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Motivation

Neural Networks: The most successful tool in artificial intelligence.
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AlphaGo vs. Lee Sedol, 2016 photorealistic image generation
(StyleGAN, 2019)
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Neural Networks

iInputs
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Neural Networks

iInputs hidden outputs
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Architecture: directed acyclic graph
(vertices = neurons)



Neural Networks

inputs hidden outputs Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges
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Neural Networks

inputs hidden outputs Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges

Biases: on hidden neurons
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Neural Networks

inputs hidden outputs Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: @ = RelLU
A

RelU: R — R
x — max{0, x}

3 Training Fully Connected Neural Networks is IR-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber



Neural Networks

inputs hidden outputs Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: @ = RelLU
A

RelU: R — R
x — max{0, x}

3 Training Fully Connected Neural Networks is IR-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber



Neural Networks

inputs hidden outputs Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: @ = RelLU
A

RelU: R — R
x — max{0, x}

3 Training Fully Connected Neural Networks is IR-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber



Neural Networks

inputs hidden outputs Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges

Biases: on hidden neurons

ReLUB-2+4-1+(=3) =7 Activation Function: @ = RelLU
A

RelU: R — R
x — max{0, x}
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Neural Networks

iInputs hidden outputs

ReLU(3-2+4-1+(—3) =7
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Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges
Biases: on hidden neurons

Activation Function: @ = RelLU
A

ReLU: R —+ R
x — max{0, x}




Neural Networks

iInputs hidden outputs

ReLU(3-2+4-1+(—3) =7

Neural network realizes a function:
f(-, ©) : R2 — R?

T— weights + biases parametrize f
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Architecture: directed acyclic graph
(vertices = neurons)

Weights: on edges
Biases: on hidden neurons

Activation Function: @ = RelLU
A

RelU: R — R
x — max{0, x}




Training Neural Networks

Question:

® The weights and biases © parametrize the function f(-, ©).
~» What are good values for ©?
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Training Neural Networks

Question:

® The weights and biases © parametrize the function f(-, ©).
~» What are good values for ©?

Training Data:
List of points (x;; y;) € R? x R?:
B x; € R?: input values

B y; € R?: labels = desired output values
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Training Neural Networks

Question:

® The weights and biases © parametrize the function f(-, ©).
~» What are good values for ©?

Training Data: Optimize: Choose © such that
List of points (x;; y;) € R? x R?: overall fitting error is minimal.

® x; € R?: input values Forall i y; = f(x;, ©)

B y; € R?: labels = desired output values
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Training Neural Networks

Question:

® The weights and biases © parametrize the function f(-, ©).
~» What are good values for ©?

Training Data: Optimize: Choose © such that

List of points (x;; y;) € R? x R?: overall fitting error is minimal.
® x; € R?: input values Forall iz y; =~ f(x;, O)

B y; € R°: Jabels = desired output values  Beact case: yi = f(x;, ©)
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Decision Problem

TRAIN-NN:

Input: Question: Are there weights
®m network architecture and biases ©, such that:

® ndata points (x;; ;) yi = f(x;,0) Vie{l,...,n}
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Decision Problem

TRAIN-NN:

Input: Question: Are there weights
® network architecture and biases ©, such that:

® ndata points (x;; ;) yi=f(x,0) Vie{l,...,n}

\ No optimization, just

a yes/no-question.
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Decision Problem

TRAIN-NN:

Input: Question: Are there weights
® network architecture and biases ©, such that:

® ndata points (x;; ;) yi=f(x,0) Vie{l,...,n}

\ No optimization, just

: a yes/no-question.
A little more general:

. . n
® a cost function cost(-) S cost(y;, F(x;, ©)) < v?
W a threshold vy =1
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How hard can it be?

NP-hard in many settings:
® binary classification (Blum, Rivest 1992)

® sigmoid activation function (Jones 1997, .. .) %ﬁ

m single hidden neuron with ReLU (Geol et al. 2020) 4'4
NP

®)
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How hard can it be?

NP-hard in many settings:
® binary classification (Blum, Rivest 1992)

® sigmoid activation function (Jones 1997, .. .) %ﬁ
m single hidden neuron with ReLU (Geol et al. 2020) 4'4

NP-membership in simple settings: @
@ single output neuron, one RelLU layer (Arora et al. 2016)

A

W step activation functions (Khalife, Basu 2022) -
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How hard can it be?

JIR-complete for:

® one hidden layer, three outputs,
identity activation function
(Abrahamsen, Kleist, Miltzow 2021)
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How hard can it be?

JIR-complete for:

® one hidden layer, three outputs,
identity activation function
(Abrahamsen, Kleist, Miltzow 2021)

Their proof relies on particularly difficult
to train network architectures.
~~ This is not a practical setting.
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Our Result

Theorem: Training neural networks
is dR-complete, for
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Our Result

Theorem: Training neural networks
is dR-complete, for

® exactly one hidden layer, @
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Our Result

Theorem: Training neural networks
is dR-complete, for

B exactly one hidden Iayer;@/ in NP for single output
® two inputs, two outputs,
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® fully connected network architecture,
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Our Result

Theorem: Training neural networks
is dJR-complete, for

B exactly one hidden Iayer;@/ in NP for single output

® two inputs, two outputs, often used (as a building block)
| ,— in practical architectures

® fully connected network architecture,

. . ———common in classification tasks
® only 13 different labels,

We prove v = 0. Add inconsistent
® (more or less) any training errory, < training data for y > 0.

7 Training Fully Connected Neural Networks is IR-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber



Our Result

Theorem: Training neural networks
is dJR-complete, for

B exactly one hidden Iayer;@/ in NP for single output

® two inputs, two outputs, often used (as a building block)
| ,— in practical architectures

® fully connected network architecture,

. . ———common in classification tasks
® only 13 different labels,

We prove v = 0. Add inconsistent
® (more or less) any training errory, < training data for y > 0.

® RelU activation function, - by far the most used in practice
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Existential Theory of the Reals

Definition: (ETR)
EXISTENTIAL THEORY OF THE REALS:
All true sentences of the form

E|X1,...,XnER:(p(X1,...,Xn).

@ = quantifier-free formula of
polynomial equations and inequalities
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Existential Theory of the Reals

Definition: (ETR)
EXISTENTIAL THEORY OF THE REALS:
All true sentences of the form

E|X1,...,XnER:(p(X1,...,Xn).

¢ = quantifier-free formula of
polynomial equations and inequalities

‘ Solving systems of non-linear

equations and inequalities.
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Existential Theory of the Reals

Definition: (ETR) Example:
EXISTENTIAL THEORY OF THE REALS: OX,Y) = X°+ Y <1
All true sentences of the form

E|X1,...,XnER:(p(X~|,...,Xn). Ya

¢ = quantifier-free formula of
polynomial equations and inequalities | ey

‘ Solving systems of non-linear

equations and inequalities.
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Existential Theory of the Reals

Definition: (ETR)
EXISTENTIAL THEORY OF THE REALS:
All true sentences of the form

E|X1,...,XnER:(p(X~|,...,Xn).

¢ = quantifier-free formula of
polynomial equations and inequalities

‘ Solving systems of non-linear

equations and inequalities.
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Example:
(X, Y) = X+ Y? <1
A Y >2X°% — 1




Existential Theory of the Reals

Definition: (ETR) Example:
EXISTENTIAL THEORY OF THE REALS: OX,Y) = X2+ Y2 <1
All true sentences of the form A Y >2X°% — 1

E|X1,...,XnER:(P(X1,...,Xn). y

@ = quantifier-free formula of
polynomial equations and inequalities 5

‘ Solving systems of non-linear

equations and inequalities. dX, Y e R:@(X,Y) istrue
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Complexity Class dR

Base Problem: ETR

Decide whether 3X € R” : @(X) is true.
PSPACE
5

NP

)
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Complexity Class dR

Base Problem: ETR

Decide whether 3X € R” : @(X) is true.
PSPACE

JR
X - ETR

NP

)
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Complexity Class dR

Base Problem: ETR

Decide whether 3X € R” : @(X) is true.
PSPACE

IR
aly ETR The complexity class IR contains all
NP problems that reduce to ETR.

)
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JR
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0,

9 Training Fully Connected Neural Networks is IR-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Base Problem: ETR
Decide whether 3X € R” : @(X) is true.

The complexity class JIR contains all
problems that reduce to ETR.

J4R-complete < equivalentto ETR
(under polynomial time transformations)



Complexity Class dR

Base Problem: ETR

Decide whether 3X € R” : @(X) is true.
PSPACE

JR

* S ETR The complexity class IR contains all

N

NP ) [ TRAIN-NN problems that reduce to ETR.

)

J4R-complete < equivalentto ETR
(under polynomial time transformations)
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Practical Implications

PSPACE

JR

NP
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Practical Implications

PSPACE
Problems in P:
@ @ Efficient algorithms in theory and practice.

NP

)
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Practical Implications

PSPACE
NP-complete problems:
@ ® No efficient algorithms in theory. (assuming NP + P)

® Highly optimized off-the-shelf tools can solve large
NP instance to optimality.

)
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Practical Implications

PSPACE
JR-complete problems:
@ ® Exponential time algorithms in theory.

However, useless in practice.

NP m Gradient descent often works reasonably well.
@ But: No guarantees on time and quality.
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Practical Implications

PSPACE
PSPACE-complete problems:
@ ® No general purpose tools.

®m P =NP =dR = PSPACE is possible,
NP but considered unlikely.

)
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JIR-Complete Problems

J.gs Pavy

Art Gallery Problem Recognition of Unit Disk Graphs

a

....and many more geometric problems

Packing
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JIR-Membership

~» TRAIN-NN Is at most as difficult as ETR

Goal: Express TRAIN-NN as an ETR formula.
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JIR-Membership

~» TRAIN-NN Is at most as difficult as ETR

Goal: Express TRAIN-NN as an ETR formula.

dAwy, ..., by,...€R : 1 =f(x,0) A ... AN Vn=IF(x,0)
N—_—— e & —~ o

weights  biases formula checking that
training data is fit exactly
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dJR-Hardness

~» TRAIN-NN Is at lest as difficult as ETR

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula. Step 2: ETR-NN ~» TRAIN-NN
ETR ~ ETR-NN
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dJR-Hardness

~» TRAIN-NN Is at lest as difficult as ETR

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula. Step 2: ETR-NN ~» TRAIN-NN
ETR ~ ETR-NN

® Values: JX,... €[—1,1]: ¢(X)
® Constraints:
X+Y=Z7
XY+ X+Y=0 (nonlinear)
X >0
X =1
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dJR-Hardness

~» TRAIN-NN Is at lest as difficult as ETR

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula. Step 2: ETR-NN ~» TRAIN-NN
ETR ~ ETR-NN |
® Values: 3X,... € [=1,1]: o(X) §oe
® Constraints:
X + Y = Z : £
XY+X+Y=0 (nonlinear) '-. ’ . 2 :
X =1 geometric construction
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Geometry |

Recall: Neural network realizes a function f(-, ©).
How does is look like?
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Geometry |

Recall: Neural network realizes a function f(-, ©).
How does is look like?

b
OO0~

f-.0):R—-R
x — ReLU(wix + b) - wo
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Geometry |

Recall: Neural network realizes a function f(-, ©).
How does is look like?

0
1 1
OO ~

f-.0):R—-R
x — ReLU(1x +0) - 1
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Geometry |

Recall: Neural network realizes a function f(-, ©).
How does is look like?

1f0\2
x (O =) () ~

f-.0):R—-R
x — ReLU(1x +0) -2
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Geometry |

Recall: Neural network realizes a function f(-, ©).
How does is look like?

1 2
x (O =) () ~

f-.0):R—-R
x — ReLU(1x +0) - (—2)
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Geometry |

Recall: Neural network realizes a function f(-, ©).

How does is look like?

(O—-O2-0O ~

f-.0):R—R
x — ReLU(1x — 1) - (—2)
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Geometry |

Recall: Neural network realizes a function f(-, ©).

How does is look like?

f-.0):R—R
x — ReLU(Zx — 1) - (—2)
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Geometry |

Recall: Neural network realizes a function f(-, ©).

How does is look like?

f-.0):R—-R
x — ReLU(Zx — 1) - (—2)
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f(-,0) is
continuous and
piecewise linear.

Breakpoint is
determined only
by first weight
and bias.

Second weight
only for scaling.



Geometry |l

Question: Two outputs?
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Geometry |l

Question: Two outputs?

Separate functions,
one per output.

> : : —
{ \ All functions have the

same breakpoint!
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Geometry |l

Question: Two inputs?

b
OO0

f-.0):R—R

x — ReLU(wix + b) - ws
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Geometry |l

f(-,0) :R? - R

X — ReLU(W1,1X~| + Wq2Xo + b) - Wo
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Geometry Il

breakpoint ~» breakline

f(-,0): R2 5 R

x — ReLU(wy 1 X1 + Wi 2X2 + b) - wo Wi X1+ WipXe +b =0
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Geometry |V

(.0):R° >R
1 0) 1 R = f(.©) : R? — R2

X = (f1(x,0), h(x,O))
H(-,0): R = R
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Geometry |V

f(-,0) : R? — R?
X = (f1(x,0), h(x,O))

More hidden neurons:
® Each RelLU neuron contributes exactly one breakline.

B f(-,0) is the sum of all individual continuous piecewise linear functions.

B Same breaklines in f; and 5.

17  Training Fully Connected Neural Networks is JR-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber



Encoding ETR as a Neural Network

Goal: ETR-NN ~» TRAIN-NN
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Encoding ETR as a Neural Network

Goal: ETR-NN ~» TRAIN-NN

Given: variables Find: data points ~ Such that:  formula true
. L]
constraints integer m trainable with m ReLUs
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Encoding ETR as a Neural Network

Goal: ETR-NN ~» TRAIN-NN

Given: variables Find: data points ~ Such that:  formula true
constraints integer m trainable vﬁ m RelLUs
VA
| [
oo o >
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Encoding ETR as a Neural Network

Goal: ETR-NN ~» TRAIN-NN

Given: variables Find: data points  Such that:  formula true
| | —
constraints integer m trainable with m ReLUs
y_‘_ not collinear ~» at least one RelL,U
o
o—©O @ >
X

Recall: #RelLUs = #breakpoints
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Encoding ETR as a Neural Network

Goal: ETR-NN ~» TRAIN-NN

Given: variables Find: data points ~ Such that:  formula true
constraints integer m trainable vﬁ m RelLUs
1 not collinear ~ at least one ReLU
| / Possible with 1 ReLU.
e—S l ;

Recall: #RelLUs = #breakpoints
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Encoding ETR as a Neural Network

Goal: ETR-NN ~» TRAIN-NN

Given: variables Find: data points ~ Such that:  formula true
. | —
constraints integer m trainable with m ReLUs
1 not collinear ~ at least one ReLU
)2 Possible with 1 ReLU.
4/\/ »  Possible with more ReLUs.

Recall: #RelLUs = #breakpoints
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Encoding Variables

Task: Encode a value X € [—1,1].
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Encoding Variables

Task: Encode a value X € [—1,1].

Fit with 4 RelLUs:
~ 4 breakpoints
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L4
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Encoding Variables
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Encoding Variables

Task: Encode a value X € [—1,1].

S
L4
L4

Fit with 4 RelLUs:
~ 4 breakpoints

.
.
*
-——9

Idea: The slope encodes the value.
Minimum slope is 1, we enforce a maximum slope of 3:
~ Interpret slopes in [1, 3] as values in [—1, 1].

19  Training Fully Connected Neural Networks is IR-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber



Encoding Variables

Task: Encode a value X € [—1,1].

e
Levee Fit with 4 RelLUs:
ITA: argine ~ 4 breakpoints
DE: Deich

.
.
*
-——9

Idea: The slope encodes the value.
Minimum slope is 1, we enforce a maximum slope of 3:
~ Interpret slopes in [1, 3] as values in [—1, 1].

19  Training Fully Connected Neural Networks is IR-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber



Linear Constraints

Question: How to encode
constraints involving X and Y?

N\ /L

X Y
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Linear Constraints

Question: How to encode
constraints involving X and Y?

® impossible in one dimension

N\ /L

X Y
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Linear Constraints

\ Question: How to encode
\ constraints involving X and Y?

v
’ ® impossible in one dimension
\ B levees intersect in two dimensions

X Y
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Linear Constraints

/,“‘ Question: How to encode

L _ .
Red and blue " / \\ constraints involving X and Y
levee add up. 7

v
"’ ® impossible in one dimension
B levees intersect in two dimensions
® Add a data point in intersection to
encode a linear constraint.
Y
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Nonlinear Constraint

Task: Encode a nonlinear relation.
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Nonlinear Constraint
Task: Encode a nonlinear relation.

® o o o e dimension 1
e dimension 2

Fit with 5 RelLUs:
~~+ 5 breakpoints
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Task: Encode a nonlinear relation.

® —eo e dimension 1
e dimension 2

Fit with 5 RelLUs:
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Nonlinear Constraint

Task: Encode a nonlinear relation.

® *—e e dimension 1
e dimension 2

Fit with 5 RelLUs:
~~+ 5 breakpoints

Possible, but
dimensions
need to share
one breakpoint.
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Nonlinear Constraint

Task: Encode a nonlinear relation.
3

o e e dimension 1
e dimension 2
Fit with 5 RelLUs:
~~+ 5 breakpoints
Possible, but
-o—o—¢ O dimensions
L |

need to share

Si s one breakpoint.
. —
Se
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Nonlinear Constraint

Task: Encode a nonlinear relation.

o e e dimension 1
e dimension 2
Fit with 5 RelLUs:
~~+ 5 breakpoints
Possible, but
-o—o—¢ O dimensions

need to share

| | 3 3
Si 3 3=t o one breakpoint.
. —
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Nonlinear Constraint

Task: Encode a nonlinear relation.
3

e dimension 1
e dimension 2
Fit with 5 Rel.Us:
~~+ 5 breakpoints
Possible, but
dimensions

need to share

Si '—'3 ~ 3=+ one breakpoint.
. —
Se "> SeSe + Se + Se =0
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Nonlinear Constraint

Task: Encode a nonlinear relation.

| 3 |
O —eo e dimension 1
e dimension 2
Fit with 5 RelLUs:
~~+ 5 breakpoints
Double Levee
Possible, but
——o—o )l dimensions
L need to share
% T’ ~ 3=24+ 2 one breakpoint.
Se "> SeSe + Se + Se =0

21 Training Fully Connected Neural Networks is GR-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber



Top Down View

— OO0 |
X; . levees
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Top Down View

more
levees
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Top Down View
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more
levees

double
levee
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Top Down View

there are weights and biases ©
exactly fitting all data points

true

~
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Il

N
more * | double
levees ~ | levee PR
;Sm the ETR instance is

X; =2
X, \
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Questions?
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Questions? Thank you!
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