# Training Fully Connected Neural Networks is $\exists \mathbb{R}$ -Complete

Daniel Bertschinger, ETH Zurich Christoph Hertrich, LSE London  $\rightarrow$  ULB Brussels  $\rightarrow$  GU Frankfurt Paul Jungeblut, Karlsruhe Institute of Technology Tillmann Miltzow, Utrecht University Simon Weber, ETH Zurich



## Problem & Contribution

We determine the exact computational complexity of *empirical risk minimization*, i.e., the training problem for neural networks.

#### **Training Problem:**

 $\bullet \ \ \mathsf{data} \ \mathsf{points} \ D$ 

• target error  $\gamma$ 

**Question:** Are there weights and biases such that the training error is at most  $\gamma$ ?



**Theorem:** Training two-layer fully connected neural networks is  $\exists \mathbb{R}$ -complete. This holds even if:

- There are only two input neurons.
- There are only two output neurons.
- The number of data points is linear in the number of hidden neurons.
- The data has only 13 different labels.
- The target error is  $\gamma = 0$ .
- The ReLU activation function is used

**Theorem:** Irrational numbers of arbitrary algebraic degree are required to train some two-layer fully connected to optimality.

## $\exists \mathbb{R}$ : Existential Theory of the Reals

**Definition:** The complexity class  $\exists \mathbb{R}$  contains all problems that polynomial-time many-one reduce to ETR, i.e., deciding an existential first-order fomula of the form



$$\exists X_1, \ldots, X_n \in \mathbb{R} : \varphi(X_1, \ldots, X_n).$$

----- polynomial equations/inequalities



**Intuition:**  $\exists \mathbb{R}$  is a real analog of NP:

- SAT: existence of Boolean variables
- ETR: existence of real-valued variables

An ∃R-Complete Problem: ETR-INV

**Input:** A formula  $\Phi \equiv \exists X_1, \dots, X_n : \varphi(X_1, \dots, X_n)$  where  $\varphi$  is a conjunction (only  $\wedge$ ) of constraints, each of the form  $X_i + X_j = X_k$  or  $X_i \cdot X_j = 1$ .

**Question:** Is  $\Phi$  true?

**Promise:**  $\Phi$  is either false, or it has a solution with all  $X_i \in \left[\frac{1}{2}, 2\right]$ .

## Proof Sketch: Reduction from ETR-INV

**Goal:** Given an ETR-INV instance, construct an equivalent instance of the neural network training problem in polynomial time.

**Idea:** A single ReLU neuron computes a continuous piecewise linear function with one flat part and one sloped part.







Variable Gadget: 12 data points that must be fit with 4 ReLU neurons.

Unique, except for the segment through p. Its slope represents the value of a variable.

**Linear Dependencies:** In two input dimensions, variable gadgets become stripes that can intersect.

A data point in the intersection imposes a linear dependency: If one variable contributes more, the other one has to proportionally contribute less.



**Inversion Gadget:** 13 data points that must be fit with 5 ReLU neurons.: Data points p and q have different labels in the two output dimensions.

Think of a variable gadget with two slopes representing two real values that depend on each other non-linearly.  $\rightsquigarrow$  Inversion

#### **Global Arrangement of the Gadgets:**



## Discussion

## Advancement of the State of the Art:

- Arora, Basu, Mianjy and Mukherjee (ICLR 2018) prove NP-membership for the single output case. Our result explains, why this was never generalized to more than one output dimension.
- Abrahamsam, Kleist and Miltzow (NeurIPS 2021) prove  $\exists \mathbb{R}$ -hardness for adversarial network architectures. We strenghten their result by proving that  $\exists \mathbb{R}$ -hardess is inherent to the problem itself.

### **Implications:**

- It is widely believed that  $\mathsf{NP} \subsetneq \exists \mathbb{R}$
- $\Rightarrow$  NN training is more difficult than NP-complete problems
- ⇒ Tools like mixed-integer programming or SAT-solving not sufficient.
- Our results do not rule out good heuristics. In fact, stochastic gradient descent seems to be an effective tool for other  $\exists \mathbb{R}$ -complete problems, too.

## **Limitations and Open Questions:**

- $\exists \mathbb{R}$ -completeness heavily relies on precision. Is NN training in NP if we allow small additive errors?
- Which other extra-assumptions make training tractable?
- We consider only the *training* error. Any implications on *generalization*?
- Can we transfer our results to deeper architectures?



#### References

Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow (2021). "Training Neural Networks is  $\exists \mathbb{R}$ -complete" In: Advances in Neural Information Processing Systems 34

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee (2018). "Understanding Deep Neural Networks with Rectified Linear Units" In: International Conference on Learning Representations

**Related Poster at NeurIPS 2023:** V. Froese and C. Hertrich: Training Neural Networks is NP-Hard in Fixed Dimension