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Motivation

Neural Networks: The most successful tool in artificial intelligence.

AlphaGo vs. Lee Sedol, 2016 photorealistic image generation
(StyleGAN, 2019)
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Neural Networks

inputs hidden outputs Architecture: directed acyclic graph
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Biases: on hidden neurons

Activation Function: = ReLU
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Neural Networks

inputs hidden outputs Architecture: directed acyclic graph
(vertices = neurons)

Biases: on hidden neurons

Activation Function: = ReLU
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ReLU(3 · 2 + 4 · 1 + (−3)) = 7

7 · 1 = 7

7 · (−4) = −28

Neural network realizes a function:
f (·,Θ) : R2 → R2

weights + biases parametrize f
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x 7→ max{0, x}
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; What are good values for Θ?
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List of points (xi ; yi ) ∈ R2 × R2:
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Training Neural Networks

Question:
The weights and biases Θ parametrize the function f (·,Θ).
; What are good values for Θ?

Training Data:
List of points (xi ; yi ) ∈ R2 × R2:

xi ∈ R2: input values

yi ∈ R2: labels = desired output values

Optimize: Choose Θ such that
overall fitting error is minimal.
For all i : yi ≈ f (xi ,Θ)

Best case: yi = f (xi ,Θ)

4



Training Fully Connected Neural Networks is ∃R-Complete
Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, Simon Weber

Decision Problem

Input:
network architecture

n data points (xi ; yi )

Question: Are there weights
and biases Θ, such that:

yi = f (xi ,Θ) ∀i ∈ {1, . . . , n}

TRAIN-NN:
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Decision Problem

Input:
network architecture

n data points (xi ; yi )

No optimization, just
a yes/no-question.

a cost function cost(·)
a threshold γ

n∑
i=1

cost(yi , f (xi ,Θ)) ≤ γ?

Question: Are there weights
and biases Θ, such that:

yi = f (xi ,Θ) ∀i ∈ {1, . . . , n}

TRAIN-NN:

A little more general:
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How hard can it be?

NP

NP-hard in many settings:
binary classification (Blum, Rivest 1992)

sigmoid activation function (Jones 1997, . . .)

single hidden neuron with ReLU (Geol et al. 2020)

P
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How hard can it be?

NP

NP-hard in many settings:
binary classification (Blum, Rivest 1992)

sigmoid activation function (Jones 1997, . . .)

single hidden neuron with ReLU (Geol et al. 2020)

NP-membership in simple settings:
single output neuron, one ReLU layer (Arora et al. 2016)

step activation functions (Khalife, Basu 2022)

P
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How hard can it be?

∃R

NP

P

∃R-complete for:
one hidden layer, three outputs,
identity activation function
(Abrahamsen, Kleist, Miltzow 2021)
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How hard can it be?

∃R

NP

P

∃R-complete for:
one hidden layer, three outputs,
identity activation function
(Abrahamsen, Kleist, Miltzow 2021)

Their proof relies on particularly difficult
to train network architectures.
; This is not a practical setting.
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Our Result

Theorem: Training neural networks
is ∃R-complete, for

in NP for single output

often used (as a building block)
in practical architectures

We prove γ = 0. Add inconsistent
training data for γ > 0.

by far the most used in practice

common in classification tasks

exactly one hidden layer,

two inputs, two outputs,

fully connected network architecture,

only 13 different labels,

(more or less) any training error γ,

ReLU activation function,
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Existential Theory of the Reals

Definition: (ETR)
EXISTENTIAL THEORY OF THE REALS:
All true sentences of the form

∃X1, . . . , Xn ∈ R : ϕ(X1, . . . , Xn).

ϕ = quantifier-free formula of
polynomial equations and inequalities
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Definition: (ETR)
EXISTENTIAL THEORY OF THE REALS:
All true sentences of the form

∃X1, . . . , Xn ∈ R : ϕ(X1, . . . , Xn).

ϕ = quantifier-free formula of
polynomial equations and inequalities

Example:
ϕ(X , Y ) :≡ X 2 + Y 2 ≤ 1

1 X

Y 1

Solving systems of non-linear
equations and inequalities.
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1 X
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Existential Theory of the Reals

Definition: (ETR)
EXISTENTIAL THEORY OF THE REALS:
All true sentences of the form

∃X1, . . . , Xn ∈ R : ϕ(X1, . . . , Xn).

ϕ = quantifier-free formula of
polynomial equations and inequalities

Example:
ϕ(X , Y ) :≡ X 2 + Y 2 ≤ 1

1 X

Y

Y ≥ 2X 2 − 1∧

1

∃X , Y ∈ R : ϕ(X , Y ) is true
Solving systems of non-linear
equations and inequalities.
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Complexity Class ∃R

NP

P

∃R

PSPACE

Base Problem: ETR
Decide whether ∃X ∈ Rn : ϕ(X ) is true.
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Complexity Class ∃R

NP

P

∃R

PSPACE

Base Problem: ETR
Decide whether ∃X ∈ Rn : ϕ(X ) is true.

ETR The complexity class ∃R contains all
problems that reduce to ETR.
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Complexity Class ∃R

NP

P

∃R

PSPACE

Base Problem: ETR
Decide whether ∃X ∈ Rn : ϕ(X ) is true.

ETR

∃R-complete⇔ equivalent to ETR
(under polynomial time transformations)

The complexity class ∃R contains all
problems that reduce to ETR.
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Complexity Class ∃R

NP

P

∃R

PSPACE

Base Problem: ETR
Decide whether ∃X ∈ Rn : ϕ(X ) is true.

ETR

∃R-complete⇔ equivalent to ETR
(under polynomial time transformations)

The complexity class ∃R contains all
problems that reduce to ETR.TRAIN-NN
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Practical Implications

NP

P

∃R

PSPACE
Problems in P:

Efficient algorithms in theory and practice.
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Practical Implications

NP

P

∃R

PSPACE
NP-complete problems:

No efficient algorithms in theory.

Highly optimized off-the-shelf tools can solve large
instance to optimality.

(assuming NP 6= P)
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Practical Implications

NP

P

∃R

PSPACE
∃R-complete problems:

Exponential time algorithms in theory.
However, useless in practice.

Gradient descent often works reasonably well.
But: No guarantees on time and quality.
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Practical Implications

NP

P

∃R

PSPACE
PSPACE-complete problems:

No general purpose tools.

P = NP = ∃R = PSPACE is possible,
but considered unlikely.
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∃R-Complete Problems

Art Gallery Problem Recognition of Unit Disk Graphs

Packing

... and many more geometric problems

∼=
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Goal: Express TRAIN-NN as an ETR formula.

; TRAIN-NN is at most as difficult as ETR
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∃R-Membership

Goal: Express TRAIN-NN as an ETR formula.

∃w1, . . .︸ ︷︷ ︸, b1, . . .︸ ︷︷ ︸ ∈ R : y1 = f (x1,Θ) ∧ . . . ∧ yn = f (xn,Θ)︸ ︷︷ ︸

; TRAIN-NN is at most as difficult as ETR

formula checking that
training data is fit exactly

weights biases
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∃R-Hardness

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula. Step 2: ETR-NN ; TRAIN-NN

; TRAIN-NN is at lest as difficult as ETR

ETR ; ETR-NN
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∃R-Hardness

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula. Step 2: ETR-NN ; TRAIN-NN

Values: ∃X , . . . ∈ [−1, 1] : ϕ(X )

Constraints:
X + Y = Z

XY + X + Y = 0

X ≥ 0

X = 1

(nonlinear)

; TRAIN-NN is at lest as difficult as ETR

ETR ; ETR-NN
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∃R-Hardness

Express ETR formula as an instance of TRAIN-NN.

Step 1: Simplify formula. Step 2: ETR-NN ; TRAIN-NN

Values: ∃X , . . . ∈ [−1, 1] : ϕ(X )

Constraints:
X + Y = Z

XY + X + Y = 0

X ≥ 0

X = 1

(nonlinear)

geometric construction

; TRAIN-NN is at lest as difficult as ETR

ETR ; ETR-NN
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Geometry I

Recall: Neural network realizes a function f (·,Θ).
How does is look like?
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How does is look like?

;

f (·,Θ) : R→ R

1
0

2

x 7→ ReLU(1x + 0) · 2

x
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Geometry I

Recall: Neural network realizes a function f (·,Θ).
How does is look like?

;

f (·,Θ) : R→ R

1
−1 −2

x 7→ ReLU(1x − 1) · (−2)

;x
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Geometry I

Recall: Neural network realizes a function f (·,Θ).
How does is look like?

;

f (·,Θ) : R→ R

1
2 −2

x 7→ ReLU( 1
2 x − 1) · (−2)

−1
x
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Geometry I

Recall: Neural network realizes a function f (·,Θ).
How does is look like?

;

f (·,Θ) : R→ R

1
2 −2

x 7→ ReLU( 1
2 x − 1) · (−2)

−1

f (·,Θ) is
continuous and
piecewise linear.

Breakpoint is
determined only
by first weight
and bias.

Second weight
only for scaling.

x

14
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Geometry II

Question: Two outputs?

;1
1

2

−1
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Geometry II

Question: Two outputs?

;1
1

2

−1

Separate functions,
one per output.

All functions have the
same breakpoint!
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Geometry III

f (·,Θ) : R→ R

w1
b w2

x 7→ ReLU(w1x + b) · w2

Question: Two inputs?

x
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Geometry III

f (·,Θ) : R2 → R

w1,1
b w2

x 7→ ReLU(w1,1x1 + w1,2x2 + b) · w2

w1,2

x1

x2
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Geometry III

f (·,Θ) : R2 → R

w1,1
b w2

x 7→ ReLU(w1,1x1 + w1,2x2 + b) · w2

w1,2

w1,1x1 + w1,2x2 + b = 0

breakpoint ; breakline

x1

x2
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f1(·,Θ) : R2 → R

f2(·,Θ) : R2 → R

f (·,Θ) : R2 → R2

x 7→ (f1(x ,Θ), f2(x ,Θ))
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Geometry IV

f1(·,Θ) : R2 → R

f2(·,Θ) : R2 → R

f (·,Θ) : R2 → R2

x 7→ (f1(x ,Θ), f2(x ,Θ))

More hidden neurons:
Each ReLU neuron contributes exactly one breakline.

f (·,Θ) is the sum of all individual continuous piecewise linear functions.

Same breaklines in f1 and f2.
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Encoding ETR as a Neural Network

not collinear ; at least one ReLU

Goal: ETR-NN ; TRAIN-NN

x

y

Recall: #ReLUs = #breakpoints

Given: variables
constraints

Find: data points
integer m

Such that: formula true
⇐⇒

trainable with m ReLUs
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Encoding ETR as a Neural Network

not collinear ; at least one ReLU

Possible with 1 ReLU.

Goal: ETR-NN ; TRAIN-NN

x

y

Recall: #ReLUs = #breakpoints

Given: variables
constraints

Find: data points
integer m

Such that: formula true
⇐⇒
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Encoding ETR as a Neural Network

not collinear ; at least one ReLU

Possible with 1 ReLU.

Goal: ETR-NN ; TRAIN-NN

x

y

Possible with more ReLUs.

Recall: #ReLUs = #breakpoints

Given: variables
constraints

Find: data points
integer m

Such that: formula true
⇐⇒

trainable with m ReLUs

18
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Encoding Variables

Task: Encode a value X ∈ [−1, 1].

0
1
2
3
4
5
6

Fit with 4 ReLUs:
; 4 breakpoints

Idea: The slope encodes the value.
Minimum slope is 1, we enforce a maximum slope of 3:
; Interpret slopes in [1, 3] as values in [−1, 1].
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Encoding Variables

Task: Encode a value X ∈ [−1, 1].

0
1
2
3
4
5
6

Fit with 4 ReLUs:
; 4 breakpoints

Idea: The slope encodes the value.
Minimum slope is 1, we enforce a maximum slope of 3:
; Interpret slopes in [1, 3] as values in [−1, 1].

Levee

DE: Deich
ITA: argine

19
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Linear Constraints

X Y

Question: How to encode
constraints involving X and Y?

levees intersect in two dimensions

Add a data point in intersection to
encode a linear constraint.

impossible in one dimension

Red and blue
levee add up.
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Task: Encode a nonlinear relation.

0
1
2
3
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6 dimension 1

dimension 2

Fit with 5 ReLUs:
; 5 breakpoints

Possible, but
dimensions
need to share
one breakpoint.

3

3
s• 3

s•

; 3 = 3
s•

+ 3
s•

;

Possible, but
dimensions
need to share
one breakpoint.

s•s• + s• + s• = 0
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Nonlinear Constraint

Task: Encode a nonlinear relation.

0
1
2
3
4
5
6 dimension 1

dimension 2

Fit with 5 ReLUs:
; 5 breakpoints

Possible, but
dimensions
need to share
one breakpoint.

3

3
s• 3

s•

; 3 = 3
s•

+ 3
s•

;

Double Levee
Possible, but
dimensions
need to share
one breakpoint.

s•s• + s• + s• = 0
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Top Down View

X1

X2

X3

X4

=
=

=

X 1
+

X 2
=

X 4

=1

=2

X 1
X 3

+
X 1

+
X 3

=
0

levees

more
levees

double
levee

there are weights and biases Θ
exactly fitting all data points

⇐⇒
the ETR instance is true

...
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