Training Fully Connected Neural Networks is ∃ℝ-Complete

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

$$\exists X_1,\ldots,X_n \in \mathbb{R}$$
: $\Phi(X_1,\ldots,X_n)$

Christoph Daniel Till Simon Paul

¹ Training Fully Connected Neural Networks is ∃ℝ-Complete
Daniel Bertschinger, Christoph Hertrich, **Paul Jungeblut**, Tillmann Miltzow, Simon Weber

Motivation

Neural Networks: The most successful tool in artificial intelligence.

AlphaGo vs. Lee Sedol, 2016

photorealistic image generation (StyleGAN, 2019)

inputs

inputs hidden

Architecture: directed acyclic graph

(vertices = neurons)

Architecture: directed acyclic graph

(vertices = neurons)

Weights: on edges

Architecture: directed acyclic graph

(vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: (= ReLU

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: (= ReLU

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: (= ReLU

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: = ReLU

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: = ReLU

ReLU :
$$\mathbb{R} \to \mathbb{R}$$

 $x \mapsto \max\{0, x\}$

Neural network realizes a function:

$$f(\cdot,\Theta):\mathbb{R}^2 o\mathbb{R}^2$$
 weights + biases parametrize f

Architecture: directed acyclic graph (vertices = neurons)

Weights: on edges

Biases: on hidden neurons

Activation Function: (= ReLU

Question:

- The weights and biases Θ parametrize the function $f(\cdot, \Theta)$.
 - \sim What are *good* values for Θ ?

Question:

- The weights and biases Θ parametrize the function $f(\cdot, \Theta)$.
 - \sim What are *good* values for Θ ?

Training Data:

List of points $(x_i; y_i) \in \mathbb{R}^2 \times \mathbb{R}^2$:

- $\mathbf{x}_i \in \mathbb{R}^2$: input values
- $y_i \in \mathbb{R}^2$: *labels* = desired output values

Question:

- The weights and biases Θ parametrize the function $f(\cdot, \Theta)$.
 - \sim What are *good* values for Θ ?

Training Data:

List of points $(x_i; y_i) \in \mathbb{R}^2 \times \mathbb{R}^2$:

- $\mathbf{x}_i \in \mathbb{R}^2$: input values
- $y_i \in \mathbb{R}^2$: labels = desired output values

Optimize: Choose Θ such that overall fitting error is minimal.

For all i: $y_i \approx f(x_i, \Theta)$

Question:

- The weights and biases Θ parametrize the function $f(\cdot, \Theta)$.
 - \sim What are *good* values for Θ ?

Training Data:

List of points $(x_i; y_i) \in \mathbb{R}^2 \times \mathbb{R}^2$:

- $\mathbf{x}_i \in \mathbb{R}^2$: input values
- $y_i \in \mathbb{R}^2$: labels = desired output values

Optimize: Choose Θ such that overall fitting error is minimal.

For all i: $y_i \approx f(x_i, \Theta)$

Best case: $y_i = f(x_i, \Theta)$

Decision Problem

TRAIN-NN:

Input:

- network architecture
- \blacksquare *n* data points $(x_i; y_i)$

Question: Are there weights and biases Θ , such that:

$$y_i = f(x_i, \Theta) \quad \forall i \in \{1, \ldots, n\}$$

Decision Problem

TRAIN-NN:

Input:

- network architecture
- \blacksquare *n* data points $(x_i; y_i)$

Question: Are there weights and biases Θ , such that:

$$y_i = f(x_i, \Theta) \quad \forall i \in \{1, \ldots, n\}$$

No optimization, just a yes/no-question.

Decision Problem

TRAIN-NN:

Input:

- network architecture
- \blacksquare *n* data points $(x_i; y_i)$

Question: Are there weights and biases Θ , such that:

$$y_i = f(x_i, \Theta) \quad \forall i \in \{1, \ldots, n\}$$

No optimization, just a yes/no-question.

- a cost function cost(·)
- lacksquare a threshold γ

$$\sum_{i=1}^{n} \operatorname{cost}(y_i, f(x_i, \Theta)) \leq \gamma?$$

NP-hard in many settings:

- binary classification (Blum, Rivest 1992)
- sigmoid activation function (Jones 1997, ...)
- single hidden neuron with ReLU (Geol et al. 2020)

NP-hard in many settings:

- binary classification (Blum, Rivest 1992)
- sigmoid activation function (Jones 1997, ...)
- single hidden neuron with ReLU (Geol et al. 2020)

NP-membership in simple settings:

- single output neuron, one ReLU layer (Arora et al. 2016)
- step activation functions (Khalife, Basu 2022)

∃**R-complete** for:

 one hidden layer, three outputs, identity activation function (Abrahamsen, Kleist, Miltzow 2021)

∃**R-complete** for:

 one hidden layer, three outputs, identity activation function (Abrahamsen, Kleist, Miltzow 2021)

Their proof relies on *particularly difficult* to train network architectures.

 \sim This is not a practical setting.

Theorem: Training neural networks

is ∃**R**-complete, for

⁷ Training Fully Connected Neural Networks is ∃ℝ-Complete
Daniel Bertschinger, Christoph Hertrich, **Paul Jungeblut**, Tillmann Miltzow, Simon Weber

Theorem: Training neural networks

is $\exists \mathbb{R}$ -complete, for

exactly one hidden layer,

Theorem: Training neural networks is $\exists \mathbb{R}$ -complete, for

exactly one hidden layer,

two inputs, two outputs,

in NP for single output

Theorem: Training neural networks

is $\exists \mathbb{R}$ -complete, for

exactly one hidden layer,

two inputs, two outputs,

fully connected network architecture,

in NP for single output

often used (as a building block) in practical architectures

Theorem: Training neural networks is $\exists \mathbb{R}$ -complete, for

exactly one hidden layer,

two inputs, two outputs,

fully connected network architecture,

only 13 different labels,

in NP for single output

often used (as a building block) in practical architectures

common in classification tasks

Theorem: Training neural networks

is $\exists \mathbb{R}$ -complete, for

exactly one hidden layer,

two inputs, two outputs,

fully connected network architecture,

only 13 different labels,

(more or less) any training error γ ,

in NP for single output

often used (as a building block) in practical architectures

common in classification tasks

We prove $\gamma = 0$. Add inconsistent training data for $\gamma > 0$.

⁷ Training Fully Connected Neural Networks is ∃ℝ-Complete Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Theorem: Training neural networks is $\exists \mathbb{R}$ -complete, for

exactly one hidden layer,

two inputs, two outputs,

fully connected network architecture,

only 13 different labels,

(more or less) any training error γ ,

ReLU activation function,

in NP for single output

often used (as a building block)

in practical architectures

common in classification tasks

We prove $\gamma = 0$. Add inconsistent training data for $\gamma > 0$.

by far the most used in practice

⁷ Training Fully Connected Neural Networks is ∃ℝ-Complete
Daniel Bertschinger, Christoph Hertrich, **Paul Jungeblut**, Tillmann Miltzow, Simon Weber

Existential Theory of the Reals

Definition: (ETR)

EXISTENTIAL THEORY OF THE REALS:

All true sentences of the form

$$\exists X_1,\ldots,X_n \in \mathbb{R} : \varphi(X_1,\ldots,X_n).$$

 ϕ = quantifier-free formula of polynomial equations and inequalities

Existential Theory of the Reals

Definition: (ETR)

EXISTENTIAL THEORY OF THE REALS:

All true sentences of the form

$$\exists X_1,\ldots,X_n \in \mathbb{R} : \varphi(X_1,\ldots,X_n).$$

 ϕ = quantifier-free formula of polynomial equations and inequalities

Solving systems of non-linear equations and inequalities.

Existential Theory of the Reals

Definition: (ETR)

EXISTENTIAL THEORY OF THE REALS:

All true sentences of the form

$$\exists X_1,\ldots,X_n \in \mathbb{R} : \varphi(X_1,\ldots,X_n).$$

φ = quantifier-free formula of polynomial equations and inequalities

Solving systems of non-linear equations and inequalities.

Example:

$$\varphi(X, Y) := X^2 + Y^2 \le 1$$

Existential Theory of the Reals

Definition: (ETR)

EXISTENTIAL THEORY OF THE REALS:

All true sentences of the form

$$\exists X_1,\ldots,X_n \in \mathbb{R} : \varphi(X_1,\ldots,X_n).$$

 φ = quantifier-free formula of polynomial equations and inequalities

> Solving systems of non-linear equations and inequalities.

Example:

$$\varphi(X, Y) :\equiv X^2 + Y^2 \le 1$$

$$\land Y \ge 2X^2 - 1$$

Existential Theory of the Reals

Definition: (ETR)

EXISTENTIAL THEORY OF THE REALS.

All true sentences of the form

$$\exists X_1,\ldots,X_n \in \mathbb{R} : \varphi(X_1,\ldots,X_n).$$

 ϕ = quantifier-free formula of polynomial equations and inequalities

Solving systems of non-linear equations and inequalities.

Example:

$$\varphi(X, Y) :\equiv X^2 + Y^2 \le 1$$

$$\land Y \ge 2X^2 - 1$$

$$\exists X, Y \in \mathbb{R} : \varphi(X, Y)$$
 is true

Base Problem: ETR

Decide whether $\exists X \in \mathbb{R}^n : \varphi(X)$ is true.

Base Problem: ETR

Decide whether $\exists X \in \mathbb{R}^n : \varphi(X)$ is true.

Base Problem: ETR

Decide whether $\exists X \in \mathbb{R}^n : \varphi(X)$ is true.

The **complexity class** $\exists \mathbb{R}$ contains all problems that reduce to ETR.

Base Problem: ETR

Decide whether $\exists X \in \mathbb{R}^n : \varphi(X)$ is true.

The **complexity class** $\exists \mathbb{R}$ contains all problems that reduce to ETR.

∃R-complete ⇔ equivalent to ETR (under polynomial time transformations)

Base Problem: ETR

Decide whether $\exists X \in \mathbb{R}^n : \varphi(X)$ is true.

The **complexity class** $\exists \mathbb{R}$ contains all problems that reduce to ETR.

∃R-complete ⇔ equivalent to ETR (under polynomial time transformations)

Problems in P:

Efficient algorithms in theory and practice.

NP-complete problems:

- No efficient algorithms in theory. (assuming NP \neq P)
- Highly optimized off-the-shelf tools can solve large instance to optimality.

∃**R**-complete problems:

- Exponential time algorithms in theory. However, useless in practice.
- Gradient descent often works reasonably well. But: No guarantees on time and quality.

PSPACE-complete problems:

- No general purpose tools.
- $P = NP = \exists \mathbb{R} = PSPACE$ is possible, but considered unlikely.

∃R-Complete Problems

Art Gallery Problem

Recognition of Unit Disk Graphs

... and many more **geometric** problems

∃R-Membership

→ TRAIN-NN is at most as difficult as ETR

Goal: Express TRAIN-NN as an ETR formula.

∃R-Membership

→ TRAIN-NN is at most as difficult as ETR

Goal: Express Train-NN as an ETR formula.

$$\exists \underbrace{w_1, \ldots, b_1, \ldots} \in \mathbb{R} : \underbrace{y_1 = f(x_1, \Theta) \land \ldots \land y_n = f(x_n, \Theta)}_{\text{training data is fit exactly}}$$

∃R-Hardness

→ TRAIN-NN is at lest as difficult as ETR.

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula. ETR → ETR-NN

Step 2: ETR-NN → TRAIN-NN

∃R-Hardness

→ TRAIN-NN is at lest as difficult as ETR.

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula. ETR → ETR-NN

- Values: $\exists X, \ldots \in [-1,1]$: $\varphi(X)$
- Constraints:

$$X + Y = Z$$

 $XY + X + Y = 0$ (nonlinear)
 $X \ge 0$
 $X = 1$

Step 2: ETR-NN → TRAIN-NN

∃R-Hardness

→ TRAIN-NN is at lest as difficult as ETR.

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula. ETR → ETR-NN

- Values: $\exists X, \ldots \in [-1, 1] : \varphi(X)$
- Constraints:

$$X + Y = Z$$

 $XY + X + Y = 0$ (nonlinear)
 $X \ge 0$
 $X = 1$

Step 2: ETR-NN → TRAIN-NN

geometric construction

¹⁴ Training Fully Connected Neural Networks is ∃ℝ-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Training Fully Connected Neural Networks is ∃ℝ-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

¹⁴ Training Fully Connected Neural Networks is ∃ℝ-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

¹⁴ Training Fully Connected Neural Networks is ∃R-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

¹⁴ Training Fully Connected Neural Networks is ∃ℝ-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Recall: Neural network realizes a function $f(\cdot, \Theta)$. How does is look like?

 $x \mapsto \text{ReLU}(\frac{1}{2}x - 1) \cdot (-2)$

 $f(\cdot, \Theta)$ is continuous and piecewise linear.

Breakpoint is determined only by first weight and bias.

Second weight only for scaling.

Question: Two outputs?

Question: Two outputs?

Separate functions, one per output.

All functions have the same breakpoint!

Question: Two inputs?

$$f(\cdot,\Theta):\mathbb{R} \to \mathbb{R}$$

$$x \mapsto \text{ReLU}(w_1x + b) \cdot w_2$$

$$f(\cdot,\Theta):\mathbb{R}^2\to\mathbb{R}$$

$$x \mapsto \text{ReLU}(w_{1,1}x_1 + w_{1,2}x_2 + b) \cdot w_2$$

$$f(\cdot,\Theta):\mathbb{R}^2 o\mathbb{R}$$

$$x \mapsto \text{ReLU}(w_{1,1}x_1 + w_{1,2}x_2 + b) \cdot w_2$$

breakpoint → breakline

$$W_{1,1}X_1 + W_{1,2}X_2 + b = 0$$

$$f(\cdot,\Theta): \mathbb{R}^2 \to \mathbb{R}^2$$

 $x \mapsto (f_1(x,\Theta), f_2(x,\Theta))$

$$f(\cdot,\Theta): \mathbb{R}^2 \to \mathbb{R}^2$$

 $x \mapsto (f_1(x,\Theta), f_2(x,\Theta))$

More hidden neurons:

- Each ReLU neuron contributes exactly one breakline.
- \bullet $f(\cdot, \Theta)$ is the sum of all individual continuous piecewise linear functions.
- Same breaklines in f_1 and f_2 .

Encoding ETR as a Neural Network

Goal: ETR-NN → TRAIN-NN

Encoding ETR as a Neural Network

Goal: ETR-NN → TRAIN-NN

Given: variables Find: data points

constraints integer *m*

Such that: for

formula true

 \iff

trainable with m ReLUs

Encoding ETR as a Neural Network

Goal: ETR-NN → TRAIN-NN

Given: variables constraints

Find: data points

integer *m*

Such that:

formula true

 \iff

trainable with m ReLUs

Encoding ETR as a Neural Network

Goal: ETR-NN → TRAIN-NN

Given: variables constraints

Find: data points integer *m*

Such that:

formula true

 \iff

trainable with m ReLUs

not collinear → at least one ReLU

Recall: #ReLUs = #breakpoints

Encoding ETR as a Neural Network

Goal: ETR-NN → TRAIN-NN

Given: variables constraints

Find: data points integer *m*

Such that: formula true

trainable with m ReLUs

not collinear → at least one ReLU

Possible with 1 ReLU.

Recall: #ReLUs = #breakpoints

Encoding ETR as a Neural Network

Goal: ETR-NN → TRAIN-NN

Given: variables

constraints

Find: data points

integer *m*

Such that:

formula true

 \iff

trainable with m ReLUs

not collinear → at least one ReLU

Possible with 1 ReLU.

Possible with more ReLUs.

Recall: #ReLUs = #breakpoints

Task: Encode a value $X \in [-1, 1]$.

¹⁹ Training Fully Connected Neural Networks is ∃ℝ-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

→ 4 breakpoints

Idea: The slope encodes the value.

Minimum slope is 1, we enforce a maximum slope of 3:

 \sim Interpret slopes in [1, 3] as values in [-1, 1].

Task: Encode a value $X \in [-1, 1]$.

Fit with 4 ReLUs:

 \sim 4 breakpoints

Idea: The slope encodes the value.

Minimum slope is 1, we enforce a maximum slope of 3:

 \sim Interpret slopes in [1, 3] as values in [-1, 1].

¹⁹ Training Fully Connected Neural Networks is ∃ℝ-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Linear Constraints

Question: How to encode constraints involving *X* and *Y*?

Linear Constraints

Question: How to encode constraints involving *X* and *Y*?

impossible in one dimension

Question: How to encode constraints involving *X* and *Y*?

- impossible in one dimension
- levees intersect in two dimensions

Question: How to encode constraints involving *X* and *Y*?

- impossible in one dimension
- levees intersect in two dimensions
- Add a data point in intersection to encode a linear constraint.

Questions?

Questions?

Thank you!