

The Air-Pressure Method for Area-Universality

Mittagsseminar · 5th October 2022 Paul Jungeblut

Floorplans

Floorplan:

Partition of a rectangle into smaller rectangles.

1 The Air-Pressure Method for Area-Universality Paul Jungeblut

Floorplans

Floorplan:

Partition of a rectangle into smaller rectangles.

Area Universality

Definition: A floorplan is **area-universal** if for every area assignment there is an "equivalent" floorplan realizing the desired areas.

1 The Air-Pressure Method for Area-Universality Paul Jungeblut

Question: Which floorplans should be considered equivalent?

Question: Which floorplans should be considered equivalent?

Weak Equivalence: Same segment contact graph.

2 The Air-Pressure Method for Area-Universality Paul Jungeblut

Question: Which floorplans should be considered equivalent?

Weak Equivalence: Same segment contact graph.

2 The Air-Pressure Method for Area-Universality Paul Jungeblut

Question: Which floorplans should be considered equivalent?

Weak Equivalence: Same segment contact graph.

Strong Equivalence: Same rectangle contact graph.

² The Air-Pressure Method for Area-Universality Paul Jungeblut

Question: Which floorplans should be considered equivalent?

Weak Equivalence: Same segment contact graph.

Strong Equivalence: Same rectangle contact graph.

² The Air-Pressure Method for Area-Universality Paul Jungeblut

Question: Which floorplans should be considered equivalent?

Weak Equivalence: Same segment contact graph.

Strong Equivalence: Same rectangle contact graph.

Theorem: Floorplans are area-universal under weak equivalence.

Wimer, Koren, Cederbaum 1988 Eppstein, Mumford, Speckmann, Verbeek 2012 Felsner 2013

2 The Air-Pressure Method for Area-Universality Paul Jungeblut

Air-Pressure Method

Idea: Each rectangle holds an amount of air proportional to its desired area.

- too small \Rightarrow high pressure (> 1)
- too large \Rightarrow low pressure (< 1)

Air-Pressure Method

Idea: Each rectangle holds an amount of air proportional to its desired area.

- too small \Rightarrow high pressure (> 1)
- too large \Rightarrow low pressure (< 1)

Formally:

$$w : R \to \mathbb{R}_{>0}$$

$$p(r) = \frac{w(r)}{\operatorname{area}(r)}$$

$$\mathcal{F}(s, r) = p(r) \cdot \ell(s, r)$$

$$\mathcal{F}(s) = \sum_{r \text{ left of } s} \mathcal{F}(s, r) - \sum_{r \text{ right of } s} \mathcal{F}(s, r)$$

area assignment for each rectangle $r \in R$ **pressure** of a rectangle **force** that *r* exerts on segment *s* (where $\ell(s, r)$ is length of *r* on *s*)

force on a vertical segment

3 The Air-Pressure Method for Area-Universality Paul Jungeblut

4 The Air-Pressure Method for Area-Universality Paul Jungeblut

4 The Air-Pressure Method for Area-Universality Paul Jungeblut

Algorithm

н

while "some" segment *s* is unbalanced

push s in direction of force until it is balanced

4 The Air-Pressure Method for Area-Universality Paul Jungeblut

The Air-Pressure Method for Area-Universality

4

Paul Jungeblut

Algorithm

while "some" segment *s* is unbalanced

push s in direction of force until it is balanced

History:

1998 Izumi, Takhashi and Kajitani implemented air-pressure method. Observed fast convergence.

2013 Convergence proved by Felsner.

Main Lemmas

Lemma:

If all rectangles are in balance, then all segments are in balance.

Proof:

W.I.o.g. for a vertical segement *s*:

$$\mathcal{F}(s) = \sum_{r \text{ left of } s} p(r) \cdot \ell(r, s) - \sum_{r \text{ right of } s} p(r) \cdot \ell(r, s) = 0 \quad (\text{since } p(r) = 1 \text{ for all } r)$$

Main Lemmas

Lemma:

If all rectangles are in balance, then all segments are in balance.

Proof:

W.I.o.g. for a vertical segement *s*:

$$\mathcal{F}(s) = \sum_{r \text{ left of } s} p(r) \cdot \ell(r, s) - \sum_{r \text{ right of } s} p(r) \cdot \ell(r, s) = 0 \quad (\text{since } p(r) = 1 \text{ for all } r)$$

Main Lemmas

Lemma:

If all rectangles are in balance, then all segments are in balance.

Proof:

W.I.o.g. for a vertical segement *s*:

$$\mathcal{F}(s) = \sum_{r \text{ left of } s} p(r) \cdot \ell(r, s) - \sum_{r \text{ right of } s} p(r) \cdot \ell(r, s) = 0 \quad (\text{since } p(r) = 1 \text{ for all } r)$$

Lemma:

If all segments are in balance, then all rectangles are in balance.

Proof more technical. And not (!) obvious.

Definition (**Entropy**):

 $E(r) = -w(r) \cdot \log p(r)$

$$E(F) = \sum_{r} E(r) = \sum_{r} -w(r) \cdot \log p(r)$$

Definition (**Entropy**): $E(r) = -w(r) \cdot \log p(r)$

$$E(F) = \sum_{r} E(r) = \sum_{r} -w(r) \cdot \log p(r)$$

Lemma:

It holds that $E(F) \leq 0$ and further that E(F) = 0 if and only if all rectangles are in balance.

Definition (**Entropy**): $E(r) = -w(r) \cdot \log p(r)$

$$E(F) = \sum_{r} E(r) = \sum_{r} -w(r) \cdot \log p(r)$$

Lemma:

It holds that $E(F) \leq 0$ and further that E(F) = 0 if and only if all rectangles are in balance.

Proof:

Use that for $x \in \mathbb{R}_{>0}$ it holds that $\log(x) \ge (1 - \frac{1}{x})$. Equality if and only if x = 1.

Thus:
$$\log p(r) \ge (1 - \frac{1}{p(r)}) = (1 - \frac{\operatorname{area}(r)}{w(r)})$$

Thus:
$$E(r) = -w(r) \cdot \log p(r) \leq -w(r)(1 - \frac{\operatorname{area}(r)}{w(r)}) = \operatorname{area}(r) - w(r)$$

•
$$E = \sum_{r} -w(r) \cdot \log p(r) \le \sum_{r} \operatorname{area}(r) - \sum_{r} w(r) = 1 - 1 = 0$$

The Air-Pressure Method for Area-Universality 6 Paul Jungeblut

Definition (**Entropy**): $E(r) = -w(r) \cdot \log p(r)$

$$E(F) = \sum_{r} E(r) = \sum_{r} -w(r) \cdot \log p(r)$$

Lemma:

Shifting an unbalanced segment *s* into its balanced position increases the entropy.

Definition (**Entropy**): $E(r) = -w(r) \cdot \log p(r)$

$$E(F) = \sum_{r} E(r) = \sum_{r} -w(r) \cdot \log p(r)$$

Lemma:

Shifting an unbalanced segment *s* into its balanced position increases the entropy.

Proof idea:

- Let E(t) be the entropy after shifting s by t.
- Force acting on *s* at time *t* is exactly $\frac{d}{dt}E(t)$.
- Force is positve in direction of shift.
 - \Rightarrow Change of entropy is positive.
 - \Rightarrow Entropy increases.

Theorem:

Let $F_0, F_1, F_2, ...$ be a sequence of floorplans where F_{i+1} is obtained from F_i by balancing an unbalanced segment. If the selection of segments is "non-ignoring", then the sequence converges to a floorplan F with E(F) = 0.

Theorem:

```
Let F_0, F_1, F_2, ... be a sequence of floorplans where F_{i+1} is obtained from F_i by balancing an unbalanced segment.
If the selection of segments is "non-ignoring", then the sequence converges to a
```

floorplan F with E(F) = 0.

Proof sketch:

- We know $E(F_i) \leq 0$ and $E(F_{i+1}) > E(F_i)$.
 - \Rightarrow Sequence converges.
- Assume (for contradiction) that E(F) = a < 0:
 - There is an unbalanced rectangle and thus an unbalanced segment s.
 - Balancing *s* gives increase Δ in entropy.
 - For all sufficiently large *i* balancing *s* in F_i increases entropy by at least $\Delta/2$.
 - But: For all sufficiently large *i* we also have $E(F_i) > a \Delta/2$.

Definition:

A plane graph *G* is **area-universal** if for every area assignment there is a straight-line drawing of *G* with the desired face areas.

Definition:

A plane graph *G* is **area-universal** if for every area assignment there is a straight-line drawing of *G* with the desired face areas.

Area-Universal

stacked triangulations

Biedl, Veláquez 2013

3-regular graphs

Thomassen 1992

1-subdivisions of planar graphs

Kleist 2018

8 The Air-Pressure Method for Area-Universality Paul Jungeblut

Area-Universality of Plane Graphs

Definition:

A plane graph *G* is **area-universal** if for every area assignment there is a straight-line drawing of *G* with the desired face areas.

Area-Universal

- stacked triangulations
 Biedl, Veláquez 2013
- 3-regular graphs

Thomassen 1992

1-subdivisions of planar graphs Kleist 2018

Not Area-Universal

- Eulerian triangulations
 Kleist 2018
- icosahedron, "butterfly graph", ...
 Kleist 2018

Air-Pressure

Pressure and **entropy** are defined as for floorplans:

 $p(f) = \frac{w(f)}{\operatorname{area}(f)}$

(*f* is an inner face, *D* a drawing)

$$E(f) = -w(f) \cdot \log p(f) \qquad E(D) = \sum_{f} E(f)$$

Air-Pressure

Pressure and **entropy** are defined as for floorplans:

 $p(f) = \frac{w(f)}{\operatorname{area}(f)}$ (f is an inner face, D a drawing) $E(f) = -w(f) \cdot \log p(f)$ $E(D) = \sum_{f} E(f)$

Forces:

$$\mathcal{F}(v, f) = p(f) \cdot ||s(v, f)|| \cdot n_{s(v, f)}$$

$$\mathcal{F}(v, f) = \sum_{f \mid (v \text{ on } f)} \mathcal{F}(v, f)$$

9 The Air-Pressure Method for Area-Universality Paul Jungeblut

Lemma: (Kleist 2018) In a triangulation an unbalanced vertex can always be shifted into a balanced position.

Lemma: (Kleist 2018) In a triangulation an unbalanced vertex can always be shifted into a balanced position.

General plane graphs:

Lemma: (Kleist 2018) In a triangulation an unbalanced vertex can always be shifted into a balanced position.

General plane graphs:

1) triangulate around v

Lemma: (Kleist 2018) In a triangulation an unbalanced vertex can always be shifted into a balanced position.

General plane graphs:

1) triangulate around v

2) shift v until in balance

Lemma: (Kleist 2018) In a triangulation an unbalanced vertex can always be shifted into a balanced position.

General plane graphs:

- 1) triangulate around v
- 2) shift v until in balance
- 3) remove dashed edges \sim "pressure equalization"

Lemma: (Kleist 2018) In a triangulation an unbalanced vertex can always be shifted into a balanced position.

General plane graphs:

- 1) triangulate around v
- 2) shift v until in balance
- 3) remove dashed edges \rightarrow "pressure equalization"

Steps 2) and 3) both increase entropy.

Lemma: If all faces are in balance, then all vertices are in balance.

Deadlocks

Lemma: If all faces are in balance, then all vertices are in balance.

But: The converse is not true!

Even without deadlocks, a vertex might not be moveable:

Theorem: (Kleist 2018) There are no deadlocks for 3-regular graphs.

Theorem: (Kleist 2018) There are no deadlocks for 3-regular graphs.

Observation:

There are no deadlocks for 2-degenerate graphs.

Theorem: (Kleist 2018) There are no deadlocks for 3-regular graphs.

Observation:

There are no deadlocks for 2-degenerate graphs.

But: In both cases it is unclear if the entropy of the drawings converges to 0.

13 The Air-Pressure Method for Area-Universality Paul Jungeblut

Theorem: (Kleist 2018) There are no deadlocks for 3-regular graphs.

Possible way to reprove Thomassen's theorem that 3-regular graphs are area-universal.

Observation: There are no deadlocks for 2-degenerate graphs.

But: In both cases it is unclear if the entropy of the drawings converges to 0.

13 The Air-Pressure Method for Area-Universality Paul Jungeblut

Theorem: (Kleist 2018) There are no deadlocks for 3-regular graphs.

Possible way to reprove Thomassen's theorem that 3-regular graphs are area-universal.

Observation:

There are no deadlocks for 2-degenerate graphs.

Lower the *subdivision number* of triangulations and quadrangulations.

But: In both cases it is unclear if the entropy of the drawings converges to 0.

Subdivision Number

Theorem: (Kleist 2018) 1-subdivisions of planar graphs are area-universal.

14 The Air-Pressure Method for Area-Universality Paul Jungeblut

Subdivision Number

Theorem: (Kleist 2018) 1-subdivisions of planar graphs are area-universal.

Question: How many subdivisions are necessary to obtain an area-universal graph? \rightarrow subdivision number *s*(*n*)

Triangulations: $s(n) \le 3n - 6$ Quadrangulations: $s(n) \le n - 2$

Paul Jungeblut

 $\rightarrow s(n) \le n-3$ (3*n*-6) for *n*-vertex triangulations

 $\rightarrow s(n) \leq \lfloor \frac{2n}{3} \rfloor$ (n-2) for *n*-vertex quadrangulations

 $\rightsquigarrow s(n) \le n-3$ (3*n*-6) for *n*-vertex triangulations Idea $\rightsquigarrow s(n) \le \lfloor \frac{2n}{3} \rfloor$ (*n*-2) for *n*-vertex quadrangulations obtained

Idea: Subdivide some edges to obtain a 2-degenerate graph.

→ $s(n) \le n-3$ (3n-6) for *n*-vertex triangulations → $s(n) \le \lfloor \frac{2n}{3} \rfloor$ (n-2) for *n*-vertex quadrangulations ldea: Subdivide some edges to obtain a 2-degenerate graph.

New question:

How many edges need to be subdivided (or deleted) to obtain a 2-degenerate graph?

→ $s(n) \le n-3$ (3n-6) for *n*-vertex triangulations → $s(n) \le \lfloor \frac{2n}{3} \rfloor$ (n-2) for *n*-vertex quadrangulations ldea: Subdivide some edges to obtain a 2-degenerate graph.

New question:

How many edges need to be subdivided (or deleted) to obtain a 2-degenerate graph?

Triangulations:	exactly $n-3$
Quadrangulations:	$\leq \frac{n}{3}$
	$\geq \frac{n}{4}$

Triangulations

Theorem:

For every *n*-vertex triangulation there exists a 2-degenerate subdivision with exactly n - 3 subdivision vertices.

Triangulations

Theorem:

For every *n*-vertex triangulation there exists a 2-degenerate subdivision with exactly n - 3 subdivision vertices.

Proof:

Consider a canonical ordering v_1, \ldots, v_n . For every $4 \le i \le n$:

- $G_{i-1} = G[v_1, \ldots, v_{i-1}]$ is a 2-connected inner triangulation
- with outer cycle C_{i-1} containing egde $v_1 v_2$
- and v_i is outside of C_{i-1}
- with at least two consecutive neighbors along C_{i-1} .
- In each step, subdivide all "inner" edges.
- Subdivides all but $(n-2) \cdot 2 + 1 = 2n 3$ edges.

16 The Air-Pressure Method for Area-Universality Paul Jungeblut

16 The Air-Pressure Method for Area-Universality Paul Jungeblut

Triangulations

Theorem:

For every *n*-vertex triangulation there exists a 2-degenerate subdivision with exactly n - 3 subdivision vertices.

Proof:

- Consider a canonical ordering v_1, \ldots, v_n . For every $4 \le i \le n$:
 - $G_{i-1} = G[v_1, \ldots, v_{i-1}]$ is a 2-connected inner triangulation
 - with outer cycle C_{i-1} containing egde $v_1 v_2$
 - and v_i is outside of C_{i-1}
 - with at least two consecutive neighbors along C_{i-1} .
- In each step, subdivide all "inner" edges.
- Subdivides all but $(n-2) \cdot 2 + 1 = 2n 3$ edges.

16 The Air-Pressure Method for Area-Universality Paul Jungeblut

Triangulations

Theorem:

For every *n*-vertex triangulation there exists a 2-degenerate subdivision with exactly n - 3 subdivision vertices.

Proof:

- Consider a canonical ordering v_1, \ldots, v_n . For every $4 \le i \le n$:
 - $G_{i-1} = G[v_1, \ldots, v_{i-1}]$ is a 2-connected inner triangulation
 - with outer cycle C_{i-1} containing egde $v_1 v_2$
 - and v_i is outside of C_{i-1}
 - with at least two consecutive neighbors along C_{i-1} .
- In each step, subdivide all "inner" edges.
- Subdivides all but $(n-2) \cdot 2 + 1 = 2n 3$ edges.

Questions?

