Directed Acyclic Outerplanar Graphs Have Constant Stack Number

FOCS 2023 • 9 $^{\text {th }}$ of November 2023
Paul Jungeblut, Laura Merker, Torsten Ueckerdt
Karlsruhe Institute of Technology, Germany

Stack Number: $\operatorname{sn}(G)$

Input: Graph G
Want: linear ordering \prec of vertices

- k-coloring of edges, s.t:
same color \sim crossing-free
Stack Number: $\operatorname{sn}(G):=\min k$

[^0]
Stack Number: $\operatorname{sn}(G)$

Input: Graph G
Want: linear ordering \prec of vertices

- k-coloring of edges, s.t:
same color \sim crossing-free
Stack Number: $\operatorname{sn}(G):=\min k$

spine

1 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Stack Number: $\operatorname{sn}(G)$

Input: Graph G
Want: linear ordering \prec of vertices

- k-coloring of edges, s.t:
same color \sim crossing-free
Stack Number: $\operatorname{sn}(G):=\min k$

spine
1 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Stack Number: $\operatorname{sn}(G)$

Input: Graph G
Want: linear ordering \prec of vertices

- k-coloring of edges, s.t:
same color \sim crossing-free
Stack Number: $\operatorname{sn}(G):=\min k$

spine

1 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Stack Number: $\operatorname{sn}(G)$

Input: Graph G
Want: linear ordering \prec of vertices

- k-coloring of edges, s.t:
same color \sim crossing-free
Stack Number: $\operatorname{sn}(G):=\min k$

1 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Stack Number: $\operatorname{sn}(G)$

Input: Graph G
Want: linear ordering \prec of vertices

- k-coloring of edges, s.t: same color \sim crossing-free

Stack Number: $\operatorname{sn}(G):=\min k$

Examples:

Outerplanar:

$$
\operatorname{sn}(G)=1
$$

Hamiltonian

$$
\operatorname{sn}(G) \leq 2
$$

Planar

$$
\operatorname{sn}(G) \leq 4 \quad \text { [Yannakakis 1989] }
$$

[^1]
Directed Stack Number: $\operatorname{sn}(G)$

Input: DAG G (directed acyclic graph)
Want: topological ordering \prec of vertices

- k-coloring of edges, s.t:
same color \sim crossing-free
Stack Number: $\operatorname{sn}(G):=\min k$

2 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Directed Stack Number: $\operatorname{sn}(G)$

Input: DAG G (directed acyclic graph)
Want: topological ordering \prec of vertices

- k-coloring of edges, s.t:
same color \sim crossing-free
Stack Number: $\operatorname{sn}(G):=\min k$

Examples:

Trees:

$$
\operatorname{sn}(G)=1
$$

Planar:

$$
\operatorname{sn}(G)=\infty
$$

[^2]
Our Contribution

Conjecture: (Heath, Pemmaraju, Trenk 1999) Outerplanar DAGs have constant stack number.
cacti
single-source outerplanar monotone outerplanar outerpaths

Our Contribution

Conjecture: (Heath, Pemmaraju, Trenk 1999) Outerplanar DAGs have constant stack number.

Theorem: (JMU 2023)
G is outerplanar: $\quad \operatorname{sn}(G) \leq 24776$
cacti
single-source outerplanar monotone outerplanar outerpaths
new decomposition for outerplanar DAGs

[^3]
Our Contribution

Conjecture: (Heath, Pemmaraju, Trenk 1999) Outerplanar DAGs have constant stack number.

Theorem: (JMU 2023)

G is outerplanar: $\quad \operatorname{sn}(G) \leq 24776$

Best possible:
Theorem: (JMU 2023)
G is a "very simple" 2-tree: $\quad \operatorname{sn}(G)=\infty$

cacti

single-source outerplanar monotone outerplanar outerpaths
new decomposition for outerplanar DAGs

2-trees are a slightly larger graph class than outerplanar DAGs

[^4]
Outerplanar Graphs and 2-Trees

2-Tree:

- Base edge: !
- G is a 2-tree, $u v \in E(G)$. Then G^{\prime} is a 2-tree:
- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$
- $E\left(G^{\prime}\right)=E(G) \cup\{u x, v x\}$

[^5]
Outerplanar Graphs and 2-Trees

2-Tree:

- Base edge: !
- G is a 2-tree, $u v \in E(G)$. Then G^{\prime} is a 2-tree:
- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$
- $E\left(G^{\prime}\right)=E(G) \cup\{u x, v x\}$

4 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Outerplanar Graphs and 2-Trees

2-Tree:

- Base edge: !
- G is a 2-tree, $u v \in E(G)$.

Then G^{\prime} is a 2-tree:

- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$
- $E\left(G^{\prime}\right)=E(G) \cup\{u x, v x\}$

[^6]Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Outerplanar Graphs and 2-Trees

2-Tree:

- Base edge: !
- G is a 2-tree, $u v \in E(G)$. Then G^{\prime} is a 2-tree:
- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$
- $E\left(G^{\prime}\right)=E(G) \cup\{u x, v x\}$

4 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Outerplanar Graphs and 2-Trees

2-Tree:

- Base edge: !
- G is a 2-tree, $u v \in E(G)$. Then G^{\prime} is a 2-tree:
- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$
- $E\left(G^{\prime}\right)=E(G) \cup\{u x, v x\}$

4 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Outerplanar Graphs and 2-Trees

2-Tree:

- Base edge: !
- G is a 2-tree, $u v \in E(G)$. Then G^{\prime} is a 2-tree:
- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$
- $E\left(G^{\prime}\right)=E(G) \cup\{u x, v x\}$

[^7]Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Outerplanar Graphs and 2-Trees

2-Tree:

- Base edge: !
- G is a 2-tree, $u v \in E(G)$. Then G^{\prime} is a 2-tree:
- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$
- $E\left(G^{\prime}\right)=E(G) \cup\{u x, v x\}$

Outerplanar Graph:

Outerplanar Graphs and 2-Trees

2-Tree:

- Base edge: !
- G is a 2-tree, $u v \in E(G)$. Then G^{\prime} is a 2-tree:
- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$
- $E\left(G^{\prime}\right)=E(G) \cup\{u x, v x\}$

Outerplanar Graph:

(Subgraph of a) 2-tree in which each edge has at most one child.

Outerplanar Graphs and 2-Trees

2-Tree:

- Base edge: !
- G is a 2-tree, $u v \in E(G)$. Then G^{\prime} is a 2-tree:
- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$
- $E\left(G^{\prime}\right)=E(G) \cup\{u x, v x\}$

Outerplanar Graph:

(Subgraph of a) 2-tree in which each edge has at most one child.

Directed:

transitive

monotone

cyclic

4 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Special Cases

Transitive Outerplanar DAGs:

5 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Special Cases

Transitive Outerplanar DAGs:

5 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Special Cases

Transitive Outerplanar DAGs:

5 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Special Cases

Transitive Outerplanar DAGs:

Observation:

Transitive G :
$\operatorname{sn}(G)=1$

5 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Special Cases

Transitive Outerplanar DAGs:

Observation:
Transitive G : $\operatorname{sn}(G)=1$

5 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Montone Outerplanar DAGs:

Theorem: (Nöllenburg, Pupyrev 2023) Monotone outerplanar DAG G : $\operatorname{sn}(G) \leq 128$

Special Cases

Transitive Outerplanar DAGs:

Observation:

Transitive G : $\operatorname{sn}(G)=1$

Montone Outerplanar DAGs:

Theorem: (Nöllenburg, Pupyrev 2023) Monotone outerplanar DAG G : $\operatorname{sn}(G) \leq 128$

Block-Monotone:

Every biconnected component is monotone.
Lemma: (JMU 2023)
Block-monotone outerplanar DAG G : $\operatorname{sn}(G) \leq 258$

5 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Directed H-Partitions

- transitive
- monotone

Directed H-Partitions

- transitive
- monotone

Partition vertices:

- start with base edge
- transitive \leadsto add to current part
- monotone \leadsto new part

Directed H-Partitions

- transitive
- monotone

Partition vertices:

- start with base edge
- transitive \leadsto add to current part
- monotone \leadsto new part

Definition: (Directed H-Partition)

- partition \mathcal{P} of $V(G)$
- quotient $G / \mathcal{P} \cong H \quad$ (contract each part into single vertex)
- between each two parts:
 or

[^8]
Constructing Stack Layouts

- transitive
- monotone

Lemma: (JMU 2023)
An outerplanar DAG G has a directed H-partition \mathcal{P}, such that:

- $H=G / \mathcal{P}$ is block-monotone
- each part is "transitive"
(+ other useful properties)

[^9]
Constructing Stack Layouts

- transitive
- monotone
parts

Proof Strategy:

[^10] Paul Jungeblut, Laura Merker, Torsten Ueckerdt

$$
H=G / \mathcal{P}
$$

Lemma: (JMU 2023)
An outerplanar DAG G has a directed H-partition \mathcal{P}, such that:

- $H=G / \mathcal{P}$ is block-monotone
- each part is "transitive"
(+ other useful properties)

Constructing Stack Layouts

- transitive
- monotone
parts

Proof Strategy:

$H=G / \mathcal{P}$
H

[^11] Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Lemma: (JMU 2023)
An outerplanar DAG G has a directed H-partition \mathcal{P}, such that:

- $H=G / \mathcal{P}$ is block-monotone
- each part is "transitive"
(+ other useful properties)

Constructing Stack Layouts

- transitive - monotone parts

Proof Strategy:

Lemma: (JMU 2023)
An outerplanar DAG G has a directed H-partition \mathcal{P}, such that:

- $H=G / \mathcal{P}$ is block-monotone
- each part is "transitive"
(+ other useful properties)

7 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Best Possible

Recall:

- an outerplanar DAG G is a 2-tree with at most one child per edge
- $\operatorname{sn}(G) \leq 24776$

Questions:

- Stack number of general directed 2-trees?
- Where is the boundary between constant and unbounded stack number?

8 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Best Possible

Recall:

- an outerplanar DAG G is a 2-tree with at most one child per edge

Theorem: (JMU 2023)

For every k there exists a 2-tree G with stack number $\operatorname{sn}(G)=k$.

- $\operatorname{sn}(G) \leq 24776$

Questions:

- Stack number of general directed 2-trees?
- Where is the boundary between constant and unbounded stack number?

8 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Best Possible

Recall:

- an outerplanar DAG G is a 2-tree with at most one child per edge
- $\operatorname{sn}(G) \leq 24776$

Questions:

- Stack number of general directed 2-trees?
- Where is the boundary between constant and unbounded stack number?

8 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Theorem: (JMU 2023)

For every k there exists a 2-tree G with stack number $\operatorname{sn}(G)=k$.

Additionally:
a is monotone

- at most two children per edge
outerplanar DAGs are right at that boundary

Open Problems

Problem 1:
 Precise bound for stack number of outerplanar DAGs?

JMU 2023:
$\operatorname{sn}(G) \leq 24776$

Nöllenburg +
Pupyrev 2023:

$$
\operatorname{sn}(G) \geq 4
$$

$$
\operatorname{sn}(G)=4
$$

9 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

Open Problems

Problem 1:

Precise bound for stack number of outerplanar DAGs?

JMU 2023:
$\operatorname{sn}(G) \leq 24776$

Nöllenburg +
Pupyrev 2023:
$\operatorname{sn}(G) \geq 4$

$\operatorname{sn}(G)=4$

Problem 2:

What is the stack number of upward planar graphs?

planar + all edges upward

JMU 2022:
$5 \leq \operatorname{sn}(G) \in O\left((n \log n)^{\frac{2}{3}}\right)$

[^0]: 1 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
 Paul Jungeblut, Laura Merker, Torsten Ueckerdt

[^1]: 1 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

[^2]: 2 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

[^3]: 3 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
 Paul Jungeblut, Laura Merker, Torsten Ueckerdt

[^4]: 3 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
 Paul Jungeblut, Laura Merker, Torsten Ueckerdt

[^5]: 4 Directed Acyclic Outerplanar Graphs Have Constant Stack Number
 Paul Jungeblut, Laura Merker, Torsten Ueckerdt

[^6]: 4 Directed Acyclic Outerplanar Graphs Have Constant Stack Number

[^7]: 4 Directed Acyclic Outerplanar Graphs Have Constant Stack Number

[^8]: 6 Directed Acyclic Outerplanar Graphs Have Constant Stack Number

[^9]: 7 Directed Acyclic Outerplanar Graphs Have Constant Stack Number Paul Jungeblut, Laura Merker, Torsten Ueckerdt

[^10]: 7 Directed Acyclic Outerplanar Graphs Have Constant Stack Number

[^11]: 7 Directed Acyclic Outerplanar Graphs Have Constant Stack Number

