Primal-Dual Cops and Robber

EuroCG 2023 · 29.3.2023

Minh Tuan Ha, Paul Jungeblut, Torsten Ueckerdt
Cops & Robber

2-Players: \(k \) Cops, 1 Robber

Rules:
Cops & Robber

2-Players: k Cops, 1 Robber

Rules:
- Cops go first.
Cops & Robber

2-Players: \(k \) Cops, 1 Robber

Rules:
- Cops go first.
- Robber goes second.
Cops & Robber

2-Players: k Cops, 1 Robber

Rules:
- Cops go first.
- Robber goes second.
- Moves are between adjacent vertices.
Cops & Robber

2-Players: \(k \) Cops \(\cdots \) 1 Robber

Rules:
- Cops go first.
- Robber goes second.
- Moves are between adjacent vertices.
- Robber tries to flee indefinitely.
Cops & Robber

2-Players: \(k \) Cops, 1 Robber

Rules:
- Cops go first.
- Robber goes second.
- Moves are between adjacent vertices.
- Robber tries to flee indefinitely.
- Cops win by capturing the robber.
Cops & Robber

2-Players: \(k \) Cops, 1 Robber

Rules:
- Cops go first.
- Robber goes second.
- Moves are between adjacent vertices.
- Robber tries to flee indefinitely.
- Cops win by capturing the robber.

Cop number \(c(G) \):
How many cops are necessary to capture the robber?
Primal-Dual Cops & Robber

- Played in a plane graph G.
Primal-Dual Cops & Robber

- Played in a **plane** graph G.
- Cops play in the **dual** graph G^*:
 - \sim **Face-Cops**
Primal-Dual Cops & Robber

- Played in a plane graph G.
- Cops play in the dual graph G^*: \sim Face-Cops
- Robber plays in the primal graph G. (as in the classical game)
Primal-Dual Cops & Robber

- Played in a **plane** graph G.
- Cops play in the **dual** graph G^*:
 - \sim Face-Cops
- Robber plays in the **primal** graph G.
 (as in the classical game)
Primal-Dual Cops & Robber

- Played in a plane graph G.
- Cops play in the dual graph G^*: ~ Face-Cops
- Robber plays in the primal graph G. (as in the classical game)
Primal-Dual Cops & Robber

- Played in a plane graph G.
- Cops play in the dual graph G^*: \leadsto Face-Cops
- Robber plays in the primal graph G. (as in the classical game)
- Cops win by occupying all faces incident to the robber.
Primal-Dual Cops & Robber

- Played in a plane graph G.

- Cops play in the dual graph G^*:
 - \leadsto Face-Cops

- Robber plays in the primal graph G.
 (as in the classical game)

- Cops win by occupying all faces incident to the robber.

Primal-dual cop number $c^*(G)$:
How many face-cops are necessary to capture the robber?
Results

Trivial lower bound:
\[c^*(G) \geq \Delta(G) \quad \text{(if } G \text{ is 2-connected)} \]

\[\uparrow \quad \text{max. degree} \]
Results

Trivial lower bound:
\[c^*(G) \geq \Delta(G) \quad (\text{if } G \text{ is 2-connected}) \]

max. degree

Question:
Is there an upper bound on \(c^*(G) \) in terms of \(\Delta(G) \)?
Results

Trivial lower bound:
\[c^*(G) \geq \Delta(G) \] (if \(G \) is 2-connected)

\[\text{max. degree} \]

Question:
Is there an upper bound on \(c^*(G) \) in terms of \(\Delta(G) \)?

Theorem:
For a plane graph \(G \):
\[c^*(G) \leq 3 \quad \text{if} \quad \Delta(G) \leq 3 \]
\[c^*(G) \leq 12 \quad \text{if} \quad \Delta(G) \leq 4 \]
\[c^*(G) \in \Omega(\sqrt{\log(n)}) \quad \text{if} \quad \Delta(G) \geq 5 \]
$c^*(G) \leq 3 \quad \text{for} \quad \Delta(G) \leq 3$

(Simplification: 3-regular, 2-connected)
Primal-Dual Cops and Robber
Minh Tuan Ha, Paul Jungeblut, Torsten Ueckerdt

$c^*(G) \leq 3$ for $\Delta(G) \leq 3$
(Simplification: 3-regular, 2-connected)

- Cops *choose* their target faces.

\[G \]
$c^*(G) \leq 3 \quad \text{for} \quad \Delta(G) \leq 3$

(Simplification: 3-regular, 2-connected)

- Cops *choose* their target faces.
$c^*(G) \leq 3$ for $\Delta(G) \leq 3$

(Simplification: 3-regular, 2-connected)

- Cops choose their target faces.
- Cops update their target faces.
 - d_b and d_r increased by 1
 - d_g did not change
 - each cop may take one step
\(c^*(G) \leq 3 \text{ for } \Delta(G) \leq 3 \)

(Simplification: 3-regular, 2-connected)

- Cops choose their target faces.
- Cops update their target faces.
 - \(d_b \) and \(d_r \) increased by 1
 - \(d_g \) did not change
 - each cop may take one step

\[d_b + d_r + d_g \text{ decreases during each cop-turn} \]

(There is an edge case left in the endgame.)
\[c^*(G) \leq 12 \quad \text{for} \quad \Delta(G) \leq 4 \]
(Simplification: 4-regular, 2-connected)

Idea: Four face-cops can simulate a vertex cop.
$$c^*(G) \leq 12 \text{ for } \Delta(G) \leq 4$$

(Simplification: 4-regular, 2-connected)

Idea: Four face-cops can simulate a vertex cop.
c∗(G) ≤ 12 for Δ(G) ≤ 4
(Simplification: 4-regular, 2-connected)

Idea: Four face-cops can simulate a vertex cop.

Theorem: (Aigner, Fromme 1984)
c(G) ≤ 3 for all planar graphs G.

4 · 3 = 12 face-cops always suffice
(in planar graphs with Δ(G) ≤ 4)
Primal-Dual Cops and Robber

Theorem: (Nisse, Suchan 2008)

\[c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)}) \] for the \(n \times n \)-grid graph \(G_{n,n} \).

\[c^*(G) \text{ is unbounded for } \Delta(G) \geq 5 \]

\(G_{4,4} \)

variant of classical game

\(p < q \): cop and robber speeds (edges per turn)
\(c^*(G)\) is unbounded for \(\Delta(G) \geq 5\)

Theorem: \((\text{Nisse, Suchan 2008})\)

\[c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})\] for the \(n \times n\)-grid graph \(G_{n,n}\).

Idea: Simulate this in our primal-dual variant.

\[\text{variant of classical game}\]

\(p < q\): cop and robber speeds (edges per turn)
Primal-Dual Cops and Robber

Minh Tuan Ha, Paul Jungeblut, Torsten Ueckerdt

\(c^*(G) \) is unbounded for \(\Delta(G) \geq 5 \)

Theorem: (Nisse, Suchan 2008)
\[c_{p,q}(G_{n,n}) \in \Omega\left(\sqrt{\log(n)}\right) \] for the \(n \times n \)-grid graph \(G_{n,n} \).

\(G_{4,4} \)

variant of classical game
\(p < q \): cop and robber speeds (edges per turn)

Idea: Simulate this in our primal-dual variant.

grid edge:

subdivide \(h \) times
c^*(G) is unbounded for $\Delta(G) \geq 5$

Theorem: (Nisse, Suchan 2008)
$c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$-grid graph $G_{n,n}$.

Idea: Simulate this in our primal-dual variant.

grid edge:

subdivide h times

variant of classical game
$p < q$: cop and robber speeds (edges per turn)
c*(G) is unbounded for Δ(G) \geq 5

Theorem: (Nisse, Suchan 2008)
\(c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)}) \) for the \(n \times n \)-grid graph \(G_{n,n} \).

variant of *classical* game
\(p < q \): cop and robber speeds (edges per turn)

Idea: Simulate this in our primal-dual variant.

grid edge:
subdivide \(h \) times

\[h + 1 \text{ steps} \]
c\(^*\)(G) is unbounded for \(\Delta(G) \geq 5\)

Theorem: (Nisse, Suchan 2008)

\[c_{p,q}(G_{n,n}) \in \Omega\left(\sqrt{\log(n)}\right)\] for the \(n \times n\)-grid graph \(G_{n,n}\).

\(p < q\): cop and robber speeds (edges per turn)

Idea: Simulate this in our primal-dual variant.

grid edge: subdivide \(h\) times

\[h + 1\] steps

\(\approx \frac{3}{2}h\) steps
$c^*(G)$ is unbounded for $\Delta(G) \geq 5$

Theorem: (Nisse, Suchan 2008)
$c_{p,q}(G_{n,n}) \in \Omega\left(\sqrt{\log(n)}\right)$ for the $n \times n$-grid graph $G_{n,n}$.
$c^*(G)$ is unbounded for $\Delta(G) \geq 5$

Theorem: (Nisse, Suchan 2008)

$c_{p,q}(G_{n,n}) \in \Omega\left(\sqrt{\log(n)}\right)$ for the $n \times n$-grid graph $G_{n,n}$.
Primal-Dual Cops and Robber

Minh Tuan Ha, Paul Jungeblut, Torsten Ueckerdt

$c^*(G)$ is unbounded for $\Delta(G) \geq 5$

Theorem: (Nisse, Suchan 2008)

$c_{p,q}(G_{n,n}) \in \Omega\left(\sqrt{\log(n)}\right)$ for the $n \times n$-grid graph $G_{n,n}$.

$\Delta = 5$

$G_{4,4}$
$c^*(G)$ is unbounded for $\Delta(G) \geq 5$

Theorem: (Nisse, Suchan 2008)
$c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$-grid graph $G_{n,n}$.

Robber strategy:
- copy strategy of Nisse and Suchan
 - robber moves between grid vertices “o”
 - “rounds” face-cop to nearest grid vertex
- inner rings \leadsto no shortcuts for face-cops
- robber is faster $\leadsto c^*(G) \in \Omega(\sqrt{\log(n)})$
Open Problems

Problem 1

Find exact bounds:

- $\Delta(G) \leq 3$: $c^*(G) = 3$
- $\Delta(G) \leq 4$: $4 \leq c^*(G) \leq 12$
- $\Delta(G) \leq 5$: $c^*(G) \in \Omega(\sqrt{\log(n)})$
Open Problems

Problem 1

Find exact bounds:

- $\Delta(G) \leq 3$: $c^*(G) = 3$
- $\Delta(G) \leq 4$: $4 \leq c^*(G) \leq 12$
- $\Delta(G) \leq 5$: $c^*(G) \in \Omega\left(\sqrt{\log(n)}\right)$

Problem 2

Generalize the game:

- Consider graphs with crossing-free embeddings on other surfaces
- Use cycle double cover instead of faces