Directed Acyclic Outerplanar Graphs Have Constant Stack Number

FOCS 2023 · 9th of November 2023

Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Karlsruhe Institute of Technology, Germany

Input: Graph G

Want: ■ linear ordering ≺ of vertices

■ k-coloring of edges, s.t: same color \sim crossing-free

Stack Number: $\operatorname{sn}(G) := \min_{\mathcal{F}} k$

Input: Graph G

Want: ■ linear ordering ≺ of vertices

■ k-coloring of edges, s.t: same color \sim crossing-free

Stack Number: $\operatorname{sn}(G) := \min k$

Input: Graph G

Want: ■ linear ordering ≺ of vertices

■ k-coloring of edges, s.t: same color \sim crossing-free

Stack Number: $\operatorname{sn}(G) := \min_{K} k$

Input: Graph G

Want: ■ linear ordering ≺ of vertices

■ k-coloring of edges, s.t: same color \sim crossing-free

Stack Number: $\operatorname{sn}(G) := \min_{K} k$

Input: Graph G

Want: ■ linear ordering ≺ of vertices

■ k-coloring of edges, s.t: same color \sim crossing-free

Stack Number: $\operatorname{sn}(G) := \min k$

Input: Graph G

Want: ■ linear ordering ≺ of vertices

■ k-coloring of edges, s.t: same color \sim crossing-free

Stack Number: $\operatorname{sn}(G) := \min k$

Examples:

Outerplanar:

$$\operatorname{sn}(G) = 1$$

Hamiltonian (C) < 5

$$\operatorname{sn}(G) \le 2$$

Planar

$$\operatorname{sn}(G) \le 4$$

[Yannakakis 1989]

Directed Stack Number: sn(G)

Input: DAG G (directed acyclic graph)

Want: ■ topological ordering ≺ of vertices

■ k-coloring of edges, s.t: same color \sim crossing-free

Stack Number: $\operatorname{sn}(G) := \min k$

Directed Stack Number: sn(G)

Input: DAG G (directed acyclic graph)

Want: ■ topological ordering ≺ of vertices

■ k-coloring of edges, s.t: same color \sim crossing-free

Stack Number: $\operatorname{sn}(G) := \min_{i \in G} k_i$

Examples:

Trees:

$$\operatorname{sn}(G) = 1$$

Planar:

$$\operatorname{sn}(G) = \infty$$

Our Contribution

Conjecture: (Heath, Pemmaraju, Trenk 1999) Outerplanar DAGs have constant stack number.

- ✓ cacti
- √ single-source outerplanar
- √ monotone outerplanar
- ✓ outerpaths

Our Contribution

Conjecture: (Heath, Pemmaraju, Trenk 1999)

Outerplanar DAGs have constant stack number.

✓ cacti

√ single-source outerplanar

✓ monotone outerplanar

✓ outerpaths

Theorem: (JMU 2023)

G is outerplanar:

 $\operatorname{sn}(G) \le 24776$

new decomposition for outerplanar DAGs

Our Contribution

Conjecture: (Heath, Pemmaraju, Trenk 1999)

Outerplanar DAGs have constant stack number.

✓ cacti

√ single-source outerplanar

✓ monotone outerplanar

✓ outerpaths

Theorem: (JMU 2023)

G is outerplanar:

 $\operatorname{sn}(G) \le 24776$

new decomposition for outerplanar DAGs

Best possible:

Theorem: (JMU 2023)

G is a "very simple" 2-tree: s

$$\operatorname{sn}(G) = \infty$$

2-trees are a slightly larger graph class than outerplanar DAGs

2-Tree:

- Base edge:
- G is a 2-tree, $uv \in E(G)$. Then G' is a 2-tree:
 - $V(G') = V(G) \cup \{x\}$
 - $\bullet E(G') = E(G) \cup \{ux, vx\}$

2-Tree:

- Base edge:
- G is a 2-tree, $uv \in E(G)$. Then G' is a 2-tree:
 - $V(G') = V(G) \cup \{x\}$
 - $\bullet E(G') = E(G) \cup \{ux, vx\}$

2-Tree:

- Base edge:
- G is a 2-tree, $uv \in E(G)$. Then G' is a 2-tree:
 - $V(G') = V(G) \cup \{x\}$
 - $\bullet E(G') = E(G) \cup \{ux, vx\}$

2-Tree:

- Base edge:
- G is a 2-tree, $uv \in E(G)$. Then G' is a 2-tree:
 - $V(G') = V(G) \cup \{x\}$
 - $\bullet E(G') = E(G) \cup \{ux, vx\}$

2-Tree:

- Base edge:
- G is a 2-tree, $uv \in E(G)$. Then G' is a 2-tree:
 - $V(G') = V(G) \cup \{x\}$
 - $\bullet E(G') = E(G) \cup \{ux, vx\}$

2-Tree:

- Base edge:
- G is a 2-tree, $uv \in E(G)$. Then G' is a 2-tree:
 - $V(G') = V(G) \cup \{x\}$
 - $\bullet E(G') = E(G) \cup \{ux, vx\}$

2-Tree:

- Base edge:
- G is a 2-tree, $uv \in E(G)$. Then G' is a 2-tree:
 - $V(G') = V(G) \cup \{x\}$
 - $\blacksquare E(G') = E(G) \cup \{ux, vx\}$

Outerplanar Graph:

2-Tree:

- Base edge:
- G is a 2-tree, $uv \in E(G)$. Then G' is a 2-tree:
 - $V(G') = V(G) \cup \{x\}$
 - $\bullet E(G') = E(G) \cup \{ux, vx\}$

Outerplanar Graph:

(Subgraph of a) 2-tree in which each edge has at most one child.

2-Tree:

- Base edge:
- G is a 2-tree, $uv \in E(G)$. Then G' is a 2-tree:
 - $V(G') = V(G) \cup \{x\}$
 - $\blacksquare E(G') = E(G) \cup \{ux, vx\}$

Outerplanar Graph:

(Subgraph of a) 2-tree in which each edge has at most one child.

Directed:

monotone

Transitive Outerplanar DAGs:

Transitive Outerplanar DAGs:

Transitive Outerplanar DAGs:

Transitive Outerplanar DAGs:

Observation:

Transitive G:

$$\operatorname{sn}(G) = 1$$

Transitive Outerplanar DAGs:

Observation:

Transitive G:

$$\operatorname{sn}(G) = 1$$

Montone Outerplanar DAGs:

Theorem: (Nöllenburg, Pupyrev 2023)

Monotone outerplanar DAG G:

$$\operatorname{sn}(G) \le 128$$

Transitive Outerplanar DAGs:

Observation:

Transitive G:

$$\operatorname{sn}(G) = 1$$

Montone Outerplanar DAGs:

Theorem: (Nöllenburg, Pupyrev 2023)

Monotone outerplanar DAG G:

$$\operatorname{sn}(G) \le 128$$

Block-Monotone:

Every biconnected component is monotone.

Lemma: (JMU 2023)

Block-monotone outerplanar DAG G:

$$\operatorname{sn}(G) \le 258$$

Directed *H*-Partitions

transitivemonotone

Directed *H*-Partitions

transitivemonotoneparts

Partition vertices:

- start with base edge
- \blacksquare transitive \rightsquigarrow add to current part
- monotone ~> new part

Directed H-Partitions

- transitive
- monotone
- parts

Partition vertices:

- start with base edge
- transitive ~> add to current part
- monotone ~> new part

Definition: (Directed H-Partition)

- lacksquare partition $\mathcal P$ of V(G)
- $lacktriangleq \operatorname{quotient} G/\mathcal{P} \cong H \quad \text{(contract each part into single vertex)}$
- between each two parts:

or

Lemma: (JMU 2023)

An outerplanar DAG G has a directed H-partition \mathcal{P} , such that:

- $lackbox{ } H=G/\mathcal{P}$ is block-monotone
- each part is "transitive"
- (+ other useful properties)

• transitive • monotone • parts

Proof Strategy:

$$H = G/\mathcal{P}$$

Lemma: (JMU 2023)

An outerplanar DAG G has a directed H-partition \mathcal{P} , such that:

- $lackbox{ } H=G/\mathcal{P} ext{ is block-monotone }$
- each part is "transitive"
- (+ other useful properties)

Proof Strategy:

Lemma: (JMU 2023)

An outerplanar DAG G has a directed H-partition \mathcal{P} , such that:

- $lackbox{ } H=G/\mathcal{P}$ is block-monotone
- each part is "transitive"
- (+ other useful properties)

transitive monotone parts

Proof Strategy:

$$G = G/\mathcal{P}$$
 H

Lemma: (JMU 2023)

An outerplanar DAG G has a directed H-partition \mathcal{P} , such that:

- $lackbox{ } H=G/\mathcal{P} ext{ is block-monotone }$
- each part is "transitive"
- (+ other useful properties)

hiding many, many these compatible

Best Possible

Recall:

- lacktriangle an outerplanar DAG G is a 2-tree with at most one child per edge

Questions:

- Stack number of general directed 2-trees?
- Where is the boundary between constant and unbounded stack number?
- 8 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Best Possible

Recall:

- lacktriangle an outerplanar DAG G is a 2-tree with at most one child per edge

Theorem: (JMU 2023)

For every k there exists a 2-tree G with stack number $\operatorname{sn}(G) = k$.

Questions:

- Stack number of general directed 2-trees?
- Where is the boundary between constant and unbounded stack number?
- 8 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Best Possible

Recall:

- lacktriangle an outerplanar DAG G is a 2-tree with at most one child per edge

Questions:

- Stack number of general directed 2-trees?
- Where is the boundary between constant and unbounded stack number?

Theorem: (JMU 2023)

For every k there exists a 2-tree G with stack number $\operatorname{sn}(G) = k$.

Additionally:

- lacksquare G is monotone
- at most two children per edge

\$

outerplanar DAGs are right at that boundary

Open Problems

Problem 1:

Precise bound for stack number of outerplanar DAGs?

JMU 2023:

$$\operatorname{sn}(G) \le 24776$$

Nöllenburg + Pupyrev 2023:

$$\operatorname{sn}(G) \ge 4$$

Open Problems

Problem 1:

Precise bound for stack number of outerplanar DAGs?

JMU 2023:

$$\operatorname{sn}(G) \le 24776$$

Nöllenburg + Pupyrev 2023:

$$\operatorname{sn}(G) \ge 4$$

Problem 2:

What is the stack number of upward planar graphs?

planar + all edges upward

JMU 2022:

$$5 \le \operatorname{sn}(G) \in O\left((n\log n)^{\frac{2}{3}}\right)$$