, in NP for single output
- often used (as a building block) in practical architectures
- common in classification tasks
Our Result

Theorem: Training neural networks is \(\exists \mathbb{R} \)-complete, for

- exactly one hidden layer,
- two inputs, two outputs,
- fully connected network architecture,
- only 13 different labels,
- (more or less) any training error \(\gamma \),

in NP for single output

- often used (as a building block) in practical architectures
- common in classification tasks

We prove \(\gamma = 0 \). Add inconsistent training data for \(\gamma > 0 \).
Our Result

Theorem: Training neural networks is $\exists R$-complete, for

- exactly one hidden layer,
- two inputs, two outputs,
- fully connected network architecture,
- only 13 different labels,
- (more or less) any training error γ,
- ReLU activation function,

in NP for single output

often used (as a building block)
in practical architectures

common in classification tasks

We prove $\gamma = 0$. Add inconsistent training data for $\gamma > 0$.

by far the most used in practice
Existential Theory of the Reals

Definition: (ETR)

EXISTENTIAL THEORY OF THE REALS:
All true sentences of the form

$$\exists X_1, \ldots, X_n \in \mathbb{R} : \varphi(X_1, \ldots, X_n).$$

$$\varphi =$$ quantifier-free formula of polynomial equations and inequalities
Existential Theory of the Reals

Definition: (ETR)

Existential Theory of the Reals:
All true sentences of the form

$$\exists X_1, \ldots, X_n \in \mathbb{R} : \varphi(X_1, \ldots, X_n).$$

$$\varphi =$$ quantifier-free formula of polynomial equations and inequalities

Solving systems of non-linear equations and inequalities.
Existential Theory of the Reals

Definition: (ETR)

EXISTENTIAL THEORY OF THE REALS:

All true sentences of the form

$$\exists X_1, \ldots, X_n \in \mathbb{R} : \varphi(X_1, \ldots, X_n).$$

$\varphi = $ quantifier-free formula of polynomial equations and inequalities

Example:

$$\varphi(X, Y) :\equiv X^2 + Y^2 \leq 1$$

Solving systems of non-linear equations and inequalities.
Existential Theory of the Reals

Definition: (ETR)

Existential Theory of the Reals:

All true sentences of the form

\[\exists X_1, \ldots, X_n \in \mathbb{R} : \varphi(X_1, \ldots, X_n). \]

\(\varphi = \) quantifier-free formula of polynomial equations and inequalities

Example:

\[\varphi(X, Y) \equiv X^2 + Y^2 \leq 1 \]
\[\land \quad Y \geq 2X^2 - 1 \]

Solving systems of non-linear equations and inequalities.
Existential Theory of the Reals

Definition: (ETR)

Existential Theory of the Reals:

All true sentences of the form

\[\exists X_1, \ldots, X_n \in \mathbb{R} : \varphi(X_1, \ldots, X_n). \]

\(\varphi = \) quantifier-free formula of polynomial equations and inequalities

Solving systems of non-linear equations and inequalities.

Example:

\[\varphi(X, Y) :\equiv X^2 + Y^2 \leq 1 \]
\[\wedge \quad Y \geq 2X^2 - 1 \]

\(\exists X, Y \in \mathbb{R} : \varphi(X, Y) \) is true
Training Fully Connected Neural Networks is $\exists R$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Complexity Class $\exists R$

Base Problem: ETR
Decide whether $\exists X \in \mathbb{R}^n : \varphi(X)$ is true.
Complexity Class \(\exists R \)

Base Problem: ETR
Decide whether \(\exists X \in \mathbb{R}^n : \varphi(X) \) is true.
Training Fully Connected Neural Networks is $\exists R$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Complexity Class $\exists R$

Base Problem: ETR
Decide whether $\exists X \in \mathbb{R}^n : \varphi(X)$ is true.

The complexity class $\exists R$ contains all problems that reduce to ETR.
Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Complexity Class $\exists \mathbb{R}$

Base Problem: ETR
Decide whether $\exists X \in \mathbb{R}^n : \varphi(X)$ is true.

The complexity class $\exists \mathbb{R}$ contains all problems that reduce to ETR.

$\exists \mathbb{R}$-complete \iff equivalent to ETR (under polynomial time transformations)
Complexity Class $\exists R$

Base Problem: ETR
Decide whether $\exists X \in \mathbb{R}^n : \phi(X)$ is true.

The complexity class $\exists R$ contains all problems that reduce to ETR.

$\exists R$-complete \iff equivalent to ETR
(under polynomial time transformations)
Practical Implications
Practical Implications

Problems \textbf{in }P:\]

- Efficient algorithms in theory and practice.
Practical Implications

NP-complete problems:

- No efficient algorithms in theory. (assuming $\text{NP} \neq \text{P}$)
- Highly optimized off-the-shelf tools can solve large instance to optimality.
Practical Implications

$\exists R$-complete problems:

- Exponential time algorithms in theory. However, useless in practice.

- Gradient descent often works reasonably well. But: No guarantees on time and quality.
Practical Implications

PSPACE-complete problems:

- No general purpose tools.
- \(P = \text{NP} = \exists R = \text{PSPACE} \) is possible, but considered unlikely.
$\exists R$-Complete Problems

Art Gallery Problem

Recognition of Unit Disk Graphs

Packing

... and many more geometric problems
∃R-Membership

\[\Leftrightarrow \text{TRAIN-NN is at most as difficult as ETR} \]

Goal: Express \text{TRAIN-NN} as an ETR formula.
Training Fully Connected Neural Networks is \(\exists \mathbb{R} \)-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

\(\exists \mathbb{R} \)-Membership

\(\rightarrow \text{TRAIN-NN is at most as difficult as ETR} \)

Goal: Express TRAIN-NN as an ETR formula.

\[\exists w_1, \ldots, b_1, \ldots \in \mathbb{R} : y_1 = f(x_1, \Theta) \land \ldots \land y_n = f(x_n, \Theta) \]

weights biases

formula checking that training data is fit exactly
$\exists R$-Hardness

$\exists R$-Hardness is at least as difficult as ETR

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula.

$\text{ETR} \sim \text{ETR-NN}$

Step 2: $\text{ETR-NN} \sim \text{TRAIN-NN}$
Training Fully Connected Neural Networks is $\exists R$-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

$\exists R$-Hardness

\leadsto TRAIN-NN is at least as difficult as ETR

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula.

ETR \leadsto ETR-NN

- **Values:** $\exists X, \ldots \in [-1, 1] : \varphi(X)$
- **Constraints:**

 \[
 X + Y = Z \\
 XY + X + Y = 0 \quad \text{(nonlinear)} \\
 X \geq 0 \\
 X = 1
 \]
∃R-Hardness

∃R-Hardness implies TRAIN-NN is at least as difficult as ETR

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula.

ETR \leadsto ETR-NN

- **Values:** $\exists X, \ldots \in [-1, 1] : \varphi(X)$
- **Constraints:**
 - $X + Y = Z$
 - $XY + X + Y = 0$ (nonlinear)
 - $X \geq 0$
 - $X = 1$

Step 2: ETR-NN \leadsto TRAIN-NN

Geometric construction
Geometry I

Recall: Neural network realizes a function $f(\cdot, \Theta)$. How does it look like?
Geometry I

Recall: Neural network realizes a function \(f(\cdot, \Theta) \).

How does it look like?

\[
f(\cdot, \Theta) : \mathbb{R} \to \mathbb{R}
\]

\[
x \mapsto \text{ReLU}(w_1 x + b) \cdot w_2
\]
Geometry I

Recall: Neural network realizes a function $f(\cdot, \Theta)$.

How does is look like?

$$f(\cdot, \Theta) : \mathbb{R} \rightarrow \mathbb{R}$$

$$x \mapsto \text{ReLU}(x \cdot 0) \cdot 1$$
Geometry I

Recall: Neural network realizes a function $f(\cdot, \Theta)$.
How does is look like?

$$f(\cdot, \Theta) : \mathbb{R} \rightarrow \mathbb{R}$$

$$x \mapsto \text{ReLU}(1x + 0) \cdot 2$$
Geometry I

Recall: Neural network realizes a function $f(\cdot, \Theta)$. How does it look like?

$$f(\cdot, \Theta) : \mathbb{R} \rightarrow \mathbb{R}$$

$$x \mapsto \text{ReLU}(1x + 0) \cdot (-2)$$
Geometry I

Recall: Neural network realizes a function $f(\cdot, \Theta)$. How does is look like?

$$f(\cdot, \Theta) : \mathbb{R} \rightarrow \mathbb{R}$$

$$x \mapsto \text{ReLU}(1x - 1) \cdot (-2)$$
Geometry I

Recall: Neural network realizes a function $f(\cdot, \Theta)$. How does it look like?

$$f(\cdot, \Theta) : \mathbb{R} \rightarrow \mathbb{R}$$

$$x \mapsto \text{ReLU}(\frac{1}{2}x - 1) \cdot (-2)$$
Geometry I

Recall: Neural network realizes a function $f(\cdot, \Theta)$. How does it look like?

$f(\cdot, \Theta): \mathbb{R} \rightarrow \mathbb{R}$

$x \mapsto \text{ReLU}(\frac{1}{2}x - 1) \cdot (-2)$

Breakpoint is determined only by first weight and bias.

Second weight only for scaling.

$f(\cdot, \Theta)$ is continuous and piecewise linear.
Geometry II

Question: Two outputs?
Geometry II

Question: Two outputs?

Separate functions, one per output.

All functions have the same breakpoint!
Geometry III

Question: Two inputs?

\[f(\cdot, \Theta) : \mathbb{R} \rightarrow \mathbb{R} \]

\[x \mapsto \text{ReLU}(w_1 x + b) \cdot w_2 \]
Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Geometry III

$f(\cdot, \Theta) : \mathbb{R}^2 \to \mathbb{R}$

$x \mapsto \text{ReLU}(w_{1,1} x_1 + w_{1,2} x_2 + b) \cdot w_2$
Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Geometry III

$$f(\cdot, \Theta) : \mathbb{R}^2 \rightarrow \mathbb{R}$$

$$x \mapsto \text{ReLU}(w_{1,1}x_1 + w_{1,2}x_2 + b) \cdot w_2$$

$$w_{1,1}x_1 + w_{1,2}x_2 + b = 0$$
Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Geometry IV

$f_1(\cdot, \Theta) : \mathbb{R}^2 \to \mathbb{R}$

$f_2(\cdot, \Theta) : \mathbb{R}^2 \to \mathbb{R}$

$f(\cdot, \Theta) : \mathbb{R}^2 \to \mathbb{R}^2$

$x \mapsto (f_1(x, \Theta), f_2(x, \Theta))$
More hidden neurons:

- Each ReLU neuron contributes exactly one breakline.
- $f(\cdot, \Theta)$ is the sum of all individual continuous piecewise linear functions.
- Same breaklines in f_1 and f_2.
Encoding ETR as a Neural Network

Goal: $\text{ETR-NN} \sim \text{TRAIN-NN}$
Encoding ETR as a Neural Network

Goal: $\text{ETR-NN} \sim \text{TRAIN-NN}$

Given: variables, constraints

Find: data points, integer m

Such that: formula true \iff trainable with m ReLUs
Encoding ETR as a Neural Network

Goal: $\text{ETR-NN} \rightsquigarrow \text{TRAIN-NN}$

| Given: variables constraints | Find: data points integer m | Such that: formula true trainable with m ReLUs |

![Graph](image)
Encoding ETR as a Neural Network

Goal: ETR-NN \sim TRAIN-NN

<table>
<thead>
<tr>
<th>Given:</th>
<th>variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraints</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Find:</th>
<th>data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Such that:</th>
<th>formula true</th>
</tr>
</thead>
<tbody>
<tr>
<td>trainable with m ReLUs</td>
<td></td>
</tr>
</tbody>
</table>

Recall: #ReLUs = #breakpoints
Encoding ETR as a Neural Network

Goal: ETR-NN \leadsto $TRAIN$-NN

Given: variables, constraints
Find: data points, integer m
Such that: formula true \iff trainable with m ReLUs

\[y \]

not collinear \leadsto at least one ReLU
Possible with 1 ReLU.

Recall: $\#\text{ReLUs} = \#\text{breakpoints}$
Encoding ETR as a Neural Network

Goal: ETR-NN \sim TRAIN-NN

<table>
<thead>
<tr>
<th>Given:</th>
<th>variables</th>
<th>constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find:</td>
<td>data points</td>
<td>integer m</td>
</tr>
<tr>
<td>Such that:</td>
<td>formula true</td>
<td>trainable with m ReLUs</td>
</tr>
</tbody>
</table>

$y \sim$ not collinear \Rightarrow at least one ReLU

Possible with 1 ReLU.
Possible with more ReLUs.

Recall: #ReLU = #breakpoints
Encoding Variables

Task: Encode a value $X \in [-1, 1]$.
Encoding Variables

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:
\sim 4 breakpoints
Encoding Variables

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

~ 4 breakpoints
Encoding Variables

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs: ~ 4 breakpoints
Encoding Variables

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

~ 4 breakpoints
Encoding Variables

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs: ~ 4 breakpoints
Encoding Variables

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs: ~ 4 breakpoints
Encoding Variables

Task: Encode a value \(X \in [-1, 1] \).

Idea: The slope encodes the value.

Minimum slope is 1, we enforce a maximum slope of 3:

\(\sim \) Interpret slopes in \([1, 3]\) as values in \([-1, 1]\).
Encoding Variables

Task: Encode a value $X \in [-1, 1]$.

Idea: The slope encodes the value.
Minimum slope is 1, we enforce a maximum slope of 3:
\mapsto Interpret slopes in $[1, 3]$ as values in $[-1, 1]$.

Fit with 4 ReLUs: \mapsto 4 breakpoints

Levee
ITA: argine
DE: Deich
Linear Constraints

Question: How to encode constraints involving X and Y?
Linear Constraints

Question: How to encode constraints involving X and Y?

- impossible in one dimension
Linear Constraints

Question: How to encode constraints involving X and Y?

- impossible in one dimension
- levees intersect in two dimensions
Question: How to encode constraints involving X and Y?

- impossible in one dimension
- levees intersect in two dimensions
- Add a data point in intersection to encode a linear constraint.
Nonlinear Constraint

Task: Encode a nonlinear relation.
Nonlinear Constraint

Task: Encode a nonlinear relation.

Fit with 5 ReLUs:

5 breakpoints
Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Nonlinear Constraint

Task: Encode a nonlinear relation.

Fit with 5 ReLUs:

\sim 5 breakpoints
Nonlinear Constraint

Task: Encode a nonlinear relation.

Fit with 5 ReLUs:

Possible, but dimensions need to share one breakpoint.
Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Nonlinear Constraint

Task: Encode a nonlinear relation.

Fit with 5 ReLUs: \sim 5 breakpoints

Possible, but dimensions need to share one breakpoint.
Nonlinear Constraint

Task: Encode a nonlinear relation.

Fit with 5 ReLUs: \(\sim 5 \) breakpoints

Possible, but dimensions need to share one breakpoint.

\[
\begin{align*}
3 &= \frac{3}{s_1} + \frac{3}{s_2} \\
&\sim 3
\end{align*}
\]
Nonlinear Constraint

Task: Encode a nonlinear relation.

Fit with 5 ReLUs: 5 breakpoints

Possible, but dimensions need to share one breakpoint.

\[
\begin{align*}
\frac{3}{s_1} + \frac{3}{s_2} &\sim 3 \\
\sim &\quad 3 = \frac{3}{s_1} + \frac{3}{s_2} \\
&\quad s_1 s_2 + s_1 + s_2 = 0
\end{align*}
\]
Nonlinear Constraint

Task: Encode a nonlinear relation.

Fit with 5 ReLUs:

\[\sim \to 5 \text{ breakpoints} \]

Possible, but dimensions need to share one breakpoint.

\[\frac{3}{s_1} + \frac{3}{s_2} \]

\[\sim \to 3 = \frac{3}{s_1} + \frac{3}{s_2} \]

\[\sim \to \quad s_1s_2 + s_1 + s_2 = 0 \]
Training Fully Connected Neural Networks is \(\exists \mathbb{R} \)-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber
Training Fully Connected Neural Networks is $\exists R$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber
Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Top Down View

$X_1 + X_2 = X_4$

$X_1 X_3 + X_1 + X_3 = 0$

more levees

double levee

X_1 X_2 X_3 X_4 ...

levees
Training Fully Connected Neural Networks is $\exists \mathbb{R}$-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

- Top Down View

There are weights and biases Θ exactly fitting all data points \iff the ETR instance is true.

The diagram illustrates the equations:

1. $X_1 + X_2 = X_4$
2. $X_1X_3 + X_1 + X_3 = 0$

The points $=1$, $=2$, $=\ldots$ represent solutions to these equations.
Questions?
Questions?

Thank you!