

Minh Tuan Ha, Paul Jungeblut, Torsten Ueckerdt

k Cops 2-Players: 1 Robber

Rules:

- Cops go first.
- Robber goes second.

3

2-Players: k Cops 1 Robber

Rules:

- Cops go first.
- Robber goes second.
- Moves are between adjacent vertices.

2-Players: k Cops 1 Robber

Rules:

- Cops go first.
- Robber goes second.
- Moves are between adjacent vertices.
- Robber tries to flee indefinitely.

2-Players: k Cops 1 Robber

Rules:

- Cops go first.
- Robber goes second.
- Moves are between adjacent vertices.

- Robber tries to flee indefinitely.
- Cops win by capturing the robber.

2-Players: k Cops 1 Robber

Rules:

- Cops go first.
- Robber goes second.
- Moves are between adjacent vertices.

- Robber tries to flee indefinitely.
- Cops win by capturing the robber.

Cop number c(G): How many cops are necessary to capture the robber?

Primal-Dual Cops & Robber

Played in a plane graph G.

Primal-Dual Cops & Robber

- Played in a plane graph G.
- Cops play in the dual graph G*:
 → Face-Cops

Primal-Dual Cops & Robber

- Played in a plane graph G.
- Cops play in the dual graph G*:
 → Face-Cops
- Robber plays in the primal graph G.
 (as in the classical game)

Primal-Dual Cops & Robber

- Played in a plane graph G.
- Cops play in the dual graph G*:
 → Face-Cops
- Robber plays in the primal graph G.
 (as in the classical game)

Primal-Dual Cops & Robber

- Played in a plane graph G.
- Cops play in the dual graph G*:
 → Face-Cops
- Robber plays in the primal graph G.
 (as in the classical game)

Primal-Dual Cops & Robber

- Played in a plane graph G.
- Cops play in the dual graph G*:
 → Face-Cops
- Robber plays in the primal graph G.
 (as in the classical game)
- Cops win by occupying all faces incident to the robber.

Primal-Dual Cops & Robber

- Played in a plane graph G.
- Cops play in the dual graph G*:
 → Face-Cops
- Robber plays in the primal graph G. (as in the classical game)
- Cops win by occupying all faces incident to the robber.

Primal-dual cop number $c^*(G)$: How many face-cops are necessary to capture the robber?

Results

Trivial lower bound: $c^*(G) \ge \Delta(G)$ (if G is 2-connected) $t \mod M$ max. degree

Results

Trivial lower bound: $c^*(G) \ge \Delta(G)$ (if G is 2-connected) $t \mod M$ max. degree

Question: Is there an upper bound on $c^*(G)$ in terms of $\Delta(G)$?

Results

Trivial lower bound: $c^*(G) \ge \Delta(G)$ (if G is 2-connected) $t \mod M$ max. degree

Question:

Is there an upper bound on $c^*(G)$ in terms of $\Delta(G)$?

 $\begin{array}{ll} \mbox{Theorem:} \\ \mbox{For a plane graph G:} \\ c^*(G) \leqslant 3 & \mbox{if } \Delta(G) \leqslant 3 \\ c^*(G) \leqslant 12 & \mbox{if } \Delta(G) \leqslant 4 \\ c^*(G) \in \Omega\big(\sqrt{\log(n)}\big) & \mbox{if } \Delta(G) \geqslant 5 \end{array}$

 $c^*(G)\leqslant 3$ for $\Delta(G)\leqslant 3$

 $c^*(G) \leqslant 3$ for $\Delta(G) \leqslant 3$

• Cops *choose* their target faces.

 $c^*(G) \leqslant 3$ for $\Delta(G) \leqslant 3$

• Cops *choose* their target faces.

 $c^*(G) \leqslant 3$ for $\Delta(G) \leqslant 3$

- Cops choose their target faces.
- Cops *update* their target faces.
 - d_b and d_r increased by 1
 - did not change
 - each cop may take one step

 $c^*(G) \leq 3$ for $\Delta(G) \leq 3$

Cops choose their target faces.

- Cops update their target faces.
 - $\blacksquare \ d_b$ and d_r increased by 1
 - did not change
 - each cop may take one step

 $\label{eq:db} \rightarrow d_b + d_r + d_g \mbox{ decreases} \\ \mbox{ during each cop-turn}$

(There is an edge case left in the endgame.)

 $c^*(G) \leqslant 12$ for $\Delta(G) \leqslant 4$

Idea: Four face-cops can simulate a vertex cop.

 $c^*(G) \leqslant 12$ for $\Delta(G) \leqslant 4$

Idea: Four face-cops can simulate a vertex cop.

 $c^*(G) \leq 12$ for $\Delta(G) \leq 4$

Idea: Four face-cops can simulate a vertex cop.

Theorem: (Aigner, Fromme 1984) $c(G) \leq 3$ for all planar graphs G.

 $\label{eq:4.3} 4\cdot 3 = 12 \mbox{ face-cops always suffice} \\ \mbox{(in planar graphs with } \Delta(G) \leqslant 4)$

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

variant of *classical* game

p < q: cop and robber speeds (edges per turn)

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

variant of *classical* game p < q: cop and robber speeds (edges per turn)

Idea: Simulate this in our primal-dual variant.

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

variant of *classical* game p < q: cop and robber speeds (edges per turn)

Idea: Simulate this in our primal-dual variant.

⁶ Primal-Dual Cops and Robber Minh Tuan Ha, **Paul Jungeblut**, Torsten Ueckerdt

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

variant of *classical* game p < q: cop and robber speeds (edges per turn)

Idea: Simulate this in our primal-dual variant.

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

variant of *classical* game p < q: cop and robber speeds (edges per turn)

Idea: Simulate this in our primal-dual variant.

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

variant of *classical* game p < q: cop and robber speeds (edges per turn)

Idea: Simulate this in our primal-dual variant.

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

6 Primal-Dual Cops and Robber Minh Tuan Ha, **Paul Jungeblut**, Torsten Ueckerdt

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

6 Primal-Dual Cops and Robber Minh Tuan Ha, **Paul Jungeblut**, Torsten Ueckerdt

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

6 Primal-Dual Cops and Robber Minh Tuan Ha, **Paul Jungeblut**, Torsten Ueckerdt

Theorem: (Nisse, Suchan 2008) $c_{p,q}(G_{n,n}) \in \Omega(\sqrt{\log(n)})$ for the $n \times n$ -grid graph $G_{n,n}$.

Robber strategy:

- copy strategy of Nisse and Suchan
 - robber moves between grid vertices "o"
 - "rounds" face-cop to nearest grid vertex
- \blacksquare inner rings \rightsquigarrow no shortcuts for face-cops
- robber is faster $\rightsquigarrow c^*(G) \in \Omega(\sqrt{\log(n)})$

Open Problems

Problem 1

Find exact bounds:

$$\checkmark \Delta(G) \leqslant 3: \quad c^*(G) = 3$$

?
$$\Delta(G) \leqslant 4: \quad 4 \leqslant c^*(G) \leqslant 12$$

?
$$\Delta(G) \leqslant 5: \quad c^*(G) \in \Omega(\sqrt{\log(n)})$$

Open Problems

Problem 1

Find exact bounds:

$$\checkmark \Delta(G) \leqslant 3: \quad c^*(G) = 3$$

?
$$\Delta(G) \leqslant 4: \quad 4 \leqslant c^*(G) \leqslant 12$$

?
$$\Delta(G) \leqslant 5: \quad c^*(G) \in \Omega(\sqrt{\log(n)})$$

Problem 2

Generalize the game:

- consider graphs with crossing-free embeddings on other surfaces
- use cycle double cover instead of faces