On the Complexity of Lombardi Graph Drawing

GD 2023 • 20.9.2023
Paul Jungeblut

Lombardi Drawing

Definition: Lombardi Drawing
 Vertices points in \mathbb{R}^{2}
 Edges circular arcs (or line segments)
 Constraint perfect angular resolution

Images created with the Lombardi Spirograph by David Eppstein.
1 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Lombardi Drawing

Definition: Lombardi Drawing
 Vertices points in \mathbb{R}^{2}
 Edges circular arcs (or line segments)
 Constraint perfect angular resolution

all 120°

Images created with the Lombardi Spirograph by David Eppstein.
1 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Lombardi Drawing

Definition: Lombardi Drawing
 Vertices points in \mathbb{R}^{2}
 Edges circular arcs (or line segments)
 Constraint perfect angular resolution

all 120°

may contain crossings
(arbitrary crossing angles)

Images created with the Lombardi Spirograph by David Eppstein.

1 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Our Result

Input: graph G rotation system R
Question: Does G have a Lombardi drawing respecting R?

[^0]
Our Result

Input:	graph G rotation system R

Question: Does G have a Lombardi drawing respecting R?

Theorem:

It is $\exists \mathbb{R}$-complete to decide whether G has a Lombardi drawing respecting R.

$$
N P \subseteq \exists \mathbb{R} \subseteq \mathrm{PSPACE}
$$

[^1]Paul Jungeblut

Our Result

Input:

graph G

rotation system R
Question: Does G have a Lombardi drawing respecting R ?

Theorem:

It is $\exists \mathbb{R}$-complete to decide whether G has a Lombardi drawing respecting R.

$$
N P \subseteq \exists \mathbb{R} \subseteq \mathrm{PSPACE}
$$

Complexity Class $\exists \mathbb{R}$

- appears frequently in computational geometry and graph drawing
- difficulty = solving polynomial system of equations and inequalities
- Formally: reducible to

Related Work

Lombardi Graph Drawing

GD 2010 introduced by Duncan, Eppstein, Goodrich, Kobourov and Nöllenburg

Always exist for 2-degenerate, trees, cacti, subcubic, outerpaths, ...

Variants planar, circular, ...
Complexity no general results yet

[^2]
Related Work

Lombardi Graph Drawing

GD 2010 introduced by Duncan, Eppstein, Goodrich, Kobourov and Nöllenburg

Always exist for 2-degenerate, trees, cacti, subcubic, outerpaths, ...

Variants planar, circular, ...
Complexity no general results yet

Complexity Class $\exists \mathbb{R}$

RAC-drawing

recognition of intersection graphs

art gallery problem

3 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Stretchability

Input: pseudolines Want: lines in \mathbb{R}^{2}

Simple Stretchability:

- every two pseudolines intersect exactly once
- no triple intersections

[^3]
Stretchability

Input: pseudolines Want: lines in \mathbb{R}^{2}

Simple Stretchability:

- every two pseudolines intersect exactly once
- no triple intersections

Theorem:

(Mnëv 1988)
Simple Stretchability is $\exists \mathbb{R}$-complete in \mathbb{R}^{2}.

[^4]
Stretchability

Input: pseudolines Want: lines in \mathbb{R}^{2}

Simple Stretchability:

- every two pseudolines intersect exactly once
- no triple intersections

Theorem:

(Mnëv 1988)
Simple Stretchability is $\exists \mathbb{R}$-complete in \mathbb{R}^{2}.

Observation:

(Bieker, Bläsius, Dohse, Jungeblut 2023)
Simple Stretchability is $\exists \mathbb{R}$-complete in \mathbb{H}^{2}.

[^5]
\mathbb{H}^{2} - Hyperbolic Plane

- non-Euclidean geometry
- has already been used in the literature to construct Lombardi drawings

[^6]Paul Jungeblut

\mathbb{H}^{2} - Hyperbolic Plane

- non-Euclidean geometry
- has already been used in the literature to construct Lombardi drawings

Poincaré Disk Model

- embeds \mathbb{H}^{2} into \mathbb{R}^{2}
- \mathbb{H}^{2} is mapped to the interior of a unit disk D
- hyperbolic lines \leadsto circular arcs orthognal to D
- conformal: preserves angles

[^7]
\mathbb{H}^{2} - Hyperbolic Plane

- non-Euclidean geometry
- has already been used in the literature to construct Lombakdi drawings

Poincaré Disk Model

- embeds \mathbb{H}^{2} into \mathbb{R}^{2}
- \mathbb{H}^{2} is mapped to the interior of a unit disk D
- hyperbolic lines \leadsto circular arcs orthognal to D
- conformal: preserves angles

[^8]
Reduction (Sketch)

1) pseudoline arrangement A

6 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Reduction (Sketch)

1) pseudoline arrangement A
2) curve γ enclosing all intersections

Reduction (Sketch)

1) pseudoline arrangement A
2) curve γ enclosing all intersections
3) pseudolines to pseudocircles

[^9]

1) pseudoline arrangement A
2) curve γ enclosing all intersections
3) pseudolines to pseudocircles
4) vertices at intersections with γ
[^10]1) pseudoline arrangement A
2) curve γ enclosing all intersections
3) pseudolines to pseudocircles
4) vertices at intersections with γ
5) cycles at pseudoline intersections
[^11]1) pseudoline arrangement A
2) curve γ enclosing all intersections
3) pseudolines to pseudocircles
4) vertices at intersections with γ
5) cycles at pseudoline intersections
\leadsto Lombardi instance G

[^12] Paul Jungeblut

Stretchable \leadsto Lombardi

Recall:

A is stretchable in \mathbb{R}^{2}
A is stretchable in \mathbb{H}^{2}

Construct Lombardi Drawing:

- take realization of A in the Poincaré disk

[^13]
Stretchable \sim Lombardi

Recall:

A is stretchable in \mathbb{R}^{2} \Longleftrightarrow
A is stretchable in \mathbb{H}^{2}

Construct Lombardi Drawing:

- take realization of A in the Poincaré disk
- extend circular arcs to circles

[^14]
Stretchable \sim Lombardi

Recall:

A is stretchable in \mathbb{R}^{2} \Longleftrightarrow
A is stretchable in \mathbb{H}^{2}

Construct Lombardi Drawing:

- take realization of A in the Poincaré disk
- extend circular arcs to circles
- add circles around intersections

[^15] Paul Jungeblut

Lombardi \leadsto Stretchable

Problem: A Lombardi drawing of G might not look like a Poincaré disk with hyperbolic lines.

Lombardi \sim Stretchable

Problem: A Lombardi drawing of G might not look like a Poincaré disk with hyperbolic lines.

Solution: Circle gadgets that force cycles in G to be drawn as circles.

Lombardi \leadsto Stretchable

Problem: A Lombardi drawing of G might not look like a Poincaré disk with hyperbolic lines.

Solution: Circle gadgets that force cycles in G to be drawn as circles.

Extract line arragnement:

- interpret as Poincaré disk
- little circles \leadsto same order of intersectoins
$\Rightarrow A$ is stretchable

Circle Gadget

Given: cycle C, 4-regular

9 On the Complexity of Lombardi Graph Drawing
Paul Jungeblut

Circle Gadget

Given: cycle C, 4-regular

- add fan of additional edges

9 On the Complexity of Lombardi Graph Drawing
Paul Jungeblut

Circle Gadget

Given: cycle C, 4-regular

- add fan of additional edges
- add leaves to "fix" angles

9 On the Complexity of Lombardi Graph Drawing
Paul Jungeblut

Circle Gadget

Given: cycle C, 4-regular

- add fan of additional edges
- add leaves to "fix" angles

9 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Circle Gadget

Given: cycle C, 4-regular

- add fan of additional edges
- add leaves to "fix" angles

Lemma:

C must be drawn as a circle.

Idea: perfect angular resolution + fixed rotation system R
\Rightarrow all angles are known
\Rightarrow characterization of arc-polygons (Eppstein, Frishberg, Osegueda 2023)
\Rightarrow C must be drawn as a circle

Open Problems

Problem 1:

Planar Lombardi drawings:

additional crossings are caused by circle gadgets

Open Problems

Problem 1:

Planar Lombardi drawings:

additional crossings are caused by circle gadgets

Problem 2:

Without fixed rotation system?

What are the angles between the edges?

[^0]: 2 On the Complexity of Lombardi Graph Drawing
 Paul Jungeblut

[^1]: 2 On the Complexity of Lombardi Graph Drawing

[^2]: 3 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

[^3]: 4 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

[^4]: 4 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

[^5]: 4 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

[^6]: 5 On the Complexity of Lombardi Graph Drawing

[^7]: 5 On the Complexity of Lombardi Graph Drawing

[^8]: 5 On the Complexity of Lombardi Graph Drawing

[^9]: 6 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

[^10]: 6 On the Complexity of Lombardi Graph Drawing

[^11]: 6 On the Complexity of Lombardi Graph Drawing
 Paul Jungeblut

[^12]: 6 On the Complexity of Lombardi Graph Drawing

[^13]: 7 On the Complexity of Lombardi Graph Drawing
 Paul Jungeblut

[^14]: 7 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

[^15]: 7 On the Complexity of Lombardi Graph Drawing

