
Training Fully Connected Neural Networks is ∃R-Complete

Problem & Contribution

We determine the exact computational complexity of empirical risk minimization,
i.e., the training problem for neural networks.

Daniel Bertschinger, ETH Zurich
Christoph Hertrich, LSE London → ULB Brussels → GU Frankfurt
Paul Jungeblut, Karlsruhe Institute of Technology
Tillmann Miltzow, Utrecht University
Simon Weber, ETH Zurich

∃R: Existential Theory of the Reals

Proof Sketch: Reduction from ETR-INV Discussion

Training Problem:

Input: • network architecture N :
two layers and fully connected

• data points D
• target error γ

Question: Are there weights and biases such
that the training error is at most γ?

Theorem: Training two-layer fully connected neural networks is ∃R-complete.
This holds even if:

• There are only two input neurons.
• There are only two output neurons.
• The number of data points is linear in the number of hidden neurons.
• The data has only 13 different labels.
• The target error is γ = 0.
• The ReLU activation function is used.

Definition: The complexity class ∃R contains all problems
that polynomial-time many-one reduce to ETR, i.e.,
deciding an existential first-order fomula of the form

∃X1, . . . , Xn ∈ R : φ(X1, . . . , Xn).

An ∃R-Complete Problem: ETR-INV

Input: A formula Φ ≡ ∃X1, . . . , Xn : φ(X1, . . . , Xn) where φ is a conjunction
(only ∧) of constraints, each of the form Xi +Xj = Xk or Xi ·Xj = 1.

Question: Is Φ true?

Promise: Φ is either false, or it has a solution with all Xi ∈
[
1
2 , 2

]
.

Goal: Given an ETR-INV instance, construct an equivalent instance of the neural
network training problem in polynomial time.

Global Arrangement of the Gadgets:

p

q

Inversion Gadget: 13 data points that
must be fit with 5 ReLU neurons.: Data
points p and q have different labels in the
two output dimensions.

Think of a variable gadget with two slopes
representing two real values that depend on
each other non-linearly. ⇝ Inversion

Variable Gadget: 12 data points that
must be fit with 4 ReLU neurons.

Unique, except for the segment through p.
Its slope represents the value of a variable.

Linear Dependencies: In two input dimensions,
variable gadgets become stripes that can intersect.

pA data point in the intersection imposes
a linear dependency: If one variable
contributes more, the other one has
to proportionally contribute less.
⇝ Copying & Addition

both bends by

same ReLU

p

∃R
polynomial equations/inequalities

Idea: A single ReLU neuron computes a
continuous piecewise linear function with
one flat part and one sloped part.

more ReLUs ⇝ more bends

P NP ∃R PSPACE
Intuition: ∃R is a real analog of NP:

• SAT: existence of Boolean variables
• ETR: existence of real-valued variables

Daniel Till Christoph Simon Paul

X1

X2

X3

X4

X1 +X2 −X3 = 0

=

=

=

=

=

=

X1 +X3 −X4 = 0

=1=2

=1

=2

X4 ·X3 = 1

X1 ·X4 = 1

-1
1 2

x y

y = 2 · ReLU(x− 1)
x

y

⊆ ⊆ ⊆

Theorem: Irrational numbers of arbitrary algebraic degree are required to train
some two-layer fully connected to optimality.

References

Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow (2021). ”Training Neural Networks is ∃R-complete” In:
Advances in Neural Information Processing Systems 34

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee (2018). ”Understanding Deep Neural Networks
with Rectified Linear Units” In: International Conference on Learning Representations

Advancement of the State of the Art:

• Arora, Basu, Mianjy and Mukherjee (ICLR 2018) prove NP-membership
for the single output case. Our result explains, why this was never
generalized to more than one output dimension.

• Abrahamsam, Kleist and Miltzow (NeurIPS 2021) prove ∃R-hardness for
adversarial network architectures. We strenghten their result by proving
that ∃R-hardess is inherent to the problem itself.

Implications:

• It is widely believed that NP ⊊ ∃R
⇒ NN training is more difficult than NP-complete problems

⇒ Tools like mixed-integer programming or SAT-solving not sufficient.

• Our results do not rule out good heuristics. In fact, stochastic gradient
descent seems to be an effective tool for other ∃R-complete problems, too.

Limitations and Open Questions:

• ∃R-completeness heavily relies on precision. Is NN training in NP if we
allow small additive errors?

• Which other extra-assumptions make training tractable?

• We consider only the training error. Any implications on generalization?

• Can we transfer our results to deeper architectures?

Related Poster at NeurIPS 2023: V. Froese and C. Hertrich: Training Neural
Networks is NP-Hard in Fixed Dimension


