On the Complexity of Lombardi Graph Drawing

Lombardi Drawing

Definition: Lombardi Drawing

Vertices points in \mathbb{R}^2

Edges circular arcs (or line segments)

Constraint perfect angular resolution

Images created with the Lombardi Spirograph by David Eppstein.

Lombardi Drawing

Definition: Lombardi Drawing

Vertices points in \mathbb{R}^2

Edges circular arcs (or line segments)

Constraint perfect angular resolution

1 On the Complexity of Lombardi Graph Drawing Paul Jungeblut Images created with the Lombardi Spirograph by David Eppstein.

Lombardi Drawing

Definition: Lombardi Drawing

Vertices points in \mathbb{R}^2

Edges circular arcs (or line segments)

Constraint perfect angular resolution

may contain crossings

(arbitrary crossing angles)

Images created with the Lombardi Spirograph by David Eppstein.

Our Result

Input: graph G rotation system R

Question: Does G have a Lombardi drawing respecting R?

Our Result

Input: graph G rotation system R

Question: Does G have a Lombardi drawing respecting R?

Theorem:

It is $\exists \mathbb{R}$ -complete to decide whether G has a Lombardi drawing respecting R.

$\mathsf{NP} \subseteq \exists \mathbb{R} \subseteq \mathsf{PSPACE}$

Our Result

Input: graph G rotation system R

Question: Does G have a Lombardi drawing respecting R?

Theorem:

It is $\exists \mathbb{R}$ -complete to decide whether G has a Lombardi drawing respecting R.

$\mathsf{NP} \subseteq \exists \mathbb{R} \subseteq \mathsf{PSPACE}$

2 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Complexity Class $\exists \mathbb{R}$

- appears frequently in computational geometry and graph drawing
- difficulty = solving polynomial system of equations and inequalities
- Formally: reducible to $\exists X_1, \ldots, X_n \in \mathbb{R} : \varphi(X_1, \ldots, X_n)$ real valued variables
 polynomial equations and inequalities

Related Work

Lombardi Graph Drawing

GD 2010 introduced by Duncan, Eppstein, Goodrich, Kobourov and Nöllenburg

Always exist for 2-degenerate, trees, cacti, subcubic, outerpaths, ...

Variants planar, circular, ...

Complexity no general results yet

³ On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Related Work

Lombardi Graph Drawing

- **GD 2010** introduced by Duncan, Eppstein, Goodrich, Kobourov and Nöllenburg
- Always exist for 2-degenerate, trees, cacti, subcubic, outerpaths, ...
- Variants planar, circular, ...

Complexity no general results yet

Complexity Class $\exists \mathbb{R}$ **RAC-drawing** recognition of \sim intersection graphs art gallery problem

Stretchability

Input: pseudolines

Want: lines in \mathbb{R}^2

Simple Stretchability:

every two pseudolines intersect exactly once

no triple intersections

Stretchability

Input: pseudolines

Want: lines in \mathbb{R}^2

Theorem: (Mnëv 1988) Simple Stretchability is $\exists \mathbb{R}$ -complete in \mathbb{R}^2 .

Simple Stretchability:

- every two pseudolines intersect exactly once
- no triple intersections
- 4 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Stretchability

Input: pseudolines

Want: lines in \mathbb{R}^2

Simple Stretchability:

- every two pseudolines intersect exactly once
- no triple intersections
- 4 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Theorem: (Mnëv 1988) Simple Stretchability is $\exists \mathbb{R}$ -complete in \mathbb{R}^2 .

Observation:

(Bieker, Bläsius, Dohse, Jungeblut 2023)

Simple Stretchability is $\exists \mathbb{R}$ -complete in \mathbb{H}^2 .

\mathbb{H}^2 – Hyperbolic Plane

- non-Euclidean geometry
- has already been used in the literature to construct Lombardi drawings

\mathbb{H}^2 – Hyperbolic Plane

- non-Euclidean geometry
- has already been used in the literature to construct Lombardi drawings

Poincaré Disk Model

- \blacksquare embeds \mathbb{H}^2 into \mathbb{R}^2
- $\blacksquare \ \mathbb{H}^2$ is mapped to the interior of a unit disk D
- hyperbolic lines ~> circular arcs orthognal to D
- conformal: preserves angles

\mathbb{H}^2 – Hyperbolic Plane

- non-Euclidean geometry
- has already been used in the literature to construct Lombardi drawings

Poincaré Disk Model

- \blacksquare embeds \mathbb{H}^2 into \mathbb{R}^2
- \blacksquare \mathbb{H}^2 is mapped to the interior of a unit disk D
- hyperbolic lines \rightsquigarrow circular arcs orthognal to D
- conformal: preserves angles

1) pseudoline arrangement A

1) pseudoline arrangement A

2) curve γ enclosing all intersections

- 1) pseudoline arrangement A
- 2) curve γ enclosing all intersections
- 3) pseudolines to pseudocircles

- 1) pseudoline arrangement A
- 2) curve γ enclosing all intersections
- 3) pseudolines to pseudocircles
- 4) vertices at intersections with γ

- 1) pseudoline arrangement A
- 2) curve γ enclosing all intersections
- 3) pseudolines to pseudocircles
- 4) vertices at intersections with γ
- 5) cycles at pseudoline intersections

- 1) pseudoline arrangement A
- 2) curve γ enclosing all intersections
- 3) pseudolines to pseudocircles
- 4) vertices at intersections with γ
- 5) cycles at pseudoline intersections

 \rightsquigarrow Lombardi instance G

 $\mathsf{Stretchable} \rightsquigarrow \mathsf{Lombardi}$

Recall: A is stretchable in \mathbb{R}^2 \iff A is stretchable in \mathbb{H}^2

Construct Lombardi Drawing:

take realization of A in the Poincaré disk

$\mathsf{Stretchable} \rightsquigarrow \mathsf{Lombardi}$

Recall:A is stretchable in \mathbb{R}^2 \iff A is stretchable in \mathbb{H}^2

Construct Lombardi Drawing:

- take realization of A in the Poincaré disk
- extend circular arcs to circles

$\mathsf{Stretchable} \rightsquigarrow \mathsf{Lombardi}$

Recall:A is stretchable in \mathbb{R}^2 \iff A is stretchable in \mathbb{H}^2

Construct Lombardi Drawing:

- take realization of A in the Poincaré disk
- extend circular arcs to circles
- add circles around intersections

$Lombardi \rightsquigarrow Stretchable$

Problem: A Lombardi drawing of G might not look like a Poincaré disk with hyperbolic lines.

$Lombardi \rightsquigarrow Stretchable$

Problem: A Lombardi drawing of G might not look like a Poincaré disk with hyperbolic lines.

Solution: Circle gadgets that force cycles in G to be drawn as circles.

$Lombardi \rightsquigarrow Stretchable$

Problem: A Lombardi drawing of G might not look like a Poincaré disk with hyperbolic lines.

Solution: Circle gadgets that force cycles in G to be drawn as circles.

Extract line arragnement:

- interpret as Poincaré disk
- \blacksquare little circles \rightsquigarrow same order of intersectoins
- \Rightarrow A is stretchable
- 8 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Given: cycle C, 4-regular

Given: cycle C, 4-regular

add fan of additional edges

Given: cycle C, 4-regular

- add fan of additional edges
- add leaves to "fix" angles

Given: cycle C, 4-regular

- add fan of additional edges
- add leaves to "fix" angles

9 On the Complexity of Lombardi Graph Drawing Paul Jungeblut **Lemma:** C must be drawn as a circle.

Given: cycle C, 4-regular

- add fan of additional edges
- add leaves to "fix" angles

9 On the Complexity of Lombardi Graph Drawing Paul Jungeblut **Lemma:** C must be drawn as a circle.

- - \Rightarrow all angles are known
 - ⇒ characterization of arc-polygons (Eppstein, Frishberg, Osegueda 2023)
 - \Rightarrow C must be drawn as a circle \Box

Open Problems

Problem 1:

Planar Lombardi drawings:

additional crossings are caused by circle gadgets

Open Problems

Problem 1:

Planar Lombardi drawings:

additional crossings are caused by circle gadgets

10 On the Complexity of Lombardi Graph Drawing Paul Jungeblut

Problem 2:

Without fixed rotation system?

What are the angles between the edges?